Forty Dollars

Cromix-Plus
Programmer’s

Reference Manual

Cromemco

Cromix-Plus

Programmer’s

Reference Manual

October 1987

CROMEMCO, Inc.

P.O. Box 7400

280 Bernarde Avenue
Mountain View, CA 94039

023-5014

Rev. F

Copyright © 1986
CROMEMCQO, Inc.
All Rights Reserved

This manual was produced using a Cromemco System 300 computer running under the Cromemco
UNIX Operating System. The text was edited with the Cromemco CE Editor. The edited text was
formatted by the UNIX TROFF formatter and printed on a Texas Instruments Omnil.aser 2108 printer.

The following are registered trademarks of Cromemco, Inc.

C-Net®
Cromemco®
Cromix®
FontMaster®
SlideMaster®
SpeliMaster®
System Zero®
System Two®
System Three®
WriteMaster®

The following are trademarks of Cromemco, Inc.

c-10™
CalcMaster ™
Cromix-Plus™
DiskMaster ™
Maximizer ™
TeleMaster
System One™
System 100™
System 120™
System 200™
System 220™
System 400™
System 420™

UNIX is a registered trademark of Bell Laboratories.

CONTENTS

Chapter 1 - Introduction to Cromix-Plus System Calls
1.1 Summary of System Call Functions e e s
1.2 Signals .

1.3 Responses to a Slgna]

1.4 Types of Signals .

1.5 Sources of Signals

1.6 Reception of Signals

1.7 The Use of Signals in Apphcanon Prograrns

1.8 Signals and Forking a New Process

1.9 The Alamm System Call

1.10 The Pause System Call .

1.11 The Sleep System Call

112 Locks

1.13 Shared and Unshared Locks

1.14 Conditional and Unconditional Locks

1.15 Locking Schemes .

1.16 Sample Implementations of Locks

1.17 Cromix-Plus Error Numbers

1.18 Error Numbers

Chapter2 - Cromix-Plus System Call Descnptlons
2.1 The Alarm Function e e e e ..
2.2 The Boot Function

2.3 The Caccess Function

24 The Cchstat Function

2.5 The Ccromix Function

2.6 The Chdup Function

2.7 The Chkdev Function

2.8 The Clink Function

2.9 The Close Function

2.10 The Create Function e e e e e e e e
2.11 The Cstat Function . . - -« .+« .+ « « 2 =« - « =
2.12 The Cxexit Function

2.13 The Cxopen Function

2.14 The Delete Function

2.15 The Error Function

2.16 The Exchg Function

2.17 The Exec Function

2.18 The Faccess Function

2.19 The Fchstat Function e e e e m e e e e
220 The Fexec Function < +« .« « « =« =
2.21 The Flink Function

2.22 The Fshell Function .

2.23 The Fstat Function

2.24 The Getdate Function

2.25 The Getdir Function

WD WO e~ WL A RN =

23

2.26
2.27
228
2.29
2.30
231
2.32
2.33
234
2.35
2.36
2.37
2.38
2.39
2.40
241
2.42
243
2.44
2.45
2.46
2.47
2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74

The Getgrent Function
The Getgroup Function .
The Getmode Function .
The Getpos Function
The Getprior Function
The Getproc Function
The Getpwent Function
The Gettime Function
The Getuser Function
The Indirect Function
The Kill Function

The Lock Function

The Makdev Function
The Makdir Function
The Memory Function
The Mount Function
The Msgctl Function
The Msgget Function
The Msgrev Function
The Msgsnd Function
The Pause Function .
The Phys Function

The Pipe Function

The Popen Function .
The Ptrace Function .
The Rand48 Function
The Rdbyte Function
The Rdline Function

The Rdseq Function .
The Semctl Function
The Semget Function
The Semop Function
The Setdate Function
The Setdir Function .
The Setgroup Function .
The Setjmp and Longjmp Functnons .
The Setlev Function . o .
The Setmode Function
The Setpos Function
The Setprior Function
The Settime Function
The Setuser Function
The Shell Function

The Shmat Function

The Shmctl Function
The Shmdt Function

The Shmget Function
The Signal Function

The Sieep Function

- -

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
56
58
60
62
63

65
66
68
71
72
73
74
76
78
81
82
83
84
85
86
87
88
89
90

91
293
94
%6
97
99

100

2.75 The String Function .
2.76 The Striol Function
2.77 The Tgread Function
2.78 The Trunc Function .
2.79 The Uchstat Function
2.80 The Unlock Function
2.81 The Unmount Function .
2.82 The Update Function
2.83 The Ustat Function
2.84 The Version Function
2.85 The Wait Function
2.86 The Wrbyte Function
2.87 The Wrline Function
2.88 The Wrseq Function
2.89 The Z80t068 Function

Chapter 3 - Assembler System Call Summary .

