Twenty Dollars >

Introduction to
- Cromix-Plus

User’s Manual

Cromemco

Introduction to
Cromix-Plus

User’s Manual

November 1985 023-5012

Rev. C
CROMEMCO, Inc. Copyright c. 1984, 1985
P.O. Box 7400 ‘ CROMEMCO, Inc.
280 Bernardo Avenue All Rights Reserved

Mountain View, CA 94039

This manual was produced using a Cromemco System Three computer
running under the Cromemco Cromix Operating System. The text was
edited with the Cromemco Cromix Screen Editor. The edited text
was proofread by the Cromemco SpellMaster Program and formatted
by the Cromemeco Word Processing System Formatter II.
Camera-ready copy was printed on a Cromemeo 3355B printer.

The.following are registered trademarks of Cromemeco, Inc.

C-Net®
Cromemeo®
Cromix®
FontMaster®
SlideMaster®
SpellMaster®
System Zero"
System Two®
Sy stem Three”
WriteMaster®

The following are trademarks of Cromemeco, Inc.

c-10™
CaleMaster
Cromix-Plus™
DiskMaster ™
Maximizer ™
Sy stem One '
TeleMaster™
System 400™

TABLE OF CONTENTS

Chapter 1: INTRODUCTION

Chapter 2: GETTING STARTED

Before You Begin

The Terminal Keyboard

Logging in to the Cromix~-Plus System

Some Conventions Used in this Manual
Giving Some Typical Commands

Command Arguments

Command Syntax

Displaying the On-line Manual

Stopping a Program While it is Executing
Displaying Additional Screens of Information
The Terminal as a "Carriage-Return" Device
Error Messages

Changing Your Password

Logging Out

Intrinsiec Commands

Privileged Access

Chapter 3: WORKING WITH TEXT FILES

Naming Files

An Additional Consideration When Naming Files

Special Characters

Creating a Sample File

Displaying a List of Files

Command Options

Access Privileges for the Owner of a File

Displaying the Contents of a File

Displaying a File with Page Headings and
Line Numbers

Making a Copy of a File

File Links

Renaming a File

Deleting a File

Some Common Error Messages

Printing a File

General Rules for Command Options

The .bin, «om, and .cmd Filename Extensions

Chapter 4: CROMIX FILE STRUCTURE

The Home Directory
Visualizing the Cromix-Plus File Structure
Absolute Pathnames

iii

(SN

O Woo~3~Jo O ww

15

15
16
17
17
18
18
21
22

22
23
24
25
25
26
27
29
30

33
33

34
37

How to Make Sure You Have Execute Access for

a Directory 41
Displaying the Absolute Pathname of an :)
Executable File 41
Relative Pathnames 42
Changing Directories 43
Cresting a Directory 45
Moving Files to a Directory 46
How Move Works 46
Copying Files to Another Directory 46
Renaming Files with Move and Copy 47
Shortcuts for Working Within a Directory
Structure o ' 49
Deleting a Directory Structure 51
Copying a Directory Struecture 53
How the Shell Looks for Executable Files 54
Special Files in the Home Directory 55
Device Files 56
-Chapter 5: THE MAIL UTILITY 59
Sending Mail 59
Correcting Mistakes While Using Mail 60
What Happens to the Mail You Send 60
How Do You Know When You Have Mail 61
Reading Your Mail 61
The mbox File 62
Sending the Same Mail to Several Users 63
Chapter 6: THE CROMIX SHELL 65
The Standard Cutput 66
The Standard Input 66
The Sort Utility ‘ ' ' 67
Redirecting Output to a File 68
Appending Output to a File 70
Redirecting Type's Qutput to a File A 71
Redirecting Input From a File 72
Running a Job in the Background 73
Giving Sequential Commands 74
Parentheses on the Command Line 75
Redirecting Error Messages 75
Redirection with Pipes 76
Redirecting Output to a Temporary File 77
The Tee Command ' 7
Filename Generation 78
Specifying a Range of Characters 80
An Important Consideration Regarding
_ Filename Generation 81
Experimenting with Filename Generation 81

iv

Chapter 7: WRITING COMMAND FILES

Command-File Description ,
A Practical Use of the Path Command
Redirection Within a Command File
The Echo Command

Command File Structure

The Goto Command

The If Command

The Shift Command

The Rewind Command

The Exit Command

The Input and Testinp Commands
The Testinp Command

The Repeat Command

The Find Command

Sample Command Files

Figure 2-1:
Figure 2-2:

Figure 4-1:
Figure 4-2:
Figure 4-~3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4~11:
Figure 4~-12:

LIST OF ILLUSTRATIONS

Cromemeo 3102 Terminal
Typical "Help" Display

File Structure
File Structure
File Structure
File Structure
File Structure
File Structure
File Structure
File Structure
File Structure
File Structure 10
File Structure 11
File Structure 12

O 00 =1 O Ul W DD

83

83
84
85
83
86
88
89
91
91
91
92
92
94
95
97

[e o

34
35
36
37
39
43
44
45

49
50
53

LIST OF APPENDICES

Appendix A: The Cromix~Plus Command-Line Editor " 101

Making Sure the Editor is Enabled 101
Retrieving the Previous Command 102

Appendix B: The Cromemco Screen Program-Entry

Editor 105
Selecting the Editor to Create a New File S 105
Giving Sereen Commands 106
The ESCAPE Key o 106
Entering Text in the Insert Mode 106
Basic Editing 107
Moving the Cursor While the Editor is in
the Command Mode 107
Delete Mode 108
Xehange (Exchange) Mode 109
Editing a File that is Stored on the Disk 111
Setting Markers with the At Command 111
The Sereen Editor's Shell Command 112
Considerations When Using the Editor 112
Command Summary 114
INDEX _ , 121

vi

Cromemeco Introduetion to Cromix~Plus
1. Introduction

Chapter 1

INTRODUCTION

The Cromemco Cromix-Plus Operating System is a program that supervises the
operation of the computer and its resources, disk drives, printers, terminals,
modems, and so on. All computers, even the personal computer you may have
at home, require some kind of operating system.

The Cromix-Plus system stores information in files--each containing some
related information, and each having a distinct filename. (Physically, these files
are located on some storage medium, such as the computer's hard disk.) To
ensure that files are easy to access, the Cromix~-Plus system organizes all files
in directories within a hierarchical file structure (chapter 4)

Password security and a system of access privileges protect files from
unauthorized access. If desired, access privileges can be changed to authorize
access by selected users.

At any given time, a personal computer can normally do only cne job for one
user., A Cromemeco microcomputer, on the other hand, can be working on
numerous jobs for many users. The Cromix-Plus system is a multiuser system.
¥While the computer compiles a program for one user, it may be printing a file
for another. From the viewpoint of the Cromix-Plus user, the computer is
dedicated to his or her special needs.

Cromix-Plus is also a multitasking operating system. To illustrate, suppose
you need to print 10 copies of a lengthy report, and you 2lso need to edit an
important file. By printing the report as a "background" task, you can free your
terminal for other work, such as editing that file. This is "multitasking,” and
it means you won't waste time waiting for one job to finish so you ean start
another.

With some multi-user systems, as the number of users and tasks increase, it
takes longer and longer to process individual jobs. Such degradation in
performance can be a real problem. With the Cromix-Plus Operating System,
degradation is minimal because the Cromix-Plus system takes full advantage
of the Cromemeco computer's 68000 microprocessor.

Supplied with every Cromix-Plus system is a set of utility programs. These
- utilities handle the jobs users need done again and again, such as printing a copy
of a file (the Spool utility) or giving a file a new filename (the Rename utility).
The most versatile of Cromix-Plus utility programs is the Shell utility. The
Shell provides the interface between the Cromix-Plus Operating System and its
users. It is the Cromix-Plus command interpreter and command processor. The
Shell is also programmable, which means you can instruct it to process commands

1

Cromemeco Introduction to Cromix-Plus
1. Introduection

in special ways. Such customized commands can be given from the command line
(chapter 6) or from command files (chapter 7).

The Cromix-Plus Operating System is as powerful as many opei‘ating systéms
designed to run on large, mainframe computers. Its capabilities include:

@ Device-compatible 1/0, to support redirection of input and output.

® Date and time support.

° Numerous file buffers for high-speed execution.

' Resident execution of tasks (jobs are not swapped out to disk).

® RAM~disk feature, providing extra RAM for use as a high-speed disk.

Cromemeo Infroduction to Cromix-Plus
2. Getting Started

Chapter 2

GETTING STARTED

In this chapter, you'll start using the computer and give some simple commands
to the operating system. In the process, you'll become familiar with your
terminal keyboard and some of the conventions used in this manual.

If you've used a computer with a multi-user operating system before, much of
the information in this chapter will seem familiar. Be sure to at least skim
through the chapter before continuing.

Before You Begin

Talk to the System Administrator--the person in charge of your Cromix-Plus
System. The System Administrator will create a user account and a directory
for you.

The System Administrator will also help you choose a login name and password.
Your login name identifies you to the operating system--your password ensures
that only you can log in with your login name.

When you have received a login name and password, you can log in to the system,

In other words, you can tell the Cromix-Plus system you wish to use the
computer, and the system will grant your request.

The Terminal Keyboard

Figure 2-1, a Cromemco 3102 terminal keyboard, points out some important key s.

Cromemco Introduction to Cromix~Plus
2. Getting Started

Control Key Delete Key | Return Key

Figure 2-1: CROMEMCO 3102 TERMINAL

The RETURN key is an end-line key. After you've typed an instruction to the
operating system, pressing RETURN ends the typed line and enters that
instruction. As you're typing fext from the keyboard, a RETURN ends the
current line so you can begin a new line.

The DELETE key deletes characters on the current line. (DELETE is not an
"abort," or program-interrupt, key as it is with some other operating sy stems.)

The CONTROL key is discussed later in the chapter.

Logging in to the Cromix~Plus System

Many terminals may be connected to a multi-user Cromix-Plus system, and the
sy stem keeps track of what terminals are in use. When a terminal is not in use,
the system displays the prompt "Login:™. This prompt means that you (or any
sy stem user) can log in to the Cromix-Plus system from that terminal.

You should see "Login:" on the terminal now. If you do not, make sure the
terminal is turned on (there is an ON/OFF switch at the rear of the terminal).
Then press the RETURN key on the terminal keyboard a few times.

Cromemco Introduction to Cromix~Plus
2. Getting Started

With the cursor next to "Login:", type your login name. Because the
Cromix~-Plus system is not sensitive to letter case, you can use any combination
of upper- and lowercase letters. After typing the last letter of your login name,
press the RETURN key. In response, the system displays a password prompt,
as shown here:

LOGIN: jim
Password:

To protect your password, you will not see what you ty pe when you answer this
prompt. (Nor will the cursor move.) After typing the last letter of your
password, press RETURN,

Note: If you think you mistyped your password, just press RETURN. The
system will give you a new login prompt, so you can start over.

If you correctly typed both your login name and password, your terminal will
look similar to this:

LOGIN: jim
Password:

Logged in jim Nov~-14-1984 09:53:47 on qtty3
Message of the day: Welcome to the Cromix-Plus Operating System
%

Each time you log in, the Cromix-Plus system displays the message of the day.
It announces that you are logged in to the system. Of greater importance,
however, is the Shell prompt--the percent sign to the left of the cursor.

For users with "privileged access" to the system, the prompt is a pound sign
(#) instead of a percent sign (%). Privileged access is briefly discussed at the
end of this chapter. - ,

Because the Shell is your means of communicating with the operating system,
you will see the prompt again and again. With the prompt displayed, you can
give a command to the Shell.

A command is a typed instruction, which you send to the Shell by pressing
RETURN. Until you press RETURN, you can correct or change any command.
Use the DELETE key to erase characters; then retype the command. If you
prefer, erase the entire command line by pressing CONTROL~U (hold down the
CONTROL key and type "U"). Under the Cromix-Plus system, CONTRCL-U is
a "line-kill" key.

Appendix A, "The Cromix-Plus Command-Line Editor," explains some other ways
to correct or change a command line.

3

Cromemeco Introduetion to Cromix-Plus
2. Getting Started

Some Conventions Used in this Manual

In text, command names are capitalized, as are the names of corresponding
utility programs.

Example:

Time command
Time utility

For each command, there is a sample command line.
% time

To give the command, type what's printed in boldfaced type (using any
combination of upper- and lowercase letters), and press the RETURN key.

Pressing RETURN sends the command to the system. Under the Cromix-Plus
system, RETURN is an "enter" key.

Almost all the commands in this manual can be given by any user--privileged
or nonprivileged. Thus, a percent sign (%) represents the Shell prompt in most
examples. (The only exceptions are two commands in chapter 7.) Privileged
access is discussed at the end of this chapter.

Giving Some Typical Commands
Because the Cromix-Plus System is a multi-user system, it is often helpful to
know who is currently logged in. You can find out by giving the Who command:

% who

When you press RETURN to enter the command, the Shell calls the Who utility
program. ("Calling" a program starts it running.) In response, Who executes,
displaying a list of users on the terminal sereen. A typical display is shown

here:
% who
betty qttyl Nov~14~1984 07:16:22 0 0
jim qtty2 Nov~14-1984 09:42:29 0 0
fred qtty3 Nov~14~1984 09:53:47 0 0

%

This list of login names and terminal ("qtty ") numbers tells you who is currently
using the system, from what terminal. Also shown is the time each user logged
in-to the system.

Cromemco Introduction to Cromix-Plus
2. Getting Started

Note: You can log in from any unused terminal --even if you are already logged
in somewhere else. Although the Cromix-Plus System keeps track of
the terminal (or terminals) you are using, it does not associate you with
a specific terminal.

When a program such as Who is through executing, it returns control to the Shell.
The Shell then displays a new prompt so you can give another command. To
demonstrate, give the Time command.

% time
Wednesday, November 14,1984 3:58:12
%

In response, Time displays today's date and the current time on your terminal
sereen.
Command Arguments

By typing additional items on a command line, you can modify what a command
does. These additional items are called command arguments.

To demonstrate, give this variation of the Who ecommand.
% who am i

This time, Who displays information about you only (your login name, your
terminal, and the time you logged in). A typical display is shown here:

% who am i
jim qtty3 Nov-14~1984 09:53:47 0 0
%

Many commands can use arguments. For some commands, arguments are required.
For others (such as Who), arguments are optional.

Command Syntax

The required form of a command--how the command and its arguments are
grouped on the command line--is called command syntax. When representing
command syntax, the Cromix~-Plus documentation shows optional arguments in
square brackets.

Cromemeco Introduction to Cromix~Plus
2. Getting Started

For example, the syntax of the Who command can be represented as follows:
who [am i]

The command arguments (in brackets) are optional.

A basic understanding of command syntax will help you use the system's on~line

manual. There are additional examples of command syntax throughout this

manual.

Displaying the On-line Manual

The Help utility displays "pages” from the sy stem's on-line manual. To display

information about a particular command, give the Help command with an

argument.

The syntax of the Help command is:

help [ecommand-name]

When you give the command, the argument is the name of any command (such as
Who, Time, or Help).

- Figure 2-2 shows a typical display.

TIME : CROMIX Instruction: Manual
ufdl ity TIME
pUrposes Tiis: program:. dilsplays or alters the time: andidates
user - gecesg: |kl yegers tor digplay

privil eged user i fior changes

SUMMBEY. - time L ~ged!
argumentss none
optlongy g set. system values

g set. 3102 cioek
- European: style display, (ad/immiyy)

Deseriplion

The ‘Time program displays or cnahges the: time” and date: | If the ws optlon
: 75% MORE

Figure 2-2: TYPICAL "HELP"™ DISPLAY

Cromemco Introduction to Cromix~Plus
2. Getting Started

"75% MORE" at the bottom righthand corner of the screen indicates there is more
information about this particular command.

Pressing RETURN or the SPACE bar brings additional information onto the screen.
Pressing the RETURN key brings a new line into view, while pressing the SPACE
bar displays an entire screen of new text.

When you're through using Help, type q for quit, In a few seconds, the Shell
will display a new prompt so you can give another command. While a program
like Help is running, you can also get a new prompt by pressing CONTROL-C,
as explained in the next section.

Note: Other than CONTROL~-C, the remaining keys and/or commands that work
with Help (such as pressing RETURN or typing q) are specific to Help.
Help, like a few other programs, has its own set of commands.

Stopping a Program While it is Executing

Almost all the commands in this manual execute utility programs like Who, Time,
or Help. You can stop most programs while they are executing by pressing
CONTROL~C (hold down the CONTROL key and type "C").

Pressing CONTROL~-C sends an "abort" signal (via the Shell) to the program.
In response, the program prematurely returns control to the Shell. In other
words, the program stops running, and the Shell displays a new prompt.

Displaying Additional Sereens of Information

Many programs display output on the terminal screen. Sometimes that output
exceeds the capacity of the terminal sereen (24 lines). For example, the Query
utility displays a summary of Cromix-Plus commands that is longer than 24 lines.

So you can view a program's output at your leisure, the display stops after each
sereenful. To demonstrate, give the Query command:

% query

After displaying one screenful of text, your terminal beeps. The beep tells
you there is more output. To view the next 24 lines of output, press
CONTROL-Q (hold down the CONTROL key and type "Q"). Each time you press
CONTROL~-Q, you'll see a new screen of text. After displaying the final screen
of output, Query returns control to the Shell.

This is how your terminal normally displays output. Occasionally, your terminal
will display a program's output without stopping the display after one screen.

Cromemeo Introduction to Cromix-Plus
2. Getting Started

If this happens, you can restore the normal mode of operation by giving the
following command:

% mode pa

This command resets one of your terminal's operating characteristics. The
command argument, pa (for pause), causes your terminal to, once again, pause
after each screen of output.

There is additional information about the Mode utility in the Cromix-Plus User's
Reference Manual.

The Terminal as a "Carriage~Return™ Device

Another of your terminal’s operating characteristics is to move the cursor down
a line each time you press the RETURN key. This enables you to give commands
to the Shell.

Occasionally, without any action on your part, the terminal may not work in this
manner. You will press RETURN, and the cursor will not move down a line. To
restore the terminal to its normal mode of operation, give the following
command: ‘

% mode erdev

To enter the command, you will have to press the DOWN ARROW key. (Pressing
RETUBN does nothing.) The command argument, erdev, re-establishes your
terminal as a carriage-return device. After you give the command, pressing
RETURN will again move the cursor down a line.

There is additional information about the Mode utility in the Cromix-Plus User's
Reference Manual.

Error Messages

From time to time, all users receive "error messages" from the system. The
Cromix~Plus system displays error messages on the terminal sereen. Some of
these messages come from the Shell; others come from the individual programs.

A common error message is "Command not found"--the message the Shell
displays when you give a non-existent ecommand. For example, under the
Cromix-Plus system, there is no More utility. Thus, the following command
produces an error message:

% more
Command not found: "more"

10

Cromemco Introduction to Cromix~-Plus
2. Getting Started

If you ever mistype a command name, you'll see a similar message when you
press RETURN. It means the Shell could not carry out your command. (The
Shell looked for, but could not locate, the program.)

Some programs generate error messages of their own. Mode is an example.
Although many programs ignore bad arguments, Mode displays an error message:

% mode who
Illegal argument: "who"

Some common error messages associated with the Cromix-Plus utility programs
are given throughout this manual.

Changing Your Password
For security, you should occasioriélly change your password. Whenever you wish
to ehange your password, give the Passwd command:

% passwd

In response, the Passwd utility prompts for your login name:

% passwd
Name:

When you type your login name and press RETURN, Passwd displays another
prompt. In the example, a user named Jim is changing his password:

% passwd
Name: jim
Password:

To answer this prompt, ty pe your new password and press RETURN. When you
press RETURN, Passwd displays an "enerypted" version of your new password
(not what you actually typed).

11

Cromemeco Introduetion to Cromix~Plus
2. Getting Started

To respond to the next prompt ("Name:"), simply press RETURN:

% passwd
Name: jim

Password: xhbydksy

Name: (RETURN)
%

—

After changing your password in this manner, you must use your new password
the next time you log in. (The system no longer recognizes your old password.)
If, after several fries, you cannot log in using your new password, see the
System Administrator.

Logging Out

When you are through using the computer, log out by giving the Exit command.
Exit, like many commands, can be abbreviated on a command line. To give the
Exit command, you can either ty pe the command name in full or a just a portion
of it:

N

ex

Although the sample command lines in this manual show the abbreviated form
for all cominands, you can often substitute the full command name (exit instead
of ex).

When you log out, the system redisplays its login prompt. To use the system
again from this terminal, you must repeat the login procedure.

Intrinsiec Commands

Exit is an example of an "intrinsic" command. In other words, it is "intrinsic"
to the Cromix~Plus System--it is not a utility program like Who or Passwd, whieh
the Shell ealls from the computer's hard disk each time you use the program.

Whether the first item on a command line is the name of an intrinsic command
(like Exit) or a program (like Who) matters only to the system. The distinction
is mentioned to help you understand the Cromix-Plus documentation. For
example, the User's Reference Manual summarizes the Shell commands and
Cromix-Plus utility programs. "Shell command™ means an intrinsic command
such as Exit.

12

Cromemeo Introduction to Cromix-Plus
2. Getting Started

Privileged Access

If your Shell prompt is a percent sign, you are a nonprivileged user. As such,
there are certain commands you cannot give. For example, you cannot use the
Passwd utility to change someone else's password--that requires privileged
access.

% passwd

Name: eindy

Can only change your own password.

%
You can, of course, change your own password.
As a nonprivileged user, you cannot give a command that might harm the system
or inconvenience other users. 50, as you use the Craomix-Plus Operating System,
feel free to experiment with new commands.
If you accidentally give a command requiring privileged access, the Shell will

display an error message, as in the following example:

% passwd -n
Must be privileged user.
%

Most commands can be given by all users--privileged and nonprivileged.

13

Cromemco Introduction to Cromix~Plus

14

Cromemeo Introduction to Cromix~Plus
3. Working with Text Files

Chapter 3

WORKING WITH TEXT FILES

In this chapter you'll learn the basic utilities and Shell commands that
manipulate files. First, you'll create a sample file usmg the Cromemco Screen
program-entry editor. (The Screen editor is discussed in detail in appendix B.)
Using this sample file, you can experiment with some of the Cromix-Plus
system's most used ecommands--such as Rename (the command that gives a file
a new filename) and Delete (the command that deletes a file from the hard disk).

Also covered is the Spool -utility, which prints one or more files. Instructions
for stopping printing are included.

Naming Files

In the next section, you'll ereate your first file. You can name this file sample,
as suggested in the text, or select another filename. (In the Cromix-Plus
documentation, filenames are always printed in boldfaced, lowercase type.)
Filenames consist of one to twenty-four consecutive characters (in other words,
no SPACEs) from the following set:

a-z, A~Z, 0~9, _, $, .

Because the Cromix-Plus system is not sens1t1ve to letter case, the following
filenames are equivalent:

letters
Letters
LETTERS

You can use the underscore character (_) to make filenames easier to read, as
in the following examples: :

form__letter
chapter_1

15

Cromemeco Introduetion to Cromix-Plus
3. Working with Text Files

A period in a filename is the first character of a filename extension, as in the
following examples:

file.text
sort.out

In these filenames, the extensions are .text and .out. Filename extensions are
useful for identifying similar kinds of files:

o

report.save
chapter2.save
memo,.save

To illustrate, you would think twice before deleting a file with a .save
extension. You might reserve this filename extension for all your important
files.

If a filename contains several periods, only the final period (and the characters
that follow) is a filename extension.

For example:

file.text.out
sort.out.save

In these filenames, the extensions are .out and .save. As explained at the end
of this chapter, the files you creaste may not have a .bim or .com filename
extension. "

Although you can use a .bak (for backup) extension when naming files, its use
may prove confusing. The Screen program, introduced in this chapter,
automatically creates a backup file with a .bak filename extension whenever
you update an existing file. For details, refer to appendix B.

An Additional Consideration When Naming Files

Any Cromix-Plus utility that uses filenames will accept a 24-character
filename. Remember, however, that not all the programs you may use are
Cromix-Plus utilities.

There are a number of programs that can be installed on the Cromix~Plus sy stem
that may have their own file~-naming conventions. An example is the Cromemco
Formatter~II text-formatting program. Formatter-II is not a Cromix-Plus utility
program and will not accept a 24-character filename. (Itslimit is 12 characters,
ineluding a 3-character filename extension.)

16

Cromemco Introduetion to Cromix~Plus
3. Working with Text Files

When in doubt, consult the documentation for the program you're using.

Special Characters

Each of the following characters means something special to the Shell, and
should not be used when creating files:

*r 1> =&

In choosing a filename, restrict yourself to those characters shown earlier in
the chapter. ’ :

Creating a Sample File

In this section, you'll create a sample file. This manual assumes you'll be using
the Screen program-entry editor to create the file. Screen is another of the
Cromix-Plus utility programs, available to all Cromix~Plus users.

In preparation, read the following sections in appendix B, where the Screen
editor is discussed in detail:

"Selecting the Editor to Create a New File"
"Giving Sereen Commands®

"The ESCAPE Key"

"Entering Text in the Insert Mode"

"Saving a File on Disk~~the Exit Command"

Using the Screen editor, create a file named sample, and ty pe the following text .
in the file:

Help
Passwd
Query
Who
Exit

Then save the file.
Because the Screen editor has its own set of commands, pressing CONTROL-C
does not exit you from the Sereen program. If you press CONTROL-C with the

editor in the Command mode, your terminal beeps. Pressing CONTRCL-C with
the editor in the Insert mode adds an unwanted charaeter ("C) to your text.

17

Cromemeco Introduction to Cromix-Plus
3. Working with Text Files

Displaying a List of Files

The Ls (for list) utility displays useful information sbout files. Without an
argument, Ls displays a simple list of files. To better illustrate the display,
the following example shows some typical filenames; obviously, you'll see a
different display when you give the command:

% 1s
letter memo output plan6_10

Command Options

Command options modify what commands do. On a command line, options follow
the command name. They consist of a single alphabetic character, preceded
by a hyphen. In the following example, -m (a hyphen, followed by the letter
"em") is a command option:

% ls ~m
239 1 letter
241 1 memo

50 1 output
240 1 plan6 10

The —m (for medium) option instructs Ls to display more detailed information
about files. From left to right, the display shows you the size of the file (in
characters), the number of links to the file, and the filename. (Links are
discussed later in this chapter.)

Another option, ~1 (for long), displays even more information:

% 1s ~1
239 1reware--re-- betty Nov~-14 10:18 letter
241 1lreware--re-—betty Nov-14 10:18 memo
50 1reware--re--betty Nov-14 10:22 output
' 240 1lreware--re-—betty Nov-14 10:21 plan6_10

Now you can check the time you last worked on a file. You can also see the
access privileges associated with each file. (Access privileges and file
ownership are discussed in the next section.)

18

Cromemeo Introduction to Cromix~Plus
3. Working with Text Files

To display still more detailed information about files, give the L's command with
the -e (for everything) option. A typical display is shown here:

% 1s ~e
letter 239
created: Nov-14~1984 10:17:16 rewa re-- re--
modified: Nov-14-1984 10:18:08 betty group: 1

accessed: Nov-14-1984 10:17:23 links: 1
dumped: 000-00-1900 00:00:00 inode: 423

memao 241
created: Nov-14-1984 10:18:18 rewa re-- re--
modified: Nov-14-1984 10:18:55 betty group: 1

accessed: Nov-14-1984 10:18:18 links: 1
dumped: 000~-00-1900 00:00:00 inode: 421

output ' 50
created: Nov~14-1984 10:21:55 rewa re-- re--
modified: Nov-14-1984 10:22:14 Dbetty group: 1

accessed: Nov-14-1984 10:22:16 links: 1
dumped: 000-00-1900 00:00:00 inode: 402

plan6 _10 240
created: Nov~-14~1984 10:19:58 rewa re-- re--
modifieds Nov~14-1984 10:21:04 Dbetty group: 1

accessed: Nov-14-1984 10:20:30 1links: 1
dumped: 000~00~-1900 00:00:00 inode: 422

Included in the display is the inode number assigned to each file. (The system
uses inode numbers to locate files on the computer's hard disk.) Ls with the
-i (for inode) option displays only filenames and inode numbers. A System
Administrator might give this command to determine the inode number of a
particular file:

% 1s -i

423 letter
421 memo
402 output
422 plan6_10

By adding options to a basic command ("Ls"), one utility serves the needs of
many ~-ordinary users, who need to verify filenames, or System Administrators,

who need to check inode numbers. Ls is one of many Cromix~Plus utilities that
use options.

In command syntax, options are written as in the following example:

1s [-eilm]

19

Cromemeco Introduction to Cromix~Plus
3. Working with Text Files

Ls, like a number of Cromix-Plus utilities, will accept multiple options:

% 1s ~e ~m

letter

memo

output

plan6_10

created:
modified:
accessed:
dumped:

created:
moedified:
accessed:
dumped:

created:
modifieds
accessed:
dump ed:

created:
modified:
accessed:
dumped:

239
Nov-14-1984 10:17:16
Nov-14~1984 10:18:08
Nov~-14-1984 10:17:23
000-00-1900 00:00:00

241
Nov-14-1984 10:18:18
Nov-14-1984 10:18:55
Nov-14-1984 10:18:18
000~-00-1900 00:00:00

50
Nov=14~1984 10:21:55
Nov~-14~1984 10:22:14
Nov~14-1984 10:22:16
000~00~1900 00:00:00

240
Nov~-14-1984 10:19:58
Nov~14-1984 10:21:04
Nov-14-1984 10:20:30
000-00-1900 00:00:00

rewa re-— re-—

betty
links: 1
inode: 423

rewa re-— re-—

betty
links: 1
inode: 421

rews re-- re~—

betty
links: 1
inode: 402

rewa re~— re--

betty
links: 1
inode: 422

groups:

group:

group:

group:

When you give Ls multiple oi)tions, the one producing the most extensive list
(in this case, —e) prevails. If Ls cannot recognize one or more options, a
command-syntax summary is displayed so you can see what options are available.

When using a utility that accepts multiple options, you can often group options
after a single hyphen, as in this example:

% ls —~em
. letter 239

created: Nov-14-1984 10:17:16 rewa re-- re—-
modified: Nov-14~1984 10:18:08 betty group: 1
accessed: Nov~14-1984 10:17:23 1links: 1
dumped: 000~-00-1900 00:00:00 inode: 423

memo 241
created: Nov—-14-1984 10:18:18 rewa re-- re—-
modifieds Nov-14-1984 10:18:55 betty group: 1
accessed: Nov-14-1984 10:18:18 links: 1
dumped: 000-00-1900 00:00:00 inode: 421

20

Cromemeo Introduction to Cromix~-Plus
3. Working with Text Files

output 50
created: Nov~-14~1984 10:21:55 rewa re-— re--
modified: Nov-14-1984 10:22:14 betty .group: 1

accessed: Nov-14-1984 10:22:16 links: 1
dumped: 000-00-1900 00:00:00 inode: 402

plan6_10 240
created: Nov-14-1984 10:19:58. rewsa re~- re--
modified: Nov~-14-1984 10:21:04 betty group: 1

accessed: Nov-14-1984 10:20:30 links: 1
dumped: 000~00-1900 00:00:00 inode: 422

As a general rule, you can group options that do not require arguments. All
Ls command options fit this description because none requires additional
information on the command line for Ls to act on that option.

General rules regarding command options are summarized at the end of this
chapter.

Access Privileges for the Owner of a File

When you gave the "ls -1" command, you saw a string of lowercase letters and

hy phens preceding your login name:

% 18 ~1
32 1 reware--re-— you Nov~-14 10:14 sample

Your login name means you are the owner of the file sample. You "own" it in
the sense that the Cromix-Plus system created the file for you.

What you can do with the file depends on the access privileges associated with
the file. Your privileges (as the owner of a file) are defined by the first four
characters in the string of lowercase letters and hyphens. As supplied, the
_ Cromix~-Plus system automatically gives you the following access to your files:

rewa

This group of letters:

r for "read"

e for "execute"
w for "write"
a for "append"

21

Cromemeo Introduetion to Cromix~Plus
3. Working with Text Files

means you have all possible access privileges. You can pead from the file, write
to the file, append (add to the end) of the file, or gxecufe the file. Read, write,
and append access ensure you can display, change, and add text to files at will.
Execute access becomes important when you create command files, as explained
in chapter 7.

Having these privileges ensures you can work with your own files. For more
information about access privileges, refer to the discussion of the Access utility
“in the Cromix-Plus User's Reference Manual.

Displaying the Contents of a File

The Type command displays the contents of text files on the terminal screen.
(Any file you can edit using the Screen program is a text file.)

To display a file, the command syntax is:
ty filename

For example, you can display the contents of the sample file by giving this
command:

% ty sample
Help

Passwd
Query

Who

Exit

Qs
70

Type shows you the text in a file. When files are long, pressing CONTROL-Q
brings more text onto the terminal screen. Type only displays files-~to change
the contents of a text file, you must use an editor, such as the Screen program.

Displaying a File with Page Headings and Line Numbers

The Clist utility, like Type, displays the contents of text files. Clist, however,
adds some information of its own to the display. In Clist's display, each line
of the file is numbered for easy reference. At the top of the display is a
heading, showing the name of the file and the last time you worked on it:

% elist sample _
File SAMPLE Wednesday, November 14,1984 10:14:29

Help
Passwd
Query
Who
Exit

en e Lo B

22

~ Cromemeo Introduction to Cromix~Plus
3. Working with Text Files

If you create text files that contain your own computer programs, you may wish
to display those files with Clist. For text files containing letters, memos, and
so on, use Type instead. : .

Neither Type nor Clist change the files they display in any way.
Making a Copy of a File

When you need another copy of an existing file, use the Copy utility. After a
copy operation, you have two files--the original and the copy.

The two files are identical in every respect--except for their filenames. The
QIQW&M.&MWJWMM%
When you wish to make 2 copy of a file, the command syntax is:

copy source-file destination~-file

The term "source file" refers to the original file (the source of Copy's input).
The term "destination file" refers to the new file. In the Cromix-Plus
documentation, and in the on-line help files, you will see these terms often.
Make a copy of the sample file now. Call the new file alpha.

% ecopy sample alpha

The Ls command verifies the presence of the new file.

% 1s
alpha sample

For practice, make a copy of the alpha file named beta.

% copy alpba beta

23

Cromemeco Introduction to Cromix-Plus
3. Working with Text Files

Using Copy, you created two files that (except for their names) are identical
to the file sample:

% ty alpha
Help
Passwd
Query
Who
Exit

% ty beta
Help
Passwd
Query
Who

Exit

%

Giving the "ls -1" command will show that even the creation times associated
with the files are the same. If the system created the sample file on December
12, at 12:02, the alpha and beta files will show "Dec-12 12:02" as their
cregtion times, too. Only the inode numbers associated with each file will be
different.

File Links

The Cromix~Plus system identifies files by associating each filename with an
inode number. Each inode number corresponds to a physical loeation on the
computer's hard disk. When you create a file, you create both the file itself
(under an inode number) and an identifying filename. The filename is also called
a link, and every inode must have at least one link. The "ls -m" command

% 1s -m
32 1 sample

tells you how many links en inode has. In the above example, the "1" indicates
that the filename "sample” is the only link to that 1node (use the 1s —-i command
to get the inode number).

Multiple links are particularly useful for files that have long or awkward
pathnames (pathnames are discussed in the next chapter). With the Maklink
utility (refer to the Cromix~-Plus User's Manual), you can make a link from the
original file to a simpler filename in the current directory, and delete it later
when you no longer need it. As long as an inode has more than one link, deleting
one of the links does not delete the file.

24

Cromemco Introduetion to Cromix~-Plus
3. Working with Text Files -

Renaming a File
The Rename command gives an existing file a new filename.
Command syntax:
ren old-filename new~filename
To demonstrate, give the sample file a new filename:
% re;l sample practice
The Ls command verifies the file has been renamed:
% 1s
alpha beta practice
Deleting a File
The Delete command deletes files. Once a file is deleted, it no longer appears
in the list of files that Ls displays. Nor can you access the information in the

file (unless that particular inode had more than one link).

Command syntax:
del file-list

For "file~list," you ean substitute a series of filenames. Or, you can delete just
one file by giving the command with a single argument (one filename). To
demonstrate, delete the file beta by giving the following command:

% del beta
You know the file is gone when you see the new Shell prompt.
You can delete several files by giving the command with several arguments (a

series of filenames). For example, if you had files named text, demo, and
chapter, the fallowing command would delete those files:

% del text demo chapter

Once you delete a file, its contents are irretrievably gone. For this reason, it
is a good idea to check the contents of a file using Type before deleting that
file. ‘

25

Cromemeo Introduction to Cromix-Plus
3. Working with Text Files -

Some Common Error Messages
When using Copy, Delete, or Rename, a new Shell prompt means the system

carried out your commands.

copy myfile yourfile
del myfile

R & X

You know the system did nof execute a particular command if an error message
- precedes the new prompt. .

% ren myfile ourfile
File not found: "myfile"

R

This particular message means Rename could not locste the old file (the file
to be renamed). Rename returned control to the Shell without renaming a file.
To produce a similar error message, you might try renaming the beta file-~the
file you deleted in the previous section,

Some common error messages associated with Rename and Copy are:

% ren today
Wrong number of arguments
%

This is an example of a syntax error--Rename requires two arguments. Thus,
Rename returned control to the Shell without even looking for a file named
today.

% eopy letter letter.save
File already exists: "letter.save"

3¢

As a safeguard, Copy and Rename normally require a new filename as their final
command argument. Without this protection, you could easily destroy the
contents of an existing file.

If you do want Copy to overwrite an existing file, use the ~f (for force) option:

copy -f letter letter.save

X R

26

Cromemeco Introduction to Cromix~Plus
3. Working with Text Files

Printing a File
When you want to print a copy of a file, use the Spool utility. -

To print files, the command syntax is:
spool file-list

When you give Spool a filename as an argument, Spool sends a copy of that file
to the system printer. To demonstrate, print a copy of the praectice file by
giving this command:

% spool practice

X

The new Shell prompt tells you Spool found the practice file and sent a copy
of the file to the system printer. If your printer is turned on, and properly
loaded with paper, your file will be printed.

Like Delete and Rename, Spool displays an error message when it cannot locate
a particular file.

% spool pactice
File not found: '"pactice"

%

Sometimes, when you give the Spool command, another user's job will be printing.
In this case, Spool will add your job to a queue-~to be printed in its turn.

To print more than one copy of a file, give the Spool command with the -m
(multiple-copy) option. Using this option, the following command instructs Spool
to print three copies of the practice file.

% spool -m 3 practice

The —m option requires an argument--the number of copies to print. The option
and its argument must be separated by spaces, as shown. When you do not use

the -m option to specify multiple copies, Spool, by default, prints one copy
of a file.