Chapter 4 - Disk Allocation Under Cromix-Plus
4.1 System Area

42 Disk Type Idenuﬁcatlon

4.3 Superblock

4.4 Alternate Track Table

4.5 Inode Area

4.6 Data Area .

Appendix A - Z80 System Calls
E.1 Summary of Z80 System Calls

Appendix B - ASCII Character Codes .

- il -

101
103
104
107
108
109
110
111
112
113
114
116
117
118
119

FAURSS ISR IR SIS

et ek

Chapter 1 Introduction to Cromix-Plus System Calils

Chapter 1 - Introduction to Cromix-Plus System Calls

The object library /usr/lib/syslib.obj contains a number of functions that can be called from a C
program. Most of the functions are system call interfaces.

The system call consists of the TRAP #0 instruction followed by a word specifying the system call
pumber. To relieve the user from writing assembler code, all system calls are available as functions in
/usr/lib/syslib.obj library.

To use system call functions, the programmer must "include" any include files that define various
structures and constants, into his code. The detailed description of every system call function lists the
include files that might be useful for every system call. Programmers are strongly encouraged 1o use
the include files provided in the /usr/include directory.

An Example:

A user wants to write a C program which will twrn off the echoing of standard input for the duration
of typing in a password. His code might be organized as follows:

/*
Example that shows how to tumn off echoing

*/

#include <jsysequ.h>
#include <modeequ.h>
#include <syslib.h>

main()

{
int oldmodel;

/* Other parts of the program */

if ((oldmodel = setmode(STDIN,MD_MODEI1,0,ECHO)) >= 0) {
/* The echoing is now turned off */
/* Here is the code to read password */
/* Restore echoing to previous state */
setmode(STDIN,MD_MODEI ,oldmodel ECHO);

}

else error(STDERR), exit(ERR);

Cromemco Cromix-Plus Programmer’s Reference Manual 1—1

Introduction to Cromix-Plus System Calls Chapter 1

/* Other parts of the program */
}

Whenever a system call returns an error, the error number is stored in the global integer variable
errno. The function error, which has a channel number as its only argument, will print out the error
message. This mechanism can only be used if no system call function is invoked between the call of
the system call function which returned an error, and the call of the error function.

The following list summarizes the Cromix-Plus system call functions.

1.1 Summary of System Call Functions

alarm send alarm signal to calling process after a given number of seconds
boot boot new operating system

caccess test channel access

cchstat change the status of an open file
ccromix general system call

chdup duplicate a channel

chkdev verify presence of a device driver
clink establish an addition link to an open file
close close an open file

create create and open a file

cstat return the status of an open file
cxexit terminate execution

cxopen open a file

delete delete a directory entry

error report a system call error

exchg exchange filenames of two open files
exec execute a program

faccess test file access

fchstat change the status of a file

fexec fork and execute a program

flink establish a link to file

fshell fork a Shell process

fstat return status of a file

getdate return the date

1—2 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 1

getdir
getgroup
getmode
getpos
getprior
getproc
gettime
getuser
indirect
kill
lock
makdev
makdir
memory
mount
msgctl
msgget
msgrey
msgsnd
pause
phys
pipe
ptrace
rdbyte
rdline
rdseq
semctl
semget
semop
setdate
setdir

setgroup

Introduction to Cromix-Plus System Calls

return the current directory pathname
return the group number

return the characteristics of a device
return the file position

return the priority of calling process
return the PID of the calling process
return the time

return the user id of the calling process
general system call

send a signal to a process

lock out processes trying to lock the same sequence
create a device file

create a new directory

allocate and deallocate memory

enable access to another file system
control operation for a message queue
gel message queue identifier

receive a message from message queue
send a message to a message queue
suspend execution until a signal is sent
allow access to address space outside user memory
create a pipe