When called without a filename as an argument, Spool can be used with still more
options. Two of them, ~1 and -k, are especially useful. The -1 (for list) option
displays a list of your own print jobs, whether a job is currently printing or in

the queue.
% spool -1 :
Filename User Seq Dev Pri Pages Lines Copies Form
~> memo betty 3 5:5 5 1 12 1 0

27

Cromemeo Introduction to Cromix-Plus
3. Working with Text Files

By adding an option, ~a (for all), to the command, you can display a list of all
print jobs (other users' jobs, as well as your own):

% spool ~la

Filename User Seq Dev Pri Pages Lines Copies Form
-> memo betty 3 5:3 5 1 12 1 0

first_dreft jim 4 5:5 5 19 1498 1 0

budget jim 5 5:5 5 1 47 2 0

Spool displays an arrow, pointing to the current job (the one that is printing).
Your job's Sequence number is a reference if you need to cancel that particular

job. mammgﬂwmjwmﬂm
printing.
You can use Spool with the ~k (for kill) option to cancel any of your own print
jobs. Tokill a job, while it prints or as it waits in the queue, the Spool command
syntax is:

spool -k sequence-#-or-filename

To illustrate, consider the following list of jobs:

% spool -la

Filename User Seq Dev Pri Pages Lines Copies Form
~> memo betty 3 5¢5 5 1 12 1 0

first_draft jim 4 LRG| 19 1498 1 0

budget jim 5 535 5 1 47 2 0

If Jim wanted to cancel the two jobs he has in the queue, he might give the
following ecommands:

% spool -k 4
% spool -k budget

The first command kills a job by referring to its sequence number, the second,
by referring to a filename. Use whichever method you prefer. Be aware,
however, that killing a job by sequence number is more precise than killing a
job by filename. To illustrate, if Jim had two files named budget in the queue,
the command "spool -k budget" would kill both of them.

As a nonprivileged user, you can only kill your own print jobs. If Jim tries to
kill Betty's job, an error message results:

% spool -k 3
3 not found

Cromemco Introduction to Cromix~Plus
3, Working with Text Files

The Printer Daemon -- Although it's easiest to call Spool a utility that
"prints a file" or "sends a copy of a file to the printer," Spool is a little more

complex than this. Printing is a multi-step process,

The Spool utility is the process that initistes printing, but it is another
process--called the printer daemon--that actually prints your files. Spool
activates the daemon before returning control to the Shell.

At your terminal, you see a new Shell prompt, while (behind the scenes) the
daemon prints your file.

General Rules for Command Options

As you use the Cromix~-Plus system, you'll encounter numerocus programs that
can be used with options. The following information will help you use these
programs effectively.

1. Command options consist of a single character, immediately preceded by
a hyphen:

% 1s -m
As shown, a space separates the command name and the command option.

2. You can specify more than one option on a command line:
% spool -1 -a

3. You cen group options that do not require arguments after a single hy phen:
% spool —la

4. You cannot group options that require arguments:
% spool -m 3 practice

In the preceding command, —m requires an argument (the number of copies
to print). As shown, a space must separate the option and its argument.,

Se On a command line, options precede other arguments:
% spool -m 3 practiee
Not

% spool praectice -m 3

29

Cromemeo Introduction to Cromix~Plus
3. Working with Text Files

When the Shell calls a program, it passes all arguments (including command
options) to the program~-without checking their validity. Cromix~-Plus programs
do pol ignore invalid command options. If you specify one or more invalid
options, your command will not be executed. Instead, the program will display
a command-syntax summary and return control to the Shell.

The .bin, .com, and .cmd Filename Extensions

Three filename extensions have special significance to the Shell--.bin, .cmd,
and .com,

.bin and .com mean the file is an executable binary file. For example, the
Cromix-Plus utility programs are stored in files with .bin extensions. (Files
with .com extensions were originally designed to work with Cromemeo's CDOS
Operating System.)

You cannot use the Screen program-entry editor (or another text editor) to edit
the contents of a binary file.

% sereen sample.bin
Cromix Screen Editor version xx.xx
Illegal filename: "sample.bin"

% sereen sample.com

Cromix Screen Editor version xx.xx
Illegal filename: "sample.com"

Nor should you display the contents of a binary file using Type or Clist. If you
do, your terminal may not work properly until you turn it OFF and back ON.
.cmd means the file is a command file. Command files are text files, like the
file practice. (A text file is any file you can edit with the Sereen program or
display with Type or Clist.) The text in a command file is a series of ordinary
commands (like the commands you gave in this chapter).

For example, the following ecommand file contains the "spool -la" command.

% ty sla.cmd
spool ~la

By giving the Shell the name of a command file-~minus the filename
extension-~you tell the Shell to execute that file.

% sla

Executing a command file executes all the commands in the file.

30

Cromemeo Introduction to Cromix~-Plus
3. Working with Text Files

If you're interested in command files, you may wish to duplicate this sample
command file. Use the Screen editor to create a file named sla.emd, and proof
the file carefully before you save it. v

When the Shell executes the file, a list of all print jobs will be displayed-~as
if you'd given the command "spool -la" in response to the Shell prompt:

% sla ‘
Filename User --Seq Dev Pri Pages Lines Copies Form
-> chapterl betty 539 5:5 5 42 6781 1 0
policy fred -540 5:5 5 3 132 1 0

The system executes the commands in a command file as though you'd given the
commands from the terminal keyboard. (To the Shell, you did.) You can write
command files to perform many repetitive tasks. Refer to chapter 7 for details.

Before continuing, you may wish to delete some of the sample files you created
in this chapter. If so, keep the praectice file (it is used again in chapter 6).

31

Cromemeo Introduction to Cromix-Plus

32

Cromemeo Introduction to Cromix~Plus
4.Cromix File Structure

Chapter 4

CROMIX FILE STRUCTURE

The Cromix-Plus system must keep track of hundreds of files--including
executable binary files (such as who.bin) and text files (such as practiee).

In many respects, the Cromix-Plus file system is similar to an ordinary filing
system. But, instead of file folders, the Cromix-Plus system organizes
information in directories, On a computer, information is always stored in files.
Thus, the information in a directory is one or more files.

For example, on every Cromix-Plus sy stem, there is a directory called the bin
directory. In this directory are most files with .bin filename extensions
(sereen.bin, 1s.bin, ete.). The system stores text files (such as praetice) in
other directories. Using the commands in this chapter, you can create some
directories and organize your information--the files you create with the
Cromix~Plus system.

The Home Directory

The System Administrator created one directory for you--your user (or home)
directory. Normally, the name of your home direetory is your login name.
Whenever you log in to the system, you are working in your home directory.
Unless you change directories (as explained later in the chapter), the system
stores your files in your home directory.

In chapter 3, you cregted a simple file system, or structure. It consists of your
home directory and a text file.

33

Cromemeo Introduction to Cromix~Plus
4.Cromix File Structure

Your Home
Directory

- practice

Figure 4-1: FILE STRUCTURE 1

The next section explains how your file structure fits into a mueh larger
structure.

Visualizing the Cromix~-Plus File Structure
The Cromix~Plus file system is hierarchical. In other words, its parts are
ranked, so some are on higher levels than others. Figure 4-2 shows a ty pical

system (because there are hundreds of files on any system, only directories are
shown):

34

Cromemco Introduction to Cromix-Plus
4, Cromix File Structure

/{root)

bin cmd gen dev etfc usr

betty jEm fred mail

correspond-
ence

vendors

[1

letters memos

Figure 4-2: FILE STRUCTURE 2

As a family tree traces the ancestry of people, so the Cromix~Plus "tree" traces
the ancestry of files. The ancestor of all files is the root directory. Its name
is represented by a slash mark (/). Like your home directory, / (root) contains

“other files. But, most of the files in / are not ordinary files-~they are directory
files.

To the Cromix-Plus system, each directory (/, your home directory, and so on)
is a file. You cannot edit a directory file:

% sereen /
Cromix Screen Editor version xx.xx
Directory file: "/"

Nor can you execute a directory file:

/

ommand not found: "/"

QX

But, directories are files nonetheless. A directory can contain ordinary files,
other directory files (called subdirectories), or a combination of ordinary files
and subdirectories.

35

Cromemeco Introduction to Cromix ~-Plus
4,Cromix File Strueture

For example, one of the files in / is a subdirectory called bin. This directory
contains most of the executable files with .bin filename extensions. On the same
level as bin is another subdirectory of / called usr. Figure 4-2 shows that usr
contains subdirectories of its own. One of these subdirectories is your home
directory.

Using the analogy of the family tree, / is the parent directory of bin and usr,
while usr is the parent directory of every user's home directory.

You can determine the name of your current directory by giving the D (directory)
command:

% d
_Jusr/you

Without an argument, the D command prints the absolute pathname of the current
directory. Until you change directories, as explained later in the chapter, the
command displays the absolute pathname of your home directory. It traces a
path to the directory file you (your login name) from the root directory, / (see .
figure 4-3)

/{root)

1

L ki cmd gen dev et usr

11 |

{80t {Sub-
you directory) . ditectary)

Figure 4-3: FILE STRUCTURE 3

36

Cromemco Introduetion to Cromix~Plus
4.Cromix File Structure

Absolute Pathnames

The first item in an absolute pathname is. the name of the root. directory (/).
The last item is a filename.

Using absolute pathnames, the system can locate any file in the Cromix file
structure. The first "/" tells the system to look for the file from the root
directory. Each successive "/" tells the system to look one level deeper in the
file structure.

For example, the absolute pathname of the file who.bin is /bin/who.bin. This
pathname gives the system the information it needs to trace a path from the root
directory to the file who.bin in the bin directory. (For clarity, figure 4-4 shows
only a few of the files in the bin directory.)

(root}

bin cmd gen dev ate usr

- clist.bin

o copy.bin

- Is.bin

= rename.hin
o screen.bin
- spool.bin
- time.bin

= who.bin

Figure 4-4: FILE STRUCTURE 4

Using the Ls command, you can display information about the files in many
directories. Without an argument, Ls displays information for the current
directory. With an argument, the pathname of a directory, Ls displays
information for that directory.

37

Cromemeco Introduction to Cromix-Plus
4,Cromix File Structure

To illustrate, give the fallowing command:

% ls ~m fusr

Without changing the current directory (you're still working in your home
directory), Ls displays information about the files in the usr direetory. An
uppercase "D" means the file is another directory file, a subdirectory of usr.
Preceding each "D" is the number of files in that directory.

The file corresponding to your login name is your home directory. In the
following sample display, bill is the name of a user's home directory, as is alan,
jimmy, mark, and sue.

% 1s ~m /usr

‘Directory: /usr

6 D 1 alan
3D 1 bill
98 D 1 help
3% D 1 jimmy
4 D 1 mail
27 D 1 mark
2 D 1 pkg
5D 1 query
4 D 1 spool

83 D 1 sue

Subdirectories such as help, mail, and spool serve other purposes. They are
not user directories, as are mark or sue.

The Ls command with the -1 or —e options display s even more information about
the files in fusr. (Because the "ls -e" command displays so much information,
only a portion of the display is shown.)

% 1s -e fusr

Directory: /usr

alan 6 directory
created: Cet-16-1984 11:13:25 rewa re-- re—-—.
modifieds Oct-16-1984 11:13:25 alan group: 1

accessed: Nov-14-1984 08:41:14 links: 1
dumped: 000-00~1900 00:00:00 inode: 393

bill 1 directory
created: Nov-(6-1984 09:59:41 rewa re-- re--
modifieds Nov-06-1984 09:59:41 bill group: 1

accessed: Nov-06-1984 10:03:49 1links: 1
dumped: 000-00-1900 00:00:00 inode: 157

38

Cromemco Introduction to Cromix~Plus
4. Cromix File Strueture

help 98 directory
createds Ccet-12-1984 12:20:36 rewa re-— re-—-—
modifieds Oct-~12-1984 12:20:36 bin . group: 32767

accessed: Nov-06-1984 13:27:34 links: 1
dumped: 000~00~1900 00:00:00 inode: 146

When you give the commands, both displays will show the date and the time the
System Administrator created your home directory (/usr/you) and the home
directories of the other system users.

Ordinary files have -absolute pathnames, too. For example‘, the following
command displays the contents of the practice file:

% ty [usr/you/practice
Help

Passwd

Query

Who

Exit

%

The first "/" told the system to look for the file from the root directory. Each
successive "/" told the system to look one level deeper in the file structure.

/{root)

i fmobes
| directary)

taih
you

L practice

| ditactorny) |

Figure 4-5: FILE STRUCTURE 5

39

Cromemeco Introduetion to Cromix-~Plus
4. Cromix File Structure

First, the system looked for a subdirectory of / named usr. Finding usr, the
system looked for a subdirectory of usr named you. Finding you, the system
looked for (and found) the practice file. .

me must be the parent of the next. For this reason,

the following command produces an error message:

% 1s /fete/usr
File not found: "/ ete/usr"

The system cannot trace a path from the root directory through the ete
directory to the usr directory because ete and usr are on the same level in the
file structure. :

As supplied, the Cromix~Plus system makes a few directories inaccessible to
nonprivileged users. For example, in the usr directory, there is a subdirectory
named mail. (Chapter 5 explains this directory's purpose.) The access
privileges (chapter 3) associated with the file /usr/mail do not normally include
"execute" access for nonprivileged users. Without execute access for a
directory, vou cannot use the name of that directory in a pathpname.

The following command attempts to make mail the current directory using an
absolute pathname:

% d [usr/mail
Directory not accessible: "/usr/mail"

Because you do have access to the directories you really need to work with (such
as your home directory), you may never see a similar message. If you do see
"Directory not accessible,"” however, its meaning is always the same. Somewhere
in the pathname you gave the Shell is a directory for which you lack execute
access.

The System Administrator can explain the situation. If need be, the System
Administrator can also change the access privileges for the directory. Refer
to the discussion of the Access utility in the Cromix-Plus User's Reference
Manual.

A privileged user, such as the System Administrator, automatically has access
to all the system's directories.

40

Cromemeo Introduction to Cromix~Plus
4, Cromix File Structure

How to Make Sure You Have Execute Access for a Directory

You have execute access for many files you do not "own" simply because you.
can log in to the Cromix~-Plus sy stem. When discussing access privileges, anyone
who can log in is called a member of the "public".

When you give the "1s -1" command, public access privileges are defined by the
last four characters preceding each filename. A lowercase "e" means you, as
a member of the public, have execute access for that file.

To illustrate, consider the following display:

% 1s ~1 [fusr

Directory: /usr

6 D 1 reware-—re-- alan Oct~16 11:13 alan
3 D 1lreware--re--bill Nov~-06 09:59 bill
98 D 1 reware-— re-- bin Oct-12 12:20 help
35 D 1reware~—-re-- jimmy Oct-12 14:40 jimmy
4D 1rewg --—-- =—=-bin Cet~12 12:20 mail
27 D 1reware--re-—mark Oet-16 11:20 mark
2 D 1reware-—re--bin Oct-12 12:20 pkg
5 D 1reware-~re~~-bin Oet-12 12:20 query
4D 1rewa-——~-———- bin ‘May-04 12:20 spool

83 D 1reware--re-- system Cet-12 15:38 sue

Members of the publie (Alan, Bill, Jimmy, Mark, and Sue) have execute access
for all subdirectories of fusr except mail and spool. The four characters
preceding these filenames do not inelude a lowercase "e" (for execute). Thus,
none of this system's nonprivileged users may use the name of either directory
in a pathname.

Access privileges affect nonprivileged users only. The System Administrator,
and any other privileged user, has access to all files. (For more information
about access privileges, consult the discussion of the Access utility in the
Cromix-Plus User's Reference Manual.) -

Displaying the Absolute Pathname of an Executable File

Using the Path command you can display the absolute pathname of an executable
file.

For example:

% path who
/bin/who.bin

Or:

% path sereen
/bin/ sereen.bin

4]

Cromemeco Introduction to Cromix-Plus
4, Cromix File Structure

If Path's argument is the name of an intrinsic command, Path displays the
message "Shell command," as in the following examples:

% path ex
ex: Shell ecommand
% path del
del: Shell command

You cannot use Path to display the absolute pathnames of ordinary files, such
as practice: ‘

% path practice
Command not found: "practice"

There is additional information about the Path command in chapter 7.

Relative Pathnames

A psathname that does not begin with a "/" is a relative pathname. The path
traced by arelative pathname starts at (or is relative to) the current directory.

A relative pathname can be as simple as the name of an ordinary file. For
example, with your home directory the current directory, the following command
display s the practice file.

% ty practice

Using a relative pathname, the system looks for (and finds) the file within the
current directory.

Like absolute pathnames, relative pathnames can trace a psath through many
levels of the file structure. Consider figure 4-6, a typical user's file structure.
Like your own file struecture, it begins with the user's home directory (fred).
The home directory is the parent of another directory, correspondence, and
that directory is the parent of other directories (letters and memos). The
contents of the letters and memos subdirectories are ordinary files.

42

Cromemco Introduction to Cromix~-Plus
4, Cromix File Structure

fred

activity
jones

status

correspond-
ence

adams
brown._1

brown..2
fiscal

smith

letters memaos

i: brown.itr I: memo.brown
memo.sue

smith.itr

Figure 4-6: FILE STRUCTURE 6
While the home directory is the current directory, the following command
display s infermation about the files in the memos directory:
% 1s —m correspondence/memos
Directory: correspondence/memos
576 1 memo.brown
320 1 memo.sue

%

In a similar manner, the next command displays the contents of the file
memo.sue. ‘

% ty correspondence/memos/memo.sue

Figure 4-7 shows the path the system traced to locate the file.

Changing Directories
The D command, which you've used to display the absolute pathname of the
current directory, can also be used to change directories. To make another
directory the current directory, the command syntax is:

d directory-pathname

43

Cromemeo Introduction to Cromix~Plus
4, Cromix File Structure

fred -

correspond-
ence .

l‘ letters memos

memo.brown

memao.sue

Figure 4-7: FILE STRUCTURE 7

For “"directory-pathname," substitute the relative or absolute pathname of the
new directory.

To move to any directory that is a descendant of the current directory, it's
easiest to use a relative pathname. For example, while fred (figure 4-6) is the
current directory, the following command makes correspondence the current
directory:

% d correspondence
To move to any directory that is an gngestor of the current directory, use an
absolute pathname. When you use absolute pathna i

mes, the current directory
is immaterial. From correspondence (or any other directory), the following
command makes fred the current directory:

% d fusr/fred

In a similar way, while memos is the current directory, the following command
makes letters the current directory:

% d /usr/fred/correspondence/letters

44

Cromemco Introduction to Cromix-Pius
4,Cromix File Structure

Because the system can locaste any file from the root directory, the current
directory is immaterial.

Unless you take advahtage of the "shortcuts" discussed later in the chapter,
you must use absolute pathnames to move up in the Cromix-Plus file structure.
Creating a Directory
The Makd (Make Directory) command cresates directory files:

makd directory -pathname '
The command argument can be arelative or absolute pathname. Because creating
a directory creates a new file, the last item in the pathname must be a pew

filename.

To illustrate, if fred (figure 4-6) is the current directory, the following command
creates a subdirectory of letters named jan_june.

% makd correspondence/letters/jan_june

If letters (figure 4~8) is the current directory, the pathname is simply a new
filename.

% makd jan__june

letters

brown.ltr

smith.ltr

jan-june

Figure 4-8: FILE STRUCTURE 8

45

Cromemco Introduction to Cromix~Plus
- 4.Cpromix File Structure

Moving Files to a Directory

The Move utility moves files from one directory to another:
move file-pathname(s) directory-pathname

When moving a group of files, it is usually easiest to give the command from the
directory that contains the files. In this way, you reduce the need for typing
long pathnames. "

To illustrate, if correspondence (figure 4~6) is the current directory, the

following command moves two files from correspondence to the jan__june
subdirectory of letters: —

% move brown_1 brown_2 letters/jan_june
Each filename is the shortest kind of relative pathname.

How Move Works

In "moving" files within a Cromix file structure, Move does not physi

files. A file you "move" is still stored at the same location on the computer's
hard disk (the file's inode number is unchanged). The Move command crestes
a new link to the inode and deletes the old link.

For example, in ';moving" brown_1 to jan_june, all Move did was change the
absolute pathname of the file from

/usr/fred/correspondence/letters/brown_1
to
Jusr/fred/correspondence/letters/jan__june/brown_1
Copying Files to Another Directory
The Copy command (chapter 3) can also copy one or more files to another

directory:

copy file-pathname(s) directory-pathname

46

Cromemeco Introduction to Cromix-Plus
4. Cromix File Structure

For example, while correspondence is the current directory, the following
command makes a copy of the file smith in the letters directory:

% copy smith letters

There are now two files named smith, one in the correspondence directory,
another in letters:
% 1s fusr/fred/correspondence

Directory: /usr/fred/correspondence
adams fisecal letters memos smith

% 1s fusr/fred/correspondence/letters
Directory: /usr/fred/correspondence/letters

brown.ltr jan_june smith smith.ltr

Files in different directories can have the same name. Because their pathnames
are different, they are different files to the Cromix-Plus system.

Renaming Files With Move and Copy

By using another form of these commands, you can rename a file as you move

or copy it to another directory:

move file-pathname file~pathname
copy file-pathname file~-pathname

To rename a file, the final command argument is the pathname of an ordinary
file (not a directory pathname).

For example, with correspondence the current directory, the following command
moves a file named fiseal to the memos directory.

% move fiseal memos/budget

Because budget is an ordinary filename, the file is renamed budget in its new
directory, as shown in figure 4-9.

47

Cromemec Introduction to Cromix-Plus
4, Cromix File Structure

fred

activity
jones
status
correspond-
ence
‘: adams
smith

|]

letiers memos

-k

brown.itr memao.hrown
smith.Itr memo.sue

smith

budget

jan.june

}: brown..1
browmn -2

Figure 4-9: FILE STRUCTURE 9

cidentally repame files using lMove. To demonstrate,
suppose that Fred's correspondence directory is the current directory, and

he gives the following command to move the file adams from correspondence
to letters:
% move adams lettrs

Because there is no subdirectory of the current directory named lettrs, Move
renames adams to lettrs--within the current directory.

% 1s /usr/fred/correspondénce
Directory: /usr/fred/correspondence

letters lettrs memos smith
%

48

Cromemeco Introduction to Cromix~Plus
4. Cromix File Structure

correspond-
ence
lettrs
smith

Figure 4-10: FILE STRUCTURE 10

Shorteuts for Working Within a Direetory Struecture

To reduce the need for ty ping long pathnames, the Cromix-Plus sy stem provides
some useful notations:

1. A single period (.) represents the current directory.

2. A double period (..) represents the home directory.

3. A caret (") represents the parent directory.

49

Cromemee Introduction to Cromix-Plus
4. Cromix File Structure)

Using the file structure shown in figure 4-11, here are some things you can do
with these notations.

fred

activity
jones
— status
correspond-
ence
!: adams
smith

| |

letters memos

brown.ltr memo.brown
smith.itr memo.sue

budget

smith

jan..june

{ brown-1
brown..2

Figure 4-11: FILE STRUCTURE 11

With jan_june the current directory, the following command makes letters the
current directory:

% d

With letters the current directory, the next command moves a file named jones
from the home directory (..) to letters (.):

% move ../jones .

Without these notations, you would have to use absolute pathnames to move the
file:

% move fusr/fred/jones /usr/fred/correspondence/letters

The double period (..} is often used to make the home directory the current
directory:

%d L1}

% d
Jusr/fred

50

Cromemeo Introduction to Cromix-Plus
4, Cromix File Structure

The command "d .." makes the home directory the current directory from any
directory in the Cromix file structure.

If jan_june is the current directory, this command makes its pax;ent directory,
letters, the current directory:

% d

Or, from jan_june, this command makes the "grandparent" of jan_june the
current directory:

3¢ 3¢
4an

/usr/fred/correspondence

Each ” moves one level higher in the Cromix file structure.

One or more carets (")'can also be used as part of a pathname. To illustrate,
if letters is the current directory, the following command displays the file
memo.brown in the memos directory:

% ty “memos/memo.brown
The sy stem started looking for the file from the parent of the current directory.

Deleting a Directory Structure

You can delete a directory using the Del command (chapter 3), as you would any
other file. You must, of course, delete all the directory's descendants (files
and subdirectories) before deleting the directory itself. The following series
of ecommands would delete the memos directory from its parent directory,
correspondence.

del memos/budget .
del memos/memo.brown

del memos/memo.sue
d

51

Cromemeco Introduetion to Cromix~Plus
4.Cromix File Structure

To. simplify the process, the Cromix-Plus system provides the Deltree (Delete
Tree) utility, which deletes an entire directory structure (or "tree"). Deltree
deletes the directory and all its descendants.

The Deltree command syntax is:
deltree directory-pathname

Deltree asks for confirmstion before deleting each file. To answer, type y or
n without pressing RETURN.

% deltree memos

Delete memos/budget? y
Delete memos/memo.brown? y
Delete memos/memoc.sue?

Deltree’s final prompt asks if the directory itself should be deleted.

% deltree memos

Delete memos/budget? y

Delete memos/memo.brown? y

Delete memos/memo.sue? y

Do you really want to delete all of memos? y
%

Because Deltree asks for confirmation before deleting each file, it can be used
to "prune" a directory structure. In other words, without intending to delete
an entire directory structure, you can use Deltree to selectively delete a series
of files.

When you really want to delete all files, you may wish to use the ~a (for all)
option.

% deltree —a memos
Delete memos? y
%

When you select the —a option, Deltree asks if you wish to delete the entire
directory structure. If you type y, Deltree deletes all files--without
requesting further confirmation.

52

Cromemeco Introduction to Cromix-Plus
4. Cromix File Structure

Copying a Directory Structure
The Cptree (Copy Tree) utility makes a copy of‘all or parts of a directory
structure. Before using Cptree, you must first create a destination directory

with Makd. This example creates a destination directory named oldletters (the
command is given from the eorrespondence directory):

% makd oldletters

To copy an entire "tree" (a directory and all its descendants), the command
syntax is:

cptree source destination
"Source" refers to the existing directory and its descendants--the source of

the new directory structure.

For example, with ecorrespondence the current directory, the following command
copies letters and all its descendants to the oldletters directory.

% eptree letters oldletters

Cptree copies letters and all its descendant files, as shown in figure 4-12.

correspond~
ence
letters ‘ oldletters
brown.ltr brown.ir
jones jones
smith smith
smith.ltr smith.ltr
jan.june jan-june
|t brown_.1 |: brown.1
brown.2 brown.2

Figure 4-12: FILE STRUCTURE 12

53

Cromemeo Introduction to Cromix-Plus
4.Cromix File Structure

Because it can take a long time to copy an entire "tree,” you may wish to use
the -w (for verbose) option when you give the command. Cptree with the -v
option displays each filename as it is copied. :

% eptree -v letters oldletters
oldletters/brown.l tr
oldletters/smith.l tr

oldletters/jan _june
oldletters/jan_june/brown_1
oldletters/jan _june/brown_2
oldletters/jones

oldletters/smith

In using the Cromix-Plus system, you'll discover other commands you can give
with a -v (for verbose) option. Selecting this option display s useful information
on the terminal screen while the program executes. The information displayed
depends on the program.

How the Shell Looks for Executable Files

When you give a command, the Shell interprets the first item on the command
line as the name of an executable file with a .bin, .com, or .emd filename
- extension.

For example:
% time

causes the Shell to look for an executable file named time, with a .bin, .com,
or .emd filename extension. Finding the file, the Shell calls the corresponding
programa.

You do not need to supply the pathnames of programs or commands because the
Shell knows where to look for these files. The Shell searches the following
directories, in the order showns:

1. The current directory

2. The /ram directory (if present)

3. The /bin directory

4. The /emd directory

54

Cromemeo Introduction to Cromix~Plus
4, Cromix File Structure

Note: The /ram directory will be present if your system has a RAM disk

containing executable files.

Following this "search path," the Shell looks for the file in the following ways

1.

Within the current directory, the Shell looks for the file with a .bin
extension. If file.bin is not found, the Shell looks for the same file with
a .com extension. If file.com is not found, the Shell looks for the same
file with a .emd extension.

If file.emd is not found within the current directory, the search proceeds
in the /ram directory (if present). Within /ram, the Shell looks for
file.bin, file.com, and file.emd.

If file.emd is not found within the /ram directory, the search proceeds
in the /bim directory. Within /bin, the Shell looks for file.bim and
file.com.

If file.bin and file.com are not found within the /bin directory, the search
proceeds in the /emd directory. Within /emd, the Shell looks for file.cmd.

If file.emd is not found, the Shell displays the error message:

Command not found

Special Files in the Home Directory

If you create a file in your home directory named .reminder, the Shell will
display the contents of that file on the terminal screen whenever you log in to
the system.

The contents of a typical .reminder file is shown here:

% ty .reminder
Don't forget to fill out your timesheet.
%

Logging in with this .reminder file in the home directory might look like thiss

LOGIN: jane
Password:

Logged in jane Nov-15-1984 12:18:40 on qttyl

Message of the day: Welcome to the Cromix~-Plus Operating System
Don't forget to fill out your timesheet.

%

55

Cromemeo Introduction to Cromix~-Plus
4.Cromix File Structure

You may also wish to create a file in your home directory named .startup.cmd.
The Shell will execute this command file whenever you log in.

A simple .startup.cmd file might contain these commands:
ty .startup.cmd

ho
s

X —E X

With this file -in the home directory, logging in might produce the following
result:

LOGIN: fred
Password:

Logged in fred Nov~-14-1984 09:53:47 on qtty3
Message of the day: Welcome to the Cromix-Plus Operatlng Sy stem

betty qttyl Nov-14-1984 07:16:22 0

jim qtty2 Nov-14-1984 09:42:29 0 0
fred qtty3 Nov-14-1984 09:53:47 0 0
activity correspondence jones status

%

Because they begin with periods, .reminder and .startup.cmd are "invisible"
filenames. The Ls command will not dispiay information about the files unless
you use the ~a (for all) option. In the following example, ~m and -a combine
to produce a medium-detailed list of gll files.

% 1s ~ma
9 1 .startup.cmd
950 1 activity
5 D 1 correspondence
505 1 jones
1,216 1 status

Device Files

The System Administrator often works with files that are neither ordinary files
nor directory files. This third kind of file is the device file.

Most device files represent the system's peripheral devices. A peripheral
device is any piece of hardware attached to the computer that is not a part of
the computer. The system printer is a peripheral device. So is every terminal
connected to the computer. Each has a corresponding device file in the /dew
(device) directory.

56

Cromemco Introduction to Cromix~Plus
4, Cromix File Structure

You see your terminal's device filename whenever you give the Who command:

% who am i |
john qtty 7 Nov-~15~1984 11:35:51 0 0

In the sample display, it is qtty7, or /dev/qtty 7 (the file's absolute pathname)

The System Administrator uses the Makdev utility to add devices to the sy stem.
Makdev creates device files. Although you might never work with device files
as the System Administrator does, knowing they exist may help you better
understand the Cromix-Plus system.

To the Cromix-Plus system, devices and disk files (such as practice) appear
to be files. This compatibility allows the Shell to redirect input and ocutput as
described in chapter 6.

Cromemeco Introduetion to Cromix-Plus

58

Cromemeo Introduction to Cromix~Plus
5. The Mail Utility

Chapter 5
THE MAIL UTILITY '
This chapter discusses the Mail utility--the program that handles the bulk of
communication among Cromix-Plus system users. Such communication is from
user to user, in the form of typed messages that Mail copies from one terminal
for eventual display on another. .
A typical mail "delivery" is shown here:

From sue, Nov-12~1984 15:57:01

Friday's meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.

The Meail program automatically signs and dates all messages. Thus, whoever
receives your message knows who sent it, when, and where to address a reply.
This chapter explains how to send mail and how to read the mail others send
you. For more information about communications under the Cromix-Plus system,
refer to the discussions of the Mail, Msg, and Ceall utilities in the Cromix-Plus
User's Reference Manual.
Sending Mail
To send mail to another system user, use the following procedure:
1. Give the Mail command with that user's login name as an argument, as in

the following example:

% mail john

2. Type your message, ending each line by pressing RETURN.
% mail john
Friday's meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

59

Cromemeo Introduetion to Cromix~Plus
5. The Mail Utility

3. When you're through, ty pe CONTROL~Z on a line by itself:

% mail john -
Friday 's meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.

(CONTROL-Z)

% .
When Mail receives CONTROL-Z (end-of~file) from the terminal, the program
knows there is no more input from the terminal. Mail sends the message and
returns control to the Shell. :

Correcting Mistakes While Using Mail

As you type your message, you can erase characters on the current line by
pressing either the DELETE key or the LEFT ARROW key. After erasing one
or mere characters, you can then retype that portion of the line. This is the
only way to make corrections when giving a program like Mail input from the
terminal. »

If‘you want to start over, press CONTROL~-C, as you do to stop other programs
as they execute. CONTROL-C displays & new Shell prompt--without sending
mail .

Note: Thereis a way you can edit a message you send using Mail as you would
an ordinary file. For details, refer to chapter 6, the secticn
"Redirecting Input From a File."

What Happens to the Mail You Send

When you press CONTROL-Z, your message is not displayed immediately on some
other terminal. Instead, it is delivered to a file in the Jfusr/mail directory,
where it is stored until it is read.

Each system user has a place for mail within /usr/mail. As a nonprivileged
user, you probably cannot "list" the files in /usr/mail (you lack execute access
to the directory). If you're curious about its contents, a typical display is
shown here:

1s -m fusr/mail

Directory: /usr/mail

0 1 alan

0 1 bill

0 1 jimmy
193 1 mark

3 D 1 rpkg

0 1 sue

60

Cromemco Introduction to Cromix~Plus
5. The Mail Utility

Most of the filenames are user login names. In each of these files, the
corresponding user's mail is stored until that user reads the mail from one of
the system's terminals.

A "(0" preceding the filename means the file is empty (at the moment, that user

has no mail). In the sample display, only the user named Mark has mail. There
are 193 characters stored in the file /usr/mail/mark.

How Do You Know When You Have Mail
When mail for you is received in /usr/mail, the Mail utility notifies you. You

will see a message on whatever terminal you're using. Mail even displays the
login name of the user who sent you mail, as in the following example:

You have mail from sue

If you are logged out when you receive mail, you'll see the message "You have
mail™ as soon as you log in.

in. Checking /usr/mail is part of the system's login procedure.

Reading Your Mail

To read mail, give the Mail command without an argument. Here, a user named
John logs in to discover he has mail. He then gives the Mail command to read
its

LOGIN: john
Password:

Logged in john Nov-13-1984 08:32:12 on qtty5

You have mail.

Message of the day: Welcome to the Cromix-Plus Operating System
% mail '

POV R T Y P TN TS 6 Y YD 4% 9 S TR (L € €T T S TP R P AU YT ST P T o S Y RS R S £) A S O RS R T e e Y AR Qb s

PFrom sue, Nov-12-1984 15:57:01

Friday's meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.

Should mail be saved?

61

Cromemco Introduction to Cromix-Plus
5. The Mail Utility

To answer Mail's prompt ("Should mail be saved?"), type y or n and press
RETURN. If you type n for no, Mail discards that item of mail. If you typey
for yes, Mail stores that item of mail in a file named mbox. '

The mbox File

The first time you save mail, the Mail program creates a file named mbox in the
current directory. The file contains the mail you saved.

) P R, ou oS o e U i, WO R T o Y €S TR S e A1 T A TP WS W R 20 G) Y T, T SN A Ve, (T, (A, PP e e L S Ay A e i T R Y s

From sue, Nov-12-1984 15:57:01

Friday's meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.

Should mail be saved? y

o €W, i Y A (TR WA i PO N s 75 R o T90A B ate, ST TR T N T, TS WA NS TR £ dios PO AR G ST M s AT P ST T W FROH A A, 1M M N e, AT TS T

From sue, Nov-12-1984 15:57:01

Friday's meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.
%

The mbox file is an ordinary text file. You can edit the file, rename it, print
it, and so on. When you have an mbox file in the current directory, Mail adds
new items of saved mail to the end of the file. If you delete the mbox file, Mail
will ereate it again the next time you save mail.

62

Cromemeo Introduction to Cromix~Plus
5. The Mail Utility

Sending the Same Mail to Several Users

By giving the Mail command with several arguments (several login names), you
can send the same mail to more than one user.

The following example sends the same mail to two users:

% mail betty jim

I need your estimates by Thursday
afternoon. No excuses!
(CONTROL~Z)

%

When Betty and Jim read their mail, each will receive the same message. By
including your own login name on the command line, you can save copies of the
mail you send others. The copy is ereated when you read your own mail and save

it in the mbox file.

63

Cromemeo Introduetion to Cromix~Plus

64

Cromemeo Introduetion to Cromix~Plus
6. The Cromix Shell

Chapter 6

THE CROMIX SHELL

This chapter explains some of the Cromix Shell's special features. By taking
advantage of these features, you can make your work easier. For example, you
can let the Shell generate the filenames it passes, as arguments, to a program.
When the Shell generates filenames, you don't have to type a long list of
filenames on the command line. In a sense, the Shell does it for you.

One of the Shell's most useful features is its ability to redireet a program's
output to an ordinary file. When the Shell redirects ocutput to a file, output you
would normally see on the terminal is written to a file on the disk. Most of the
sample output in this manual, such as the Ls command example shown below,
was created by redirecting output to a file:

1s -m fusr/mail

Directory: /usr/mail

0 1 alan

0 1 bill

0 1 jimmy
193 1 mark

3 D 1 rpkg

0 1 sue

In the example, only the command itself was typed. The rest of the display was
produced by redirecting Ls's output to an ordinary file, which was then added
to the text of the manual. In this chapter, you will use the Cromix-Plus utilities
to create some similar files.

The Shell can also redirect a program's input. Redirected input comes from an
ordinary file instead of from the terminal keyboard.

Using another kind of redirection, called a "pipe," the Shell can connect one
or more programs specified on the command line. The programs work together
to produce a customized result.

To experiment with these, and other, features, you don't need to create a single
new file with the Screen program. Nor do you need to learn to use additional
utility programs. The two new utilities in this chapter (Sort and Create) are
introduced only to aid your experiments. You already know enough Cromix-Plus
commands to use all of the features discussed in the chapter.

65

Cromemeo Introduction to Cromix~Plus
6. The Cromix Shell

The Standard Output

The Cromix~Plus system provides a standard file where programs can send’ their
output. It is called STDOUT (for standard ocutput). Although STDOUT is
"visible" only to the Shell, you see its effects whenever you use the system.

For example, each time you've given the Who command, you've seen ocutput (a
list of system users) on your terminal screen:

% who
betty qttyl Nov-14~-1984 07:16:22 0 0
jim qtty?2 Nov-14-1984 09:42:29 0 0

fred qtty3 Nov~14-1984 09:53:47 0 0

It happened because the Who utility sends its output to STDOUT, and the Shell
connects STDOUT with the terminal sereen. Clist, Ls, and Date are some other
programs that send output to STDOUT. Their output, too, appears on the
terminal sereen.

Unless you redirect output as explained in this chapter, STDOUT is always the
terminal.

Note: Not all programs use STDOUT. For example, the Spool program sends
its ocutput to a system printer--not to the terminal screen.

The Standard Input

The Cromix-Plus system provides another standard file where programs can get
input. It is called STDIN (for standard input). STDIN is connected to the
terminal keyboard.

An example of a Cromix-Plus utility that uses STDIN is Mail. When you give
Mail an argument (a login name), Mail takes its input from the terminal keyboard. -

% mail john

Friday's meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.

(CONTRQOL~Z)

%

CONTROL~Z (end-of~file) sends what you typed--via STDIN--to Mail.

Unless you redirect input as explained in this chapter, STDIN is always the
terminal keyboard.

66

Cromemeco Introduction to Cromix~Plus
6. The Cromix Sheil

Note: Not all programs use STDIN. For example, Who takes its input from a
file in the ete directory (/ete/who)--not from the terminal keyboard.

The Sort Utility

The Cromix-Plus system provides several programs that can use both STDOUT
and STDIN. One of them is Sort, which sorts its input (normally, the lines in
an ordinary file). In this chapter, you'll use this program to sort the lines in
a file.

Your practice file (chapter 3), which contains a series of short, unalphabetized
lines, is ideal for demonstrating Sort.

% sort practice
Exit

Help

Passwd

Query

Who

Sort takes its input-~the lines in the praetice file--and sends sorted output
to STDOUT (the terminal sereen). Often, that output is sorted alphabetically,
as shown above.

Qnly Sort's output is sorted. The input file (practice) is unchanged.

% ty practice
Help

Passwd

Query

Who

Exit

%

Summarized, this is what happened when you gave the Sort command:

1. The Shell located and called the Sort program, passing on the command
argument (the filename) to Sort. The Shell never checks the arguments

and command options it passes £0 4 program.
2. Sort located its input file and sent a sorted version of that file to STDOUT.

3. With STDOUT connected to the terminal, Sort's output appeared on the
terminal screen.

67

Cromemeco I'ntroduction to Cromix~-Plus
6. The Cromix Shell

A program like Sort, which can use both STDOUT and STDIN, is ideal for
experimenting with the redirection techniques discussed in this chapter. The
first of these techniques, redirecting output to an ordinary file, is explained
in the next section.

Sort is one of the most versatile Cromix-Plus utility programs. For detailed
information about this program, consult the Cromix-Plus User's Reference
Manual.

Redirecting Output to a File
If you add a greater-than symbol (>) and a filename to the command line, the

Shell will connect STDOUT to an ordinary file. Then, output that normally
appears on the terminal sereen is written to a file instead.

% who > who.out

X

The redirect-output symbol (>) instructs the Shell to redirect a program's output
from its usual destination--the terminal screen--to a file. In this case, the
Shell redirected Who's output to the file who.out.

% ty who.out
betty qttyl Nov-14~1984 07:16:22 0
jim qtty2 Nov-14-1984 09:42:29
fred qtty3 Nov-14-1984 09:53:47 0

(o=}
o oo

Summarized, this is what happens when you give a command that contains a
redirect~output symbol:

1. First, the Shell opens an output file (such as who.out) and connects

STDOUT with that file. If the output file already exists, the Shell deletes
i | before i he £l

2. With the output file ready, the Shell calls the program (such as Who).

3a The program executes in response to the Shell. As always, the program
sends its cutput to STDOUT. But, with STDOUT connected to an ordinary
file, output that normally goes to the terminal goes to that file instead.

In the following example, Ls's output is redirected to a file named list.usr.
% ls -m fusr > listasr

The result is a file containing information about the files in the usr directory.

68

Cromemeo Introduction to Cromix~Plus
6. The Cromix Shell

% ty listasr

Directory: /usr

6 D 1 alan
3 D 1hbil
98 D 1 help
35 D 1 jimmy
4 D 1 mail
27 D 1 mark
2 D 1 pkg
5 D 1 query
4 D 1 spool

83 D 1 sue

N

Note: Redirecting output to a file works only with programs that send output
to STDOUT.

Sort uses STDOUT. Thus, the following command creates an output file
containing a sorted version of practice (Sort's input file).

% sort praetice > practice.out

The output file practice.out is an ordinary file. You can print it using Spool
or edit it using Screen:

% spool praetice.out
% sereen practice.out

When you redirect a program's output to a file, the Shell will overwrite any file
in the same directory with the same name. To demonstrate, create a file named
test by giving the following command: -

% who > test

R

The file test contains the redirected output from Who.

% ty test

betty qttyl Nov-14-1984 07:16:22 0 0

jim qtty2 Nov-14-1984 09:42:29 0 0
0 0

fred qtty3 Nov-14-1984 09:53:47
%

69

Cromemeo Introduction to Cromix~Plus
6. The Cromix Shell

Now try redirecting the output from Time to the same file. Then display the
contents of the file with Type.

time > test
ty test
ednesday, November 14,1984 9:58:12

¥ = 0

The file test now contains only the output from Time. In opening a new output
file named test, the Shell automatically deleted the previous contents of the
test file.

When you don't want the Shell to overwrite a file with the same name, use the
redirect-and-append symbol diseussed in the next seection.

Important: In opening an output file, the Shell automatically deletes the
contents of an existing file with the same name. This happens
‘BEFORE the Shell calls the program. '

It is thus possible to accidentally delete a file while redirecting
output. Consider the following command:

% elist prog.c > prog.c

The input file and the output file have the same name (prog.c).
In executing this command, the Shell deletes the contents of
prog.c before calling Clist. When Clist executes, the file prog.e
contains nothing.

) irecti ' ! he j dle Gf) and

Appending Output to a File

The Shell will not overwrite a file with the same name if you use a
redirect-and-append symbol (>>). Instead, the Shell adds (appends) the new
output to the end of the existing file.

To demonstrate, give the following commands:

% time >> time.out
% 1s »> time.out

70

Cromemco Introduction to Cromix-Plus
6. The Cromix Shell

The first command created a new file named time.out, a file containing Time's
output. The second command appended Ls's output to the end of the file.

% ty time.out

Friday, November 16, 1984 ‘ 16:28:24
listausr practice test time.out who.out
%

Redirecting Type's Output to a File

Unless you specify an input file, Type waits for input from the terminal (STDIN).
By redirecting Type's output to a file, as you supply input from the terminal
keyboard, you can create a text file using Type.

If you'd like to try it, give the following command:

% type > type.out

In response, the Shell calls Type--without passing a filename to the program.
(The Shell opens the output file before calling the program.) Because the Shell
called Type without an argument, Type expects input from STDIN (the terminal
keyboard).

Enter two or three lines of text (as if you were using Mail). When you're
through, type CONTROL~Z (for end-of-~file).

% type > type.out

This is some sample text
I am typing into a file
named type.out.
(CONTROL~Z)

%

The new prompt means Type's output has been redirected. You now have a file
named type.out in your directory.

% 1s type.out
type.out

R

71

Cromemeco Introduction to Cromix~Plus
6. The Cromix Shell

You can create a similar, sorted file using Sort:

% sort > sort.out
Music
Message

Case
Countess
(CONTROL~Z)
% ty sort.out
Case
Countess
Message
Music

%

Sort and Type can create files in this way because both programs use STDOUT,
and both can take input from STDIN (the terminal keyboard). When called with
an argument, a filename, they take their input from a file; when called without
an argument, they take their input from STDIN. Some other programs that use
STDIN when called without en argument are: Clist, Dump, Mateh, Secan, and
Spool. '

Redirecting Input From a File

If you add a less-than symbol (<) and a filename to the command line, the Shell
will connect STDIN to an ordinary file. The redirect-input symbol (<) instructs
the Shell to redirect a program's input so it comes from an ordinary file instead
of from the terminal keyboard. In this example, the Shell redirects Mail's input
from the file info.

% mail sue <€ info

X

Mail sends a copy of the text in the file--as if that text had been typed after
giving the Mail command. Summarized, this is what happens when you give a
command that contains a redirect-input symbol:

1. First, the Shell locates the input file (such as info) and connecets STDIN
with that file. If the Shell cannot locate the input file, the Shell displays
the message "File not found" before calling the program.

2. The Shell calls the program (such as Mail).

3. The program executes in response to the Shell. As always, the program

gets its input from STDIN. But, with STDIN connected to an ordinary file,
input that normally comes from the terminal comes from that file instead.

72

Cromemeco Introduction to Cromix~Plus
6. The Cromix Shell

4. The program returns control to the Shell when it encounters an end~-of -file
indieator. (At this point, the Shell displays a new prompt.)

When you redirect a program's input from a file, the Shell supplies the
end-of -file indicator for you. You do not need to type CONTROL-Z (for
end-of ~file), as you do when a program's input comes from the terminal
keyboard.

Note:

Running a Job in the Background

So far, your commands have executed in seconds. After each command, the Shell
quickly displayed a new prompt so you could give another. Some commands,
however, can take much longer to execute.

To illustrate, give the following command:
% 1s —e /bin > bin.out

The Shell will not display a new prompt until Ls's output (information about
the files in the bin directory) has been redirected. Because there are a lot of
files in the bin directory, and the —e option produces so much information, the
process will take some time.

When you have a new prompt, try a similar version of the same command. Add
an ampersand (&) to the command line:

% 1s ~e /bin > bin.out &

An ampersand instructs the Shell to start a detached process--a process that
is no longer connected to your terminal. In seconds, the Shell displays a PID
(process identification) number and a new prompt. You can now give a new
command while the Ls program executes in the background (as a detached
process). You can even log out while the program executes.

Any program thét takes a long time to execute can be run in the background.
For example, if you are copying a long file, you may wish to run the job as a
detached process:

% ecopy longfile longfile.save &
PID=1578

%

73

Cromemeco Introduction to Cromix-Plus
6. The Cromix Shell

Using Cptree (chapter 4) to copy an entire directory structure is also
time~consuming.

% eptree bigdirectory newdirectory &
PID=5781

%

While a program runs as a detached process, pressing CONTROL-C will not stop
it. To stop a detached process, use the Kill command. Kill's argument is the
PID number of the process. This example starts and stops a typical detached

process: ‘

% copy bigfile bigfile.copy &
PID=4137

% kill 4137

%

As a non-privileged user, you can kill any process the Shell starts for you. You
cannot kill a process the Shell starts for another user.

Important: When the Shell runs Spool as a background process, the PID #
you see on the terminal is Spool's process number. The printer
daemon (chapter 3) is a separate process, and the Kill utility
will not stop it. To kill background priniing. use the "spool -k
command. ’

Giving Sequential Commands
You can give the Shell more than one command on a single command line by

separating the commands with a semicolon (;). To illustrate, give the following
command sequence: '

% times;whosls

In response, Time executes, followed by Who, followed by Ls. The Shell
processes each command in the order it appears on the command line. This is
called sequential processing.

In the next example, the Shell deletes a file before Ls executes.

% del who.out;ls
list.bin Iistausr practice sort.out test time.cout type.out

o/
pre]

74

Cromemeo Introduction to Cromix-Plus
6. The Cromix Shell

When giving the Shell a series of commands, you can also use an ampersand to
separate the commands. The Shell executes a command followed by an ampersand
as a detached process (in the background).

This example redirects output to a file named logged_in in the background and,
at the same time, calls the Screen editor:
% who > logged_in&screen practice
Or, this ecommand starts two detached (or background) processes:
% time > time.out&ls /usr > l.out&
Parentheses on the Command Line
Parentheses can group commands so the output from two or more sequential

processes can be redirected to the same file. For example, the following
command redirects the cutput of Time and Who to a file named group:

% (time;who) > group

DO

This command does. the seme thing in the background:

% (timej;who) > group &
PID=892
%

With either command, the result is the same as if you'd given these commands:

% time > group
% who >> group

For more information about processes, refer to the discussion of the Pstat
command in the Cromix-Plus User's Reference Manual.

Redirecting Error Messages

The Cromix-Plus system provides another standard file where programs can send
error messages. It is called STDERR (for standard error). Like STDOUT,
STDERR is normally connected to the terminal. Thus, error messages appear
on the terminal sereen.

79

Cromemeo Introduction to Cromix~Plus
6. The Cromix Shell

Sometimes, error messages can be disconcerting. For example, if you are using
the Scereen editor while a job runs in the background (as a detached process),
you might not want error messages from the background job interrupting your
work., If so, you can redirect error messages to a file. An asterisk (*)
immediately following a redirect symbol (>) or a redirect-and-append symbol
(>>) instructs the Shell to redirect error messages that would normally appear
on the terminal screen to an ordinary file.

For example, the following commands move a series of files--and redirect error
messages to a file named error.

% move memol memo?2 memo3 memos »* error
% move letterl letter?2 correspondemce >>* error

R

Error messages, if any, are contained in the file error.

% ty error

File not found: '"memod3"
File not found: "letterl®
%

Redirection with Pipes
A pipe symbol (]) on the command line instructs the Shell to connect the output

from one program to the input of another. For example, the following command
uses a pipe to connect Ls with Spool:

% 1s fusr | spool

Spool's input is the output from Ls. The result is a printed list of the files in
the /usr directory, as if you'd given the following commands:

1s /usr > list.out
spool list.out
del list.out

R XX

A pipe does not create an intermediate file. Instead, Ls's ocutput is channeled
directly to Spool.
Try this similar command to connect Who and Sort:

% who | sort

76

Cromemco Introduction to Cromix-Plus
6. The Cromix Shell

The result is a sorted list of system users.

This command uses two pipes to produce a printed, sorted list of system users.
% who | sort | spool

Using pipes, the Shell can connect a variety of programs that were not
specifically designed to work together. At the beginning of a pipe is a program
that sends output to STDOUT. In the preceding eommand, both Who and Sort
fill this requirement. At the end of a pipe is a program that can take its input
from STDIN. In the sample command, both Sort and Spool fill this requirement.

When you use a pipe (|), the programs run concurrently. The Shell starts three
processes (one for each program) when you give this command:

% who | sort | spool

Even though Spool must wait for Who and Sort to execute before it has output
to print, it is running nevertheless. If system memory is at a premium, you may
wish to use the redirection technique discussed in the next section instead of
a pipe.

Redirecting Output to a Temporary File

Using a redirect~output symbol immediately followed by a redirect-input symbal,
you can duplicate the effects of a pipe. For example, the faollowing command
prints a list of system users:

% who >< spool

A "><" symbol, called a sequential "pipe," instructs the Shell to create a
temporary file. In the sample command, the Shell redirects Who's output to a
temporary file, and then redirects Spool's input from the same file. The file
is "temporary" because the Shell automatically deletes it before displaying a
new prompt.

The Shell runs each process (for example, Who and Spool) sequentially. In other
words, Who executes before the Shell calls Spool. This form of redirection,
although slower than using a pipe, saves system memory.

The Tee Command
Using the Tee command, you can redirect output to a file and have that output
appear on the terminal as well. For example, this command redirects Sort's

output to a file (practice.sort) and displays that output, too.

77

Cromemeo Introduetion to Cromix-Plus
6. The Cromix Shell

% sort practice | tee practice.sort

The Tee command requires an argument~-the pathname of an"ordi-nary file. For
more information about the Tee command, refer to the Cromix~Plus User's
Reference Manual.

Filename Generation

A command argument thst contains an asterisk (*) or question mark (?) is an
ambiguous file reference:

1. An asterisk (*) matches a string of zero or more characters. An asterisk
does not mateh a leading or embedded period.

2. A double asterisk (**) matches zero or more characters, including an
embedded period. A double asterisk does not match a leading period.

3. A question mark (?) matches any single character other than a leading
period. :

In response to an ambiguous file reference, the Shell generates the names of
specific files and passes those filenames to a program. For example, suppose
you have the following files in your directory:

account
data_sheet
intro

memo
memos
memo.fred
memo 1
memo 2

The following command displays information about all the "memo" files:

% 1 m**
. memo memos memo.fred memol memo2

Because a double asterisk matches zero or more characters (including an
embedded period), the Shell generates the names of all files that begin with "m".

This command displays information about the file memo.fred only:

% 1 m*.*
memo.fred

78

Cromemeo Introduetion to Cromix~Plus
6, The Cromix Shell

Only this file has a name that consists of "m", followed by zero or more
characters, followed by a period, followed by zero or more characters.

This command uses a question mark to display information about the files that
begin with "memo", followed by any single character:

% 1 memo?
memos memol memo?2

The Shell does not generate the filename memo because it does not consist of
"memo" followed by another character.

You can usually use an ambiguous file reference wherever you'd use an ordinary
filename. In this example, an ambiguous file reference is used to print the file
memol;

% spool m*1

Or, in this example, an ambiguous file reference is used to move the files memos,
memol, and memo?2 to another directory.

% move memo? correspondence

Because ambiguocus file references can produce some unforseen matches, be
careful when you use them. When in doubt, test them with the Ls command:

% 1s ?.txt
1.txt 2.4xt Jtxt 4.txt S.txt

If_no f the fi] . Y v begi it .
--by._itself--matches every filename in the directory. Thus, the
following command will usually delete all the files in the current directory:

% del **

This command is mentioned because, sooner or later, almost everyone tries it.
Resist temptation, and use the Deltree utility instead. Deltree requires
confirmation from you before deleting files--Delete does not.

It is safest not to use ambiguous file references with the Delete command. If

you feel you must, always check the current directory before giving the Delete

command.

Cromemeco Introduction to Cromix-Plus
6. The Cromix Shell

Specifying a Range of Characters

Using another kind of ambiguous file reference, you can instruct the Shell to
look for a range of characters. The Shell will substitute characters in square
brackets for the corresponding character in a filename.

To illustrate, suppose your directory contains the following files:

4

a_letter

b._letter -
¢ _letter

a_memo

b_memo

¢_memo

d_memo

The following command would display information about the files a_letter snd
b_letter:

% 1s [ab]_letter
a_letter b_letter

Without the brackets, the Shell would pass the argument "ab_letter" to Ls, and
Ls would look for an exact match:

% 1s ab_letter
file not found: "ab_letter”

The letters "a" and "b", in square brackets, define a range of characters the
Shell may substitute for the first character in the filename.
In a similar manner, the next command displays informstion about all files that

begin with "a" or d":

% 1s [ad]* -
a_letter a_memo d_memo

To specify a wider range of characters, you can use a hyphen within the
brackets, as in this example:

% 1s [b-d]_memo
b_memo e_memo d_memo

The hyphen means "through,"” as it does in normal usage.

80

Cromemeo Introducetion to Cromix~Plus
6. The Cromix Shell

An Important Consideration Regarding Filename Generation

The number of filenames the Shell can generate in response to an ambiguous file
reference is limited by the number of characters the Shell can pass, as command
arguments, to any program. The maximumis 512 characters, When asked to pass
more characters than this to any Cromix-Plus program, the Shell displays the
message "Arg list too big," as shown below:

% 1s /bin/**
- Arg list too big

If you give this command, you'll see the same message, followed by a partial
list of files in the /bin directory. This message comes from the Shell. The
program (in this case, Ls) has no way of knowing it received a partial list of
filenames from the Shell. :

If, as you use the Cromix-Plus system, you see an "Arg list too big" message,
try breaking the list into two commands, as in the following examples:

% move [a-k]** /usr/jerry/sales_leads
% move [1-z]** fusr/jerry/sales_leads

Better still, avoid the problem by limiting the size of your directories. If the
Shell cannot generate the names of all the files in a user's directory, that
directory contains too many files. Create some subdirectories, and reduce the
clutter.

Experimenting with Filename Generation

Without a group of files with similar filenames, it's difficult to appreciate the
Shell's ability to generate filenames. If you would like to experiment with
filename generation, there is an easy, quick way to create a series of files.

The Create command with a filename as an argument creates a file containing
zero bytes. The file has a name, but there is no information in the file. By giving
the command with a list of filenames, you can create a series of zero-byte files:

% create big bigger biggest 2big really_big

The preceding command will create five new files in your current directory.
Although the files contain no characters, they will show up in the list Ls
displays. Because their filenames are similar, they are ideal for demonstrating
filename generation.

81

Cromemeco Introduction to Cromix -Plus

82

Cromemeo Introduction to Cromix~Plus
7. Writing Command Files

Chapter 7

WRITING COMMAND FILES

In addition to general information about command files, this chapter discusses
some commands that are often used in command files. A few of these commands
(such as Shift and Rewind) are used nowhere else.

Most likely, when you've used the Cromix-Plus system for a while, you'll
discover some repetitive task you could do more easily with a command file.
By taking advantage of the Shell's ability to interpret command files (the
programs you write for the Shell), you can make your work a lot easier.

Command-File Description
Command files are ordinary files, which contain a series of Cromix-Plus
commands. A command file must have the filename extension .emd (for command).

The following command file (list.emd) contains the "ls -m" command:

% ty list.cmd
1s -m

Giving the command filename (minus the filename extension) from the command
line executes the file:

% list
239 1 letter
241 1 memo

50 1 output
240 1 plan6_10

Command files can be this simple. Command files can also perform more complex

tasks, such as copying files from the computer's hard disk onto floppy diskettes
for long-term storage.

When you give a command that executes a command file, that file should be
located in the current directory or the /emd directory. (If /ram is present,
command files may also reside in that directory.) To execute a command file
in some other directory, supply a complete pathname:

% [usr/ted/list

OR

% «eflist .

83

Cromemeo Introduction to Cromix~Plus
7. Writing Command Files

Note: Only privileged users may create files in the /emd directory. Even if
you are privileged, you should check with the System Administrator
before adding command files to /emd.

As supplied, the Cromix-Plus system has some standard command files
in /femd. For example, the file named /emd/bak.cmd deletes all files
in the current directory with .bak filename extensions. (For information
asbout the Bak command, consult the Cromix~Plus User's Reference
Manual.)

A Practical Use of the Path Command

Because the Shell looks first in the current directory for executable files (refer
to chapter 4), you have complete freedom over the command files you create
within your own directory structure. For example, if you have a file named
sort.emd (a personalized version of Sort) in your current directory, the
following command executes your file--not the file sort.bin in the /bin
directory:

% sort infile > outfile

To find out what file (if any) the Shell will execute in response to a particular
command, use the Path command:

% path sort
/usr/you/sort .cmd

In this example, the Shell located the file in the current directory. Giving the
Sort command now will execute the file sort.cmd.
Here, the Shell locates the file in the /bin directory:

% path sort
/bin/sort.bin

If you do have a file named sort.emd it is not in the current directory. Giving
the Sort command now will execute the file sort.bin.
To avoid confusion, it is a good idea to give your command files distinctive

filenames, such as mysort.cmmd. Once again, the Path command will tell you
if the Shell can execute the file:

% path mysort
Command not found: "my sort"

84

Cromemeo Introduetion to Cromix-Plus
7. Writing Command Files

"Command not found" means the file, if it exists, is not in any of the directories
the Shell searches for executable files (refer to chapter 4). To execute the file,
you must either change directories or supply a more complete pathname, as in
the following examples:

% 18 ../my sort

../my sort.cmd

% ../mysort infile > outline
%

The first command verifies the existence of the file in a user's home directory.
The second command executes the file.

Redirection Within a Command File

Any command you can give from the command line can be put in a command file.
This means you can use all the redirection techniques discussed in chapter 6.

Because command files can execute many commands, redirecting error messages
is often desirable. You can even discard error messages (so they are neither

displayed nor saved in a file) by redirecting them to a file named null in the
/dev directory:

del *.temp >* /dev/null

/dev/null is a null device. Redirecting any kind of output to this file discards
that output,

The next section introduces the Echo command, which is especially useful when
writing command files. Using Echo, you can send informative messages to the
terminal as a command file executes.

* The Echo Command
Echo "echoes" its arguments to the terminal screen, as in the following example:

% echo Hello there.
Hello there.
%

85

Cromemeo Introduction to Cromix-~Plus
7. Writing Command Files

You can echo "special" characters (such as an asterisk or pipe symbol) by
quoting that character on the command line, as in the following example:

% echo This is a special character: ™" right
% This is a special character: > right

As an alternative, you may wish to quote the entire string of arguments, as in
this example:

% echo '"This is a speecial character: > right'
This is a special character: > right

The Shell ignores special characters any where within single or double quotation
marks. This is true when using Echo or any other utility. Without the quotation
marks, the sample command redirects Echo's output to a file named right:

% echo This is a special character: > right

% ty right
This is a special character:
%

Chapter 3 contains a list of special characters you must quote if the Shell is
to interpret them literally on a command line.

Command File Structure

Within a command file:

1. You can instruct the Shell to substitute arguments from the command line
for up to nine numbered parameters in the command file.

2. You can specify labels and comments.

3. You can jump to labels using the Goto command, or do conditional jumps
using Goto and If.

Items 1 and 2 are discussed more fully in the following subsections. After these
subsections, the If and Goto commands are discussed.

Argument Substitution -- For #1 in a command file, the Shell substitutes the
first argument from the command line, for #2, the second, and so on, through
the ninth command-line argument (#9).

86

Cromemeo Introduction to Cromix-Plus
7. Writing Command Files

For example, the-following command file displays two files--#2 (the second
command argument) and #1 (the first command argument).

% ty display.cmd
ty #2
ty #1

The following command executes the file and displays the files letterl and
letter2. :

% display letterl letter2
This is letter 2

-

This is letter 1

&)a > »

For #* in a command file, the Shell substitutes gll command-line arguments:

% ty display_all.cmd

ty #*

% display_all letterl letter?2
This is letter 1

This is letter 2

O\O. »

For the asterisk, the Shell substitutes arguments in order--first, second, and
so on, until there are no more arguments.

You can pass even more arguments to a command file using ambiguous file
references on the command line. This example (again using the display_all
command file) displays all the files in the current directory with .txt filename
extensions:

87

Cromemeco Introduction to Cromix-Plus
7. Writing Command Files

% display_all *.txt
This is text~file 1

®

This is text~file 2

"

This is text-file 3

L)

Specifying'Labels and Comments -- A percent sign anywhere on a line means
the rest of the line is a comment. In the following example, "display ail files"
is a comment:

% ty display_all.cmd
ty #* % display all files

The Shell executes the command (ty #*) and ignores the comment. Comments
are always ignored. Their only purpose is to make a command file's operation
more understandable.

A comment at the beginning of a line--with no space after the percent sign--is
a label. In the following example, "%start" and "%end" are labels:

% ty display_all.emd

%start
ty #%* % display all files
%end

As described in the next section, labels can affect the operation of a command
file.
The Goto Command

The Goto command transfers control within a command file. Goto's argument
is always a line label.

To illustrate, consider this sample command file:

88

Cromemeco Infroduction to Cromix~Plus
7. Writing Command Files

% ty echo_args.cmd
%start

echo #*

%end

All this file does is echo any command arguments.

Adding a Goto command causes the file to execute again and again.

% ty echo_args.emd
%start

echo #*

goto start

%end

The command "goto start” starts the file executing once more from the beginning,
the label start. Only CONTROL-C stops execution.

A Goto command always interrupts the sequential, line-by-line execution of
a command file, After a Goto command, execution continues at another point
in the command file, as determined by Goto's argument (a label). The process
is commonly called "jumping" to a label.

Using Goto in combination with the If command (the next section), you can do
"conditional™ jumps. In other words, you can jump to a label if--and only
if~-some condition is satisfied. If the condition is not satisfied, the Goto
command is ignored.

If you give the Goto command with a nonexistent line label, any commands in
the file after Goto are not executed.

The If Command

The If command condltlonally executes another command (often, the Goto
command).

The most common forms of the If command are:

1, Execute the command if the previous command returned an error:
if -err command

All commands return a value to the Shell when they are through executing.
The Shell, in turn, passes that value to the next command. A non-zero
value indicates an error.

89

Cromemco Introduction to Cromix~Plus
7. Writing Command Files

2.

The "if -err" command tests for a non-zero return value. If the preceding
command returns an error, the command following "if -err" executes, as
in this example:

if -err goto end
If the preceding command returns a zero value, the command following "if

~err" (in this case, Goto) does not execute.

There is additional information about return values in this chapter and
in the Cromix-Plus User's Reference Manual.

Execute the command if a specified condition is true or false:

if string-1 = string~2 command
if string~1 != string-2 command

The relational operator (!=) means "not equal." Spaces must bracket both
relational operators (= and !=)

For example, this line tests for an argument:
if #1hi = hi goto done

For #1, the Shell substitutes the first argument on the command line. In
the absence of an argument, the Shell substitutes a null string (comparable
to nothing) for #1. In this case, "#1hi" and "hi" are equal, and the Goto
command is executed. If they are not equal (the condition specified by
If is false), the Goto command is not executed.

Comparing #1 to a single character, such as a period (.), is the quickest
way to test for an argument:

if #1. =.

You must compare #1 to sQmething because the following command is
syntactic nonsense:

if #1 =

You may be used to combining If with Else and Endif. Under the Cromix-Plus
system, If~Else~Endif constructions are not possible. However, you can usually
emulate their effects with consecutive If-Goto construetions.

90

Cromemeo Introduction to Cromix~Plus
7. Writing Command Files

The Shift Command

-The Shift command shifts arguments in a command file. After a Shift command,
#1 matches the second argument on the command line, #2, the third, and so on.
Using Shift commands, you can cycle through a series of arguments.

If you want to return all command-file parameters to their original values, use
the Rewind command.

The Rewind Command

The Rewind command cancels all preceding Shift commands in a command file.
After a Rewind command #1 matches the first argument on the command line,
#2, the second, and so on.

The Exit Command

Within a command file, Exit returns control to the Shell. Exit logs you out only
when you give the command in response to the Shell prompt.

By giving the Exit command with an argument (a number), you can control the
value Exit returns to the Shell. Any nonzero value will return an error. Without
an argument, Exit returns whatever value it receives from the Shell.

The following command file, which sorts a series of files to the file sortout,

contains several Exit commands. Clist displays the file, providing line numbers
for reference (the line numbers and heading are not a part of the file)

% elist sort_all.emd

File SORT_ALL.CMD Wednesday, November 14, 1984 10:14:29
1 if #1. =. goto error % if no arguments
2 sort #* >> sortout % sort input files
3 exit
4
3 %error
6 echo "Give me an argument!"
7 exit 1

The first Exit command returns the value returned by the preceding command
(Sort). The second Exit command returns an error value, regardless of the value
returned by the preceding command (Echo).

Which Exit command executes depends on the cutcome of the argument test (line
1). If true (#1. = .), execution jumps to error, and lines 6 and 7 execute.

% sort_all
Give me an argument!
%

91

Cromemeco Introduction to Cromix-Plus
7. Writing Command Files

If the argument test (line 1) is false (#1. !=.), lines 2 and 3 execute. The rest
of the file (lines 4 through 7) does not execute.

The Input and Testinp Commands

The Input utility reads one line from STDIN and writes that line to STDOUT.
The line is written when you press RETURN to end that line.

% input

This line is displayed when I press RETURN.
This line is displayed when I press RETURN.

%

By redirecting output, you can use Input to create a file containing one line of
text.

% input > oneline _

This line is written to a file when I press RETURN.
% ty oneline :
This line is written to a file when I press RETURN.

%

Input, when used with Testinp (the next command discussed), lets you
communicate from the terminal with an executing command file.

The Testinp Command

Testinp tests for equality between an input file and one or more text
strings--ignoring letter case. For example, the following command tests the
file temp for equality with the string yes or please.

testinp temp yes please

If the contents of the file is not identical to either of the two strings, Testinp
returns an error value. (Like all commands, Testinp returns a value to the Shell
when it is through executing.)

With the -f (for first) option, Testinp tests the first character of the file for
equality with the first character of one or more strings. With the =d (for delete)
option, Testinp deletes the file after the test.

% testinp -d temp yes please

ty temp
File not found: "temp"

=N

=N

92

Cromemeco Introduction to Cromix-Plus
7. Writing Command Files

The display does not reflect the results of the test. It isn't supposed to. All
Testinp does is test a file and return a value based on the test.

To test for a multiword string, enclose the string in quotation marks, as in this
example:

testinp temp "yes please™

In response to this command, Testinp returns an error if the contents of the file
does not match the entire string "yes please.”

Important: Do not conclude that Testinp tests for a string embedded in
‘ the text of a file. If does not. Testinp tests for equality
between the file and the string. In other words, whether the
file contains the string is irrelevant. The contents of the file
must pe the same as the string.

To test for embedded text strings, use the Mateh utility (refer
to the Cromix-Plus User's Reference Manual).

If no use for Testinp springs to mind, consider the following command file. This
command file runs the Shutdown utility if confirmation from the terminal is
receiveds

% elist erash.ecmd

File CRASH.CMD Thursday, October 25,1984 14:30:16
echo "Do you want to shut down the system?"

input > temp

testinp ~fd temp y

if ~err goto noshutdown

shutdown

%noshutdown

exit

a3 D b Lo DN

Line 1 echoes the phrase "Do you want to shut down the system?"

% erash
Do you want to shut down the system?

Input now waits for input from the terminal. Any typed response will be
redirected to the file temp. ,

In this example, the user types yes and presses RETURN.

93

Cromemeco Introduction to Cromix~Plus
7. Writing Command Files

% erash
Do you want to shut down the system?
yes

Testinp now compares the file temp to the string "yes". The -f option causes
only the first character of the file and the string to be compared. The -d option
causes the file temp to be deleted after the comparison.

The first character of the file and the first character of the string are the same.
Thus, Testinp returns a non-error value to the Shell.

The "if ~err" command receives the value returned by Testinp. Because Testinp
did not return an error value, the Goto command does not execute. Instead,
execution proceeds with Shutdown (line 5).

% ty ecrash.cmd

echo "Do you want to shut down the system?"
input > temp

testinp ~fd temp y

if -err goto noshutdown

shutdown

%noshutdown

exit

%

By combining Input with Testinp, you can communicate jnteractively with any
command file.

The Repeat Command

The Repeat command repeats a command a specified number of times, as in the
following example:

% repeat 3 echo "this line is displayed three times"
this line is displayed three times
this line is displayed three times
this line is displayed three times

Qs
A

Other commands on a command line are not repesated:

% repeat 3 echo "Get to work!"™; time
Get to work!

Get to work!

Get to work!

Monday, November 4, 1984 12:57:32

34

Cromemeco Introduction to Cromix-Plus
7. Writing Command Files

The semicolon (;) as a command separator is discussed in chapter 6.

In a ecommand file, Repeat might be used to do multiple "shifts":
repeat 3 shift

After this command, the fourth command-line argument is equivalent to #1 in
the command file.

The Find Command

Note: If you are familiar with the C programming language, the Scan utility
is a powerful alternative to Find. Scan does everything Find does, and
much more. Consult the Cromix-Plus User's Reference Manual for
details.

The Find utility locates files within a file structure. In its simplest form, the
Find command syntax is:

find directory-pathname -name file-list

Find searches the specified directory and all its descendants for one or more
files. The keyword "-name" must precede the list of filenames. Ambiguous file
references (if applicable) must be enclosed in quotation marks.

This form of the command simply finds files. To do something each time a file
is found, you must add some information to the Find command line:

-8 —exec command

"-a -exec" means "and execute the following command"--whatever command
follows ~a -exeec executes each time Find locates a file. For example, the
following command echoes the phrase "I found another one!" whenever Find
locates a file with a .bak (for back~up) filename extension.

find / ~name "*.bak" -a -exec echo "I found another one!"
I found another one!
I found another one!
I found another one!
I found another one!

Because the directory pathname is /, Find searches the entire Cromix file sy stem
(the root directory and all its descendants).

95

Cromemeco Introduction to Cromix-Plus
7. Writing Command Files

If the command following -a -exee must act on each file as it is found, add a
pair of braces to the command line.

find / ~name "*.bak"™ -a -exec del ~v {}

As Find locates a file, the Shell substitutes the corresponding filename for the
braces. Thus, the preceding command deletes all files with .bak filename
extensions, one by one. The ~v (for verbose) option causes Delete to display
each filename as it deletes the corresponding file.

Note: Although anyone can use the Find command, only a privileged user should
instrucet Find to look for files from the root directory. If you are a
non-privileged user, Find will search only those directories for which
you have execute access.

% find / ~name "*.bak"™ ~a —exec echo "I found another one!"
Directory not accessibles "/usr/mail™
Directory not accessible: "/usr/spool"

You can avoid a "Directory not accessible:" message by instrueting Find
to look for files from your home directory or one of its descendants:

% find .. ~name ®"*.,bak™ ~a —exee echo "I found another one!”
{ found another one!
I found another one!

Ll
L]

By writing a command file with a similar command, you can periodically rid your.
directory structure of the numerous backup files ereated by the Screen program
or the Cromemeo WriteMaster word-processing program.

% ty clean.emd

find /usr/you -name "*.bak" ~a -exec del -v {}
% clean

/usr/you/letter_1.bak

/usr/you/letter_2.bak

/usr/you/mema.bak

L)

96

Cromemeco Introduction to Cromix-Plus
7. Writing Command Files

This section discussed only a few of the Find command options. For more
information, consult the Cromix-Plus User's Reference Manual.

Sample Command Files

This sample command file illustrates argument substitution, the Shift command,
the Repeat command, and the Rewind command.

% ty shift_args.cmd
echo #*

" shift

echo #1

repeat 2 shift

echo #1

rewind

echo #1

%

Executing the file first echoes all arguments. Then, after a shift, the second
argument is echoed. After two more shifts, the fourth argument is echoed. A
Rewind command cancels all shifts, and the first argument is again echoed.

% shift_args 1 2 3 4
1234

2

4

1

%

The next example combines argument substitution with the Shift, If, and Goto

commands:

% ty elist_all.cmd
%start

clist #1

shift

if #1. != . goto start
echo That's all!

% display file

To execute this file, you might give the following command:

% elist_all *.c

97

Cromemeo Introduction to Cromix~-Plus
7. Writing Command Files

Before executing the file, the Shell generates the names of files in the current
directory with .e (for C program) filename extensions. Then, the file executes
as follows: ‘ '

1. Clist displays the file corresponding to the first command argument (#1).

2. The Shift command shifts the arguments by one (#1 is now the second
command argument, #2, the third, and so on).

3. The If command tests for another argument. If "#1." is pot equal to".",
there is another argument--a filename generated by the Shell. In this
case, the Goto command jumps to the label start.

4. The process repeats until "#1." (as determined by successive Shift
commands) is equal to "."

By taking advantage of the Shell's ability to pass arguments to a command file,
you can define options for the command files you write. For example, the
following command executes the file ecomp.cmd with a user-~defined option,
~1 (for link):

% ecomp ~1 *.c

"-1" is the first argument. The other arguments are the filenames in the current
directory with .c (for C program) extensions.

Ceomp, written to compile and (optionally) link C programs, needs to know if
"-l" js present so it can call Crolinker (the Cromemeco linker) to link the
programs to the Cromemeco C libraries. During compilation and linking (if
applicable), Ccomp must ignore "-1".

The next examples show portions of the file cecomp.ecmd, illustrating how the
Shift and Rewind commands solve the problem.

% ty ecomp.emd
if #1 = -1 shift % get rid of -1 option -
if #1. =. goto no~args % if no other arguments

The Shift command shifts command-line arguments so "-1" (if present) is ignored.
All arguments are now filenames, ensuring a successful compilation.

98

Cromemeo Introduction to Cromix~Plus
7. Writing Command Files

A Rewind command later in the file reinstates all arguments:

L}
L]

rewind
if #1 1=-1 exit % no linking requested
shift % get rid of -1 option

crolinker #* usr/lib/clib /usr/lib/paslib

Then, Ccomp tests for "~-1" once more. If linking is not required (#1 != ~1), the
Exit command returns control to the Shell. If linking is required (#1 = -1), the
rest of the file executes:

1. The Shift command again gets rid of the option, so the next command
(Crolinker) receives only filenames.

2. Cralinker then links all files to the Cromemco C-language libraries.

The file eceomp.cmd is shown in its entirety in the Cromix-Plus User's Reference
Manual, under the discussion of the Exit command.

99

Cromemeco Introduction to Cromix-Plus

100

Cromemco Introduction to Cromix-Plus
A. The Cromix-Plus Command~-Line Editor

Appendix A

THE CROMIX~-PLUS COMMAND-LINE EDITOR

The Cromix-Plus command-line editor lets you correct or change a command
line with a minimum of retyping. To illustrate, consider the following command
line, in whieh the command name "find" and the keyword "name" have been
mistyped. The command-line editor is ideal for corrections like these._.

fnd / -nsme ".bak" -a -exec del -v {}

While the editor is enabled, the LEFT and RIGHT ARROW keys move the cursor
left and right on the command line--without erasing ty ped characters. Pressing
the DELETE key deletes characters to the left of the cursor (one character is
deleted each time you press the key).

Pressing CONTRCL-I puts the editor in the Insert mode. With the editor in the
Insert mode, any characters you type will be inserted to the left of the cursor.
To take the editor out of the Insert mode, press ESCAPE. If the editor is not
in the Insert mode, any characters you type replace existing characters.

When you are through editing a command line, pressing RETURN sends all visible

characters to the Shell. The cursor's position when you press RETURN is
therefore irrelevant.

The editor's features are available whenever the editor is enabled. You can

determine if the editor is enabled as described in the following section.

Making Sure the Editor is Enabled

The Shell command-line editor is enabled under the following conditions:

- the system knows what type of terminal you are using.

~ the terminal is described in the /ete/termecaps file.

- the description terminal inecludes the kR, kI, kE, kl, kr, nb, and nd
capabilities (enter help termeaps for more information).

Enter the term command to see which terminal you are using:

% term
dumb

101

Cromemco Introduetion to Cromix-Plus
A. The Cromix-Plus Command-~Line Editor

A "dumb" terminal cannot support the Shell editor.
Currently, the /ete/termcaps file describes the fallowing terminals:

C~-10 Cromemeco C~10 terminal

C~05 Cromemco C-05 terminal

3102 Cromemco 3102 terminal

3101 Cromemeco 3101 terminal

T925 TeleVideo TV 925 terminal

A230 Ampex A230 terminal

M100 Mace~-Term VT100 terminal emulator
2100 Zenith VT100 terminal emulator
Z-29 Zenith Z~29 terminal

If your terminal is described in the /ete/termeaps file, you can tell the system
what kind of a terminal you have with the Term command. For example:

% term 3102
Since the description of the 3102 terminal contains sufficient information for
the Shell editor to work, the Shell editor is automatically enabled.
If the system administrator enters your terminal type in the /ete/ttys file, you
should not need to use the Term command.

Retrieving the Previous Command

One of the editor's most convenient features is its ability to retrieve, or
"rety pe,” a previous command.

If the editor is enabled, you can easily demonstrate this feature by giving any
command to the Shell. When the Shell displays a new prompt, press
CONTROL-R, as in the following example:

% who

betty gttyl Nov~14-1984 07:16:22 0 0
jim - qtty2 Nov-14-1984 09:42:29 0 0
fred qtty3 Nov-14-1984 09:53:47 0 0

% (CONTROL~R)

CONTROL-R as the first character on a command line redisplays your entire
previous command. 1f CONTROL-R is typed somewhere within the command line,
any characters remaining in the previous command line will be redisplayed.

102

Cromemeo Introduetion to Cromix-Plus
A. The Cromix~Plus Command~Line Editor

% who
betty qttyl Nov~14-1984 07:16:22 0 0
jim qtty2 Nov-14-1984 09:42:29 0 0
fred qtty3 Nov~-14~1984 09:53:47 0 0
% who

That command may be one the sy stem executed (such as the Who command, above)
or a command the system could not execute, as in the next example:

fnd / ~nsme ".bak™ -a -exec del ~v {}
Command not found: "fnd"
find / -nsme ".bak"™ -a -exec del -v {}

After "retyping" a command in this manner, you can edit the command or give
it again by pressing RETURN.,

103

Cromemeo Introduction to Cromix~Plus

104

Cromemeo Introduction to Cromix~Plus
B. The Cromemeo Sereen Program-Entry Editor

Appendix B
THE CROMEMCO SCREEN PROGRAM~ENTRY EDITOR

This appendix deseribes the Cromemeco Screen program-entry editor. Discussed
in detail are the basic editing modes and some of the editor's most important
commands.

The illustrations in this appendix show a simple computer program; however,
you can also use the editor to prepare reports, correspondence, or any kind of
text. As you read the appendix, you may wish to create and edit your own file.
If this file contains five or six lines of text, and a few intentional errors, you
can easily learn the editor's most important features. The illustrations in the
section "Basic Editing"” show what might be displayed on the terminal screen
during a practice editing session.

When you're comfortable with the program's editing modes, you can experiment
with some of the editor's more advanced features. These are described in the
command summary at the end of this appendix.

There is additional information about the Screen program in the Cromix-Plus
User's Reference Manual.

Selecting the Editor to Create a New File

When you wish to use the editor to create a file, give the Screen command with
a new filename as an argument. The name you choose for the new file must

observe the file~-naming conventions discussed in chapter 3.

This command calls the Sereen editor to create a file named sample:
% sereen sample

The editor is ready to use when the following command line is displayed at the
top of the terminal screen:

>Edit: At Copy Delete Exit Find Insert Jump Move Other Page Substitute Xchange

When the editor's command line is visible, the editor is in Command mode. From
the Command mode, you can give any of the editor's available commands.

105

Cromemeo Introduction to Cromix-Plus
B. The Cromemeco Sereen Program-Entry Editor

Giving Screen Commands

The preceding command line lists most of the editor's commands. A second
command line, which can be viewed using the Other command (refer to the
command summary), lists the remaining commands.

Before you can give a command to the editor, the editor must be in the Command
mode (with either command line displayed). If it is, you can give any command
by typing the first letter of the command name.

The ESCAPE Key

Following execution, some commands automsatically return the editor to the
Command mode -- other commands do not. For those commands that do not, you
must return the editor to the Command mode yourself before you can give a new

command. To do so, press the ESCAPE key.

Entering Text in the Insert Mode

When you enter text in a new file or add text to an existing file, you will use
the editor's Insert mode. Insert mode is selected by giving the Insert command.

Typing I for Insert replaces the command line with:

>Insert: <text...> <ESCAPE>

indicating you can either enter text or return to the Command mode by pressing
the ESCAPE key.

As you enter text, press the RETURN key to end each line. If you notice an
error a short distance from the eursor, use the LEFT ARROW key or the DELETE
key to back up so you can correct it. Pressing either of these keys deletes text
to the left of the cursor, a character at a time. If you prefer, ignore any
mistakes you make--you can correct them later.

When you are through entering text, press the ESCAPE key to return the editor
to the Command mode.

Shown here is a program that was entered in the Insert mode.

>Insert: <text...> <ESCAPE>

10 Strig$="26.6321"

20 Increment=1 ‘
30 Value=Incremental +Val(String$)
40 Print Value

50 End

0

106

Cromemco Introduction to Cromix-Plus
B. The Cromemeco Screen Program-Entry Editor

As you can see, there are several errors. Later sections show how to correct
these errors using the Insert mode and the other basic editing modes, Delete
and Xchange (exchange). . :)

Basic Editing

For basic text editing, you need a knowledge of only four commands-~-Insert,
Delete, Xchange (gxchange), and Exit. The Insert, Delete, and Xchange
commands select the editing modes discussed in detail in the following sections.

Before you select an editing mode, the editor must be in the Command mode.
(If you're not sure that it is, press the ESCAPE key; the keyboard will beep if
the editor is already in the Command mode.) Then use the ARROW keys (or any
of the cursor movement keys deseribed in the next section) to move the cursor
to the location of the change, and give the command that selects the appropriate
mode.

When you wish to exit from one mode to select another, press the ESCAPE key
to return the editor to the Command mode. Then give another command.

Moving the Cursor While the Editor is in the Command Mode

If the text in a file exceeds the capacity of the terminal sereen, and the cursor
is on the bottom sereen line, pressing the RETURN key or the DOWN ARROW key
brings additional text, a line at a time, onto the terminal sereen. This process
is called serolling.

The > symbol at the left of the command line is the cursor direction indicator.
With the indicator pointing to the right, the cursor moves to the right when you
press the SPACE bar or the TAB key. When you press the RETURN key, the
cursor moves down. Sometimes you may want the cursor to move to the left or
up when you press these keys. For example, with the cursor at the end of a file,
you may wish to use the RETURN key to scroll up through the file. To reverse
cursor movement, type < while the editor is in the Command mode. To return
the setting to forward, type >.

The cursor direction indicator has no effect on the ARROW keys. Pressing an
ARROW kev while the editor is in the Command mode always moves the cursor
0 the di : :

You can move the cursor a specific number of lines by typing a number and
pressing the RETURN key. For example, typing 15 and pressing RETURN moves
the cursor 15 lines in the file. The cursor moves up or down in the file as
determined by the cursor direction indicator. To move the maximum number of
lines (65335), type # and press RETURN.

The Jump, Page, and Home commands also move the cursor, as deseribed in the
command summary et the end of this appendix.

107

Cromemeo Introduction to Cromix-Plus
B. The Cromemeo Screen Program~Entry Editor

Insert Mode~-~the Insert Command

In this example, the cursor is positioned to correct the word "String" by
inserting the letter "n".

>Edit: At Copy Delete Exit Find Insert Jump Move Other Page Substitute Xchange
10 Strigj$="26.6321"

20 Increment=1

30 Value=Incremental+Val(String$)

40 Print Balue

50 End

After selecting the Insert mode by giving the Insert command, space is allotted
for the insertion, as shown in the next example. To make the change, type n,
and then press the ESCAPE key to return the editor to the Command mode.

>Insert: <text...> <ESCAPE>
10 Strif]
g$="26.6321"
20 Increment=1
30 Value=Ineremental +Val(String$)
40 Print Balue
50 End

While you are editing a file in the Insert mode, you can add as much new text
(including spaces or blank lines) as you like. To return to the Command mode,
press the ESCAPE key.

Delete Mode

The Delete mode is selected by giving the Delete command. While the editor
is in the Delete mode, pressing any of the following keys will delete text.

SPACE Bar--deletes a character at a time, in the direction shown by the cursor
direction indicator.

RETURN Key--deletes a line at a time, in the direction shown by the cursor
direction indicator.

TAB Key --deletes text between TAB stops, in the direction shown by the cursor
direction indicator.

ARROW Keys--delete text in the direction shown on the key. The LEFT and
RIGHT ARROW keys delete a character at a time, while the UP and DOWN ARROW
keys delete entire lines of text.

108

Cromemeco Introduction to Cromix-Plus
B. The Cromemeco Sereen Program-Entry Editor

To delete a specific number of lines after giving the Delete command, type a
number and press the RETURN key. For example, typing 5 and pressing RETURN
while the editor is in Delete mode deletes five screen lines.

wmmmmmmuﬁmw_m» To illustrate, assume the
cursor direction indicator is pointing to the right, and you press the RETURN
key to delete one or two lines of text. If you wish torecover this text, pressing
the UP ARROW key restores it, line by line.

The next change to be made to the sample file is to correct the word Increment.
by deleting the letters al. In the following example, the cursor is positioned
for the correction.

>Edit: At Copy Delete Exit Find Insert Jump Move Other Page Substitute Xehange
10 String$="26.6321"

20 Increment=1

30 Value‘"Incremental+\/l(Strmg$)

40 Print Balue

50 End

To make this change, select the Delete mode by typing D and then press either
the SPACE bar or the RIGHT ARROW key twice to remove the unwanted letters.

Whenever you are through deleting text, press the ESCAPE key to return the
editor to the Command mode.

Xehange (Exchange) Mode

To replace a character by typing over it, move the cursor to the location of the
change and select the editor's Xchange mode. To do so, give the Xchange
command by typing X. The next example shows the cursor positioned to correct
the word "Value" in the sample file. Here, the letter "V" must be exchanged
for the incorrect letter, "B".

>Edit: At Copy Delete Exit Find Insert Jump Move Other Page Substitute Xchange
10 String$="26.6321"

20 Increment=1

30 Value=Increment+Val(String$)

40 Print [Blalue

50 End

While the editor is in the Xchange mode, you can type over characters, words,
or entire lines of text. Text that has been typed over cannot be recovered.

109

Cromemeo Introduetion to Cromix~Plus
B. The Cromemco Screen Program-Entry Editor

Saving a File on Disk-~the Exit Command

When you have edited a file, use the Exit command to update the file on the disk.
"Updating™ (or "saving") a file means:

1. If you are entering text in a new file, that text is stored for the first time
under the filename you chose when you first selected the editor.

2. If you are editing an existing file, the edited version replaces the previous
version of the file on the disk. (The previous version is stored as a
back-up file, with the filename extension .bak.)

With the editor in the Command mode, typing E for Exit displays the command
options shown below,

>Exit: Continue Quit Update <ESCAPE>
Continue - update filename and continue editing
Quit - exit without updating filename
Update - update filename and exit
<ESCAPE> - return to editor

As shown, there are four options: 1) Continue to update the file and return
to the editor; 2) Quit to exit from the editor without updating the file; 3)
Update to update the file and then exit from the editor; and 4) ESCAPE to
return to the Command mode.

Except for ESCAPE, command options are selected by typing the first letter of
the option name. For example, if you are entering text in a new file and wish
to save the file on disk and then continue entering text in that file, you would:

1. Type E to give the Exit command.

2. Type C to select the Continue option.

Giving the Exit command, and then selecting the Continue option, stores the file
on the disk and returns the editor to the Command mode. (The cursor will be
where it was when you gave the Exit command.)

After you give the Exit command with the Update option, you are no longer using

the Sereen program. The Sereen program returns control to the Shell after
saving the file on the disk.

>Exit: Update
34 bytes written to: sample
%

110

Cromemeo Introduction to Cromix~Plus
B. The Cromemco Screen Program-Entry Editor

As shown, the Sereen program displays the size of the updated file (in bytes) -
before returning control to the Shell.

To avoid losing text (for example, there may be an unexpected power
failure), you should update files regularly. Select either the Continue or
Update option, depending on whether or not you wish to continue using the
editor.

The Quit option aborts an editing session restoring the file to the version at the
beginning of the session or the last use of the Continue option during this
session. Quit is useful if you make a mistake while editing and wish to begin
again, or if you have edited a file and decide you prefer the unedited version.

-Editing a File that is Stored on the Disk

An existing file can be displayed for editing by giving the Screen command with
the name of that file as an argument:

% scereen letters

If you have a file named letters in your directory, the preceding command will
display the file for editing.

Setting Markers with the At Command

To execute certain commands, the editor requires reference points. For example,
if you wish to move a bloeck of text to a new location in a file (the Move
command), you need a way of marking the text to be moved.

You can set a marker at any point in a file by moving the cursor to the location
to be marked and then giving the At command. After typing A or @ for AL, the
command line is replaced by:

set marker At: 1 2 3 4 5 6 7 <ESCAPE>

If there are markers already set, their numbers will be flashing. To set a

marker, type any number from 1 to 7. (Typing a number that is flashing resets
that marker.)

The commands that use markers are: Beautify, Copy, Jump, List, Move, Write,
and Zap (refer to the command summary).

Whenever you give a command that uses markers, the names of the editor's preset
markers (Begin, Cursor, End) will always be displayed. To their right will be
the numbers of any markers you've set using the At command. The preset
markers let you perform command functions in relation to the beginning of the
file, the cursor position, or the end of the file. To select these markers, type
the first letter of the marker name.

111

Cromemeo Introduction to Cromix~-Plus
B. The Cromemco Screen Program-Entry Editor

The Scereen Editor's Shell Command

The editor's Shell command (%) lets you. temporarily exit from the Screen
program so you can give a command to the Cromix~-Plus Shell. To give the
command, type a percent sign (%) with either of the editor's command lines
displayed.

After you type %, the editor’s command line (and the text you were editing) is
replaced by the following display:

>Shell:

EXit will return to Screen
%

At this point, you can give one or more commands to the Shell. You can even
give the Screen command to edit or create a file. When you want to resume
editing, give the Exit command (the same command thsat normally logs you out).

% ex

If you prefer type CONTROL-Z instead of giving the Exit command.
(CONTROL~Z cannot log you out by accident.) Whichever method you use, the
result is the same. Your file will be redisplayed exactly as it was when you
gave the Shell command.

For more information about CONTROL~Z in place of Exit, refer to the discussion
of the Shell command in the Cromix-Plus User's Reference Manual.

Note: If, after giving the Shell command, you subsequently give the Sereen
command to edit a file, you may see the following message:

% sereen letters
Cromix Screen editor version xxxx
File in use: "letters"

This message means you are using the file. You were editing this
file when you gave the editor's Shell command. To redisplay the file
and return to the editor, give the Exit command.

Considerations When Using the Editor
Whenever you give the Screen command, the command argument is the pathname
of a file. You can use a relative or absolute pathname, as you would with any

other Cromix-Plus utility that uses filenames. For example, the following

112

Cromemco Introduction to Cromix-Plus
B. The Cromemeco Screen Program-Entry Editor

command uses an absolute pathname to create a file named summary in a user's
home directory:

% sereen /usr/betty/summary

Or, this command calls the Screen program to edit a file named stock_on_hand
in the parent of the current directory.

% sereen ~stoeck_on_hand
Although you may decide it's easiest to change directories before giving the

Sereen command, you do not have to change directories to edit a file.

Some of the redirection techniques discussed in chapter 6 alsb work with the
Sereen program. For example, the following command calls the Sereen program
to edit a file named notes, using editing commands from the file edit:

% sereen notes < edit

This variation of the same command redirects the output from the Sereen program
to a null device (the file /dev/null is discussed in chapter T):

% sereen notes < edit > /dev/nmull

Because editing commandé are being given from the edit file, there is little
reason to watch the editing on the terminal secreen. Redirecting Screen's output
to /dev/null discards that output--without displaying it or saving it in a file.

113

COMMAND:
Purpose:
Summary:
Arguments:
COMMAND:
Purpose:
Summary:
Arguments:

Options:

COMMAND:
Purpose:

Summary:
- Arguments:
COMMAND:
Purpose:

Summary:

COMMAND:
Purpose:

Summary:

Options:

Cromemco Introduction to Cromix-Plus
B. The Cromemco Sereen Program-Entry Editor

COMMAND SUMMARY

At : : _

Sets markers the editor can use for reference while

executing certain commands.

A marker-number

Marker number from 1 to 7,

Beautify

Formats text files. The default is aligned text (right

margin ragged as though typed).

B [jm] markers

Two markers.

i justifies text.

m displays margin settings so they can be changed
before formatting text. Type the first letter of the
setting you wish to change (for example R for Right

Margin), and type the new setting. Then press
RETURN to enter it.

Copy :
Copies text designated by markers to the cursor position.
C markers
Two markers.
Delete
Selects the editor's Delete mode.
D
Exit
Exits from program while (optionally) updating file on
the disk. Or, updates file on the disk and returns the
editor to the Command mode.
E [equ]
continue ~- update file and return to the Command
mode.

C
Q quit -- exit from program without updating file.
U update -~ exit from program and update file.

114

Cromemco Introduction to Cromix-Plus
B. The Cromemeo Screen Program-Entry Editor

COMMAND: Find

Purpose:

Locates text strings. The editor searches the file in the
direction shown by the cursor direction indicator. The
search begins with the first character affer the cursor
when searching down in a file. When searching up in a
file, the search begins with the first character pefore
the cursor.

When a string is found, you can edit the text and then
find the next ocecurrence of the string without retyping
it, as deseribed in Note 4 below,

Summary: [n] F ;string;

Arguments: H a delimiter character to open and close the
string. A delimiter can be any
nonalphanumeriec character (commonly used
delimiters are the slash mark (/), the period,
the colon, the semicolon, or a SPACE).

string - a sequence of characters (including TABs,

RETURNs, or SPACEs). A string may be
ambiguous, using the asterisk (¥) and the
question mark (?). The asterisk stands for
any number of characters, while the question
mark stands for a single character. In this
way, entering the string:

/oc*/
might find "oecur," "socket," "oetal," ete.,
while entering the string:

/th?n/
might find "thin," "both now," "than," or
"thenn"

Options: n the occurrence of the string, from the curscr, to
be found. (One is the default.) For example, if you
type 5, the editor will find the fifth occurrence
of the string, 10, the tenth, and so on.

Notes: 1. When a string is found, the cursor moves to the first character of
the string. If the string is not found (you may have mistyped it),
the cursor remains where it was when you gave the command.

2. If you do not specify a particular occurrence to find by typing
a number, the editor looks for the first occurrence, from the curser,
in the direction shown by the cursor direction indicstor.

3. The Find command ignoi'es letter case unless you use quotation

marks as delimiter characters.

115

Cromemco Introduction to Cromix-Plus
B. The Cromemeco Screen Program-Entry Editor

6.

8!!

COMMAND:
Purpose:

Summary:
COMMAND:
Purpose:

Summary :

COMMAND:
Purpose:

Summary:

After finding one occurrence of the string, you can find the next
without rety ping the string. To do so, give the Find command again
by typing F and then type any two delimiter characters. You may
find it easiest to press the SPACE bar twice.

If you wish the editor to obey letter case (for example, you are
searching for all instances of "AND," and wish to bypass "and"
or "And"), type two quotation marks as delimiters.

You must type the same delimiter character to open and close a
string. If the string is ambiguous (containing * or ?), do not use
* or ? as delimiters.

If you wish to treat ? or * in a string as a standard, printing

character, press the \ key twice to type \ before you type either
? or *. For example:

:file\ 72
will find "file," followed by "?", while

:file?:
will find "file," followed by any character.
If the Find command does not seem to be working as deseribed:
1) check the setting of the cursor direction indicator; 2) check
the position of the cursor in the file (the cursor may be past the
string); or 3) make sure you opened and closed the string with the

same delimiter character.

To abort the command while it is executing, press CONTRCL-C.

Home ,
Moves the cursor to the top left hand corner of the
terminal screen.

H

Insert
Selects the editor's Insert mode.

I

Jump
Moves the cursor directly to a marker, such as the
beginning or end of a file, without serolling text.

N) marker

116

Arguments:

COMMAND:
Purpose:

Summary:

Arguments:

COMMAND:
Purpose:

Summary:
Arguments:
COMMAND:
Purpose:
Summary:
COMMAND:

Purpose:

Summary:

Options:

COMMAND:
Purpose:

Summery:

Arguments:

Cromemeo Introduction to Cromix-Plus
B. The Cromemco Sereen Program-Entry Editor

A marker.

The Jump command is especially useful if you cannot
remember where you set markers in a file. After giving
the command, type the number of the marker whose

position you wish verified. The cursor will move to the
location of that marker.

List

Prints text between markers on printer.

L markers

Two markers.

Move

Moves text designated by markers to the cursor position.
M markers

Two markers.

Other

Display s second command line.

0]

Page

Moves the cursor directly to another page in the file.
A "page" is one screen (23 lines) of text. Whether the
cursor moves forward or backward depends on the setting
of the cursor direction indicator. ‘
[n] P

n a number. The specific page~--from the cursor

position--to be displayed (one is the default).

Read

Copies another file into the file being edited, inserting
it at the cursor position.

R filename

Press the RETURN key 1o give the command.

The name of another file on the disk. »

117

Cromemco Introduction to Cromix~Plus
B. The Cromemeo Sereen Program~Entry Editor

COMMAND: Shell
Purpose: Temporarily exits from the Screen program.
Summary: %

To return to the Screen program, give the Exit command
in response to the Cromix-Plus Shell prompt.

COMMAND: Substitute

Purpose: Finds and replaces text strings, in the direction shown
by the cursor direction indicator.

Sumihary: [n1 s [q] :old-string: :new-string:

Arguments: : delimiter character (the convention for

delimiting strings is the same as with
the Find command).

old~string the string to be replaced. The old text
string may contain ambiguous characters
(see the Find command).

new -string the replacement string.

Options: n a number (the number of times to find
and replace a string). One is the
default. To select the maximum number
of replacements, type #.

Q (query) Instruets the editor to ask for
confirmation before replacing a string.
If you do not select this option, the
specified number of strings will be
automatically replaced.

Notes: 1. Ifyouwish to abort the substitution process, press CONTROL~C.

2. If you select the Query option, by typing Q after giving the
Substitute command, the editor will ask you to confirm each
substitution. Type Y for Yes, N for N, or press the ESCAPE key
to return the editor to the Command mode.

3. Usecare when substituting ambiguous text strings, especially when
using the asterisk to denote a string of undetermined length. The
string you enter might match one or two characters, several lines,
or entire paragraphs.

4. To insert the same string n times along the left or the right margin,
Substitute using the RETURN key ("M) in the strings.

[n] [S1/°M/,/@b"M/ will insert @b at the end of n lines of text.

118

COMMAND:
Purpose:

Summary:
Notes: 1.
2a

3a

COMMAND:
Purpose:

Summary:

COMMAND:
Purpose:

Summary:

Arguments:

COMMAND:
Purpose:

Summary:

Cromemco Introduction to Cromix-Plus
B. The Cromemco Screen Program-Entry Editor

[n] [Sl/"M/,/"M@b/ will insert @b at the beginning of n lines of
text.

Tabs
Display s the editor's TABs scale (each TAB stop on the
scale is indicated by the letter T).

T
To set new TAB stops after giving the Tabs command, press the
SPACE bar to move the cursor to the proper location on the

scale-~then type T.

To erase TAB stops, move the cursor over the "T" on the scale
by pressing the SPACE bar.

To enter changed TAB stops, press the RETURN key (do not press
the ESCAPE key unless you want to cancel the command).

Verify :
Refreshes screen display, clearing the sereen of any
characters that are not a part of the file.

v

Write

Writes all or a portion of the current file to a new file
on the disk.

w markers new-filename

Press the RETURN key to give the command.

Two markers

A new filename-(using the file-naming conventions
explained in chapter 3).

Xechange

Selects the editor's Xehange mode.

X

119

Cromemeo Introduetion to Cromix~Plus
B. The Cromemeco Screen Program-Entry Editor

COMMAND:
Purpose:

Summary:

Arguments:

Zap
Deletes text between markers.

Z markers

Two markers.

Text deleted with the Zap command cannot be recovered,
as can text deleted in the editor's Delete mode. If you
make a mistake using the Zap command, consider giving

the Exit command, and then selecting the Quit option,
sSo you can begin the editing session again.

120

Cromemeo Introduction to Cromix-Plus
Index

.bak filename extension, 16

.bin filename extension, 16, 30, 54

.emd filename extension, 16, 30, 54, 83 -
com filename extension, 16, 30, 54
reminder file, 55

Save filename extension, 16
Startup.cmd file, 55

/, root directory, 35

/bin directory, 36, 54
/emd directory, 54, 83
/dev directory, 56
/dev/mll, 85, 113

/usr directory, 36
fusr/mail directory, 40, 60

Absolute pathname, 36, 37, 39, 44
Absolute pathname, displaying, 41
Access privileges, for owner of a file, 21
Ambiguous file reference, 78

Ambiguous file references, 80, 87
Appending output to a file, 70

Argument passing, 87

Argument substitution, 86

Argument, testing for, 90, 91

Arguments, shifting, 95

Background processing, 73

Calling a program, 6

Changing directories, 43

Clist utility, 22

Command arguments, 7

Command file, 30

Command file structure, 86

Command file, communicating interactively with
94

Command file, executing, 30, 83

Command file, testing for an argument, 90

Command file, use of the asterisk in, 87

Command file, user-defined option in, 98

Command files, 83

Command files, examples, 97

Command line arguments, reinstating, 91

Command line arguments, shifting, 91

Command line, editing, 101

Command line, redisplaying the previous, 102

Command line, use of parentheses, 75

Command syntax, Copy, 23, 46, 47

121

Cromemco Introduction to Cromix~Plus
Index

Command syntax, Cptree, 53

Command syntax, D command, 43

Command syntax, Delete, 25

Command syntax, Deltree, 52

Command syntax, Help, 8

Command syntax, introduced, 7

Command syntax, Makd, 45

Command syntax, Move, 46, 47

Command syntax, Rename, 25

Command syntax, Spool, 27, 28

Command syntax, Type, 22

Command syntax, Who, 8

Command, defined, 5

Command, editing, 5

Command, sequential, 74

Command-line editor, 101

Command-line editor, enabling/disabling, 101
Command-line editor, Insert mode, 101
Conditional jumps, 89

CONTROL~-C, 17, 28, 60, 74

CONTROL~-C, abort signal, 9

CONTROL-C, to stop program execution, 9
CONTROL-I, command-line editor, 101
CONTROL~P, to retrieve the previous command, 102
CONTROL-Q, 22

CONTROL-Q, to display additional sereens, 9
CONTRCL~U, as "line-kill" key, 5
CONTROL-Z, end-of ~file, 60, 71, 73
Conventions, 5

Copy command, 46, 47

Copy command, ~f option, 26

Copy utility, 23

Copying files to another directory, 46
Cptree command, -v option, 54

Cptree utility, 53

CRDEYV setting, Mode utility, 10

Creating a directory file, 45

Creating a file, 17

Current directory, 49

D command, 36

D command, to change directories, 43
Del command, 51

Delete command, 25

DELETE key, 4

Deleting a file, 25

Deleting text while using the Screen editor, 108
Deltree utility, 51

Destination file, 23

Detached process, 73

Device, 56

Device file, creating, 57

122

Cromemeo Introduction to Cromix-Plus
Index

Device files, 56

Directories, changing, 43

Directories, shortecuts for specifying, 49

Directory, 33

Directory file, 35

Directory, ancestor, 44

Directory, copying, 53

Directory, creating, 45

Directory, deleting, 51

Directory, descendant, 44

Directory, destination, 53

Directory, displaying the name of the current
36

Directory, execute access, 96

Directory, execute access for, 40

Directory, home, 33

Directory, mail, 40

Directory, parent, 36, 40

Displaying a file with page headings, 22

Displaying a list of files, 18

Displaying a list of system users, 6

Displaying invisible filenames, 56

Displaying the contents of a file, 22

DOWN ARROW key, to enter command, 10

Echo command, 94

Echo command, example in command file, 93, 94
95, 97

Echo utility, 85

Echoing special characters, 86

Editing a command line, 101

Editor, command~line, 101

Error message, "Directory file", 35

Error message, "Directory not accessible", 40
96

Error message, "File already exists", 26

Error message, "File in use™, 112

Error message, "File not found", 26, 27, 40

Error message, "Illegal filename", 30

Error message, "Must be privileged user™, 13

Error message, "Program not found", 10

Error message, "Wrong number of arguments", 26

Error messages, introduced, 10

Error messages, redirecting, 75

Error messages, redirecting to a null device, 85

Error messages, some command, 26

Error return value, 92

ESCAPE key, to select Screen editor's Command
mode, 106

Execute access for a directory, 96

Exit command, 12

Exit command, example in command file, 99

123

Cromemeo Introduction to Cromix~Plus
Index

Exit command, to log out, 12

Exit command, to return an error value, 91

Exit command, to return control to the Shell, 91
Exit command, to return to Screen editor, 112

File, aceidentally deleting, 70
File, copying, 23
File, copying to a directory, 46
File, creating, 17
" File, ereating with Screen program, 105
File, deleting, 25
File, device, 56
File, directory, 35
File, displaying the contents of, 22
File, displaying with page headings, 22
File, moving to a directory, 46
File, printing, 27
File, printing more than one copy, 27
File, renaming, 25, 47
Filename extension, 16
Filename generation, 78, 80
Filenames, displaying, 18
Filenames, invisible, 55
Files, naming, 15, 16
Find command, 95
Find command syntax, 95

Goto command, 88
Goto command, example in command file, 98

Help utility, 8, 9
Home dlrectory, 33, 49
Home directory, makmg the current directory, 51

I1f command, 89

If command, example in command file, 93, 94, 97
98, 99

If command, relational operators used with, 90

If-else-endif, 90

If-err, 89, 94

if-goto, 89

Inode number, 46

Input ecommand, 92

Input commeand, example in command file, 93, 94

Input file, 72

Inserting text while using the Sereen editor
108

Intrinsic commands, 12

. Invisible filenames, 35

124

Cromemco Introduetion to Cromix~Plus
Index

Invisible filenames, displaying, 56

Jumping to a label, 88
Jumps, conditional, 89

Kill utility, to stop a background process, 74
Killing a job in the print queue, 28

Label, jumping to, 88

Logging in, 4

Logging in, defined, 3

Logging out, 12

Login name, 3, 6

Login prompt, 4

Ls command options, 18

Ls command, -a option, 56

Ls command, -e option, 19

Ls command, -i option, 19

Ls command, -1 option, 18, 21

Ls command, -m option, 18

Ls command, with directory pathname as argument
38

Ls utility, 18, 37

Mail utility, 59, 66

Mail utility, correcting mistakes while using-
60

Mail utility, redirecting input, 72

Mail, reading, 61

Mail, sending, 59

Mail, sending to several users, 63

Makd command, 45, 53

Makdev utility, 57

Mateh utility, 93

mbox file, 62

Message of the day, 5

Mode settings, 101

Mode utility, 9, 10, 11

Move utility, 46, 47

Moving files, 46

Naming files, 15, 16
Null device, 85, 113

On~line manual, 8
Options, defining in a command file, 98
Options, grouping after one hyphen, 20

125

Cromemeo Introduction to Cromix~Plus
Index

Options, requiring arguments, 21
Cutput file, 68, 70
Output, redirecting to a file, 68

PA setting, Mode utility, 9

Parent directory, 36, 49

Parentheses on a command line, 75
Passwd utility, 11

Password, 3

Password prompt, 5

Password, changing, 11

Path command, 41

Pathnames, used when calling Screen editor, 112
Peripheral device, 56

PID number, 73

Pipes, 76

Print queue, 27

Printing a file, 27

Printing, cancelling, 28

Printing, listing the jobs in the queue, 27
Printing, stopping, 28

Privileged access, 5, 13

Privileged user, 5, 13

Process identification number, 73

gtty number, 6

Query utility, 9

Queue, 27

Queue, listing the jobs in, 27

Quotation marks, on a command line, 86

Quotation marks, to enclose a multiword string
93

Quoting special characters, 86

Reading mail, 61

Redirecting and appending output, 70
Redirecting error messages, 75

Redirecting input from a file, 72

Redirecting output to a file, 68

Redirecting cutput to a null device, 85, 113
Redirecting output to a temporary file, 77
Redirection with pipes, 76

Redirection within a command file, 85
Redirection, when using Sereen editor, 113
Relational operators used with If command, 90
Relative pathname, 42

Rename command, 25

Renaming a file, 25, 47

Repeat command, 94

Repeat command, example in command file, 97

126

Cromemco Introduction to Cromix~Plus
Index

Repeating a command, 94

RETURN key, 4, 6

Return values, 89, 91, 92

RETYPE mode setting, 101

Rewind command, 91

Rewind command, example in command file, 97, 99
Root directing, finding files from, 96

Root directory, 35

Scan command, 97 .

Screen editor, 105

Sereen editor, basic editing techniques, 107

Screen editor, command mode, 106

Screen editor, command summary, 114

Sereen editor, correcting mistakes, 106

Sereen editor, creating a new file, 105

Sereen editor, cursor direction indicator, 107

Screen editor, Delete mode, 108

Sereen editor, entering text in Insert mode, 106

Screen editor, giving commands to the, 106

Sereen editor, Insert mode, 106, 108

Screen editor, moving the cursor, 107

Screen editor, redirecting input and output, 113

Screen editor, saving a file on disk, 110

Screen editor, setting markers with At command
111

Screen editor, temporarily exiting from the
program, 112

Sereen editor, to edit an existing file, 111

Screen editor, use of the ESCAPE key, 106

Sereen editor, Xchange mode, 109

Sereen utility, 17

Sending mail, 59

Sequential commands, 74

Sequential processing, 74

Shell, 65

Shell characters with special meaning, 17

Shell commands, 12

Shell prompt, 5

Shell, search for program or command, 54

Shift ecommand, 91

Shift command, example in ecommand file, 97, 98
99

Shifting arguments, 95

Shifting command line arguments, 91

Shorteuts for working within a directory
structure, 49

Shutdown utility, 93

Sort utility, 67

Source, 53

Source file, 23 -

Special Shell characters, 17, 86

127

Cromemeco Introduetion to Cromix~Plus
Index

Spool command, -a option, 28

Spool ecommand, -k option, 27

Spool command, -1 option, 27

Spool command, -m option, 27

Spool utility, 27

Spool utility, important consideration, 74
Spool utility, using Kill with, 74
Standard Error, 75 .

Standard input, 66

Standard output, 66

STDERR, 75

STDIN, 66, 67, 71, 92

STDOUT, 66, 67, 92

Summary of Screen editor commands, 114
Sy stem administrator, 3

Tee utility, 77

Terminal keyboard, 3

Testing for an argument, 90, 91
Testinp command, 92

Testinp command, example in command file, 93, 94
Testinp, ~d option, 92

Testinp, ~f option, 92

Testinp, the ~d option, 94

Testinp, the -f option, 94

Text editor, 105

Time command, 294

Time utility, 7

Type command, 22

Type command, redirecting output, 71

Who utility, 6, 7, 66, 68

128

(Detach Here)

Reader Responses To This Documentation

Dear Reader,

We have made a sincere effort to provide you with the information you need in this manual. If you should find
the documentation deficient or in error, let us know so we can correct it. We appreciate and value your response;
it will be useful in improving the documentation. Please detach and use the Reader Response Card below to send

us your comments.

Thank you for your time and interest in Cromemco products.

Sincerely, n

Technical Pablications Manager

(Detach Here) e

Cromemco’ Reader Response Card

To: Winthrop A. Stiles III,
Technical Publications Manager
Re (Manual title):

My System is (Specify configuration):

The following information is incorrect (Please specify page number):

(Fold Here}

The following additional information would be helpful:

What general suggestions do you have for improving this manual?

If you need a response from Cromemco, please print your name, mailing address, and telephone number:

Name:

Address:

Telephone: ()

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 599 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Cromemco’

Atin: Winthrop A. Stiles Il
Technical Publications Manager
280 Bernardo Avenue
P.0. Box 7400
Mountain View, CA 94039

NGO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

280 Bernardo Ave.
P.0. Box 7400
Mountain View, CA 84039