trace another process

read a byte

read a line

read specified number of bytes

control operation for a semaphore set
get semaphore identifier

semaphore operation

change the system date

change the current directory

change the group id

Cromemco Cromix-Plus Programmer s Reference Manual

Introduction to Cromix-Plus System Calls Chapter 1

setmode change the characteristics of a device
setpos change the file position

setprior change the priority of the calling process
settime change the time

setuser change the user id

shell execute a Shell process

shmat attach the shared memory segment

shmctl control operations for shared memory segment
shmdt dettach the shared memory segment
shmget get shared memory segment identifier
signal set up a process to receive a signal

sleep sleep a number of seconds

trunc truncate the file to the current position
uchstat change status of a process table

unlock unlock the lock sequence

unmount disable access to another file system
update flush system buffers

ustat return status of a process table

version return the operating system version number
wait wait for the termination of a child process
wrbyte write a byte

wrline write a line

wrseq write a specified number of bytes

1.2 Signals

A signal carries messages between processes. There are eight types of signals that can effect three
different responses from a process. The programmer can choose any one of three responses (o each of
seven of the eight types of signals. The sigkill signal in all cases, causes a process to be aborted.

1.3 Responses to a3 Signal

When a process receives a signal, the signal can be handled in one of three ways.

1. Ignore the signal.
The process continues as though no signal had been received.

1—4 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 1 Introduction to Cromix-Plus System Calls

2. Abort the process.
The operating system terminates the process.
This is equivalent to the call of the exexit function.

3. Transfer control.
A user program may establish a location to which control may be transferred
for each type of signal received.
After a signal has been received, the signal system call must be executed
again in order to be able to receive the next signal.

1.4 Types of Signals

The eight types of signals are enumerated below.

1. sigabort
This is the abort signal generated by a CONTROL-C typed at the terminal.
The mode of the terminal must be set to allow CONTROL-C to function
(abortenable).

2. siguser
This is the user signal generated by a character typed at the terminal.
The character that generates this signal is determined and enabled by mode
(sigchar and sigenable).

3. sigkill
This is the kill signal.
It cannot be ignored or redirected by the user program.
The kill signal causes the operating system to abort the process immediately.
The kill signal can only be sent to a process by the initiator of the
process or a privileged user.

4. sigterm
This is the terminate signal.
It is the default type of signal for the Kill command of the Shell.

5. sigalarm
This is the alarm signal.
It is sent by the operating system following an alarm system call.

6. sigpipe
This is the pipe signal.
It is sent by the operating system when a pipe is not being used properly.
7. sighangup
This is a signal sent by the mtty device when the phone hangs up, if the
HUPENABLE mode is set.

8. reserved for future use.

Cromemco Cromix-Plus Programmer s Reference Manual 1—5

Introduction to Cromix-Plus System Calls Chapter 1

1.5 Sources of Signals

Signals may be sent to a process by a user-typed character, the Kill command, the kill system call, the
alarm system call, or by a driver.

1.6 Reception of Signals

A process may be set up to receive and process a signal by the signal system call. If the signal is not
ignored and the process has an unsatisfied request for input or output from a character device such as a
terminal or printer, the input or output request is canceled.

A child process may be set up by its parent process to ignore or be aborted by a signal when the
parent initiates the child through the fexec or fshell system call.

Reaction to signals are determined by the values of sigmask and sigvalue arguments in the system
calls:

bit 5-1 in bit -1 in Child’s reaction to
sigmask sigvalues signal 8§
0 X same as parent process
1 0 abort
1 1 ignore

If the child is set up to inherit the parent’s reactions and the parent process is set up to trap the signal,
the child process will still be aborted by the signal. This is because the child process cannot inberit the
parent’s trap routine.

The signal system call function should be used to install trap routines for signal. This particular system
call function is not a straightforward assembler interface. The signal function will install its own trap
function that will call the user’s trap function. The trap function is local to the signal system call
function and will ensure that ali registers will be saved and restored.

Processes initiated by the Shell are set up to inberit reactions to all signals from the parent process,
except for the sigabort, siguser, and sigterm signals (these are handled separately).

A process which is run as a detached job by the Shell (through the use of the symbol "&" on a
command line) is set up by the Shell to ignore sigabort and siguser and to be aborted by sigterm. A
process which runs in the foreground (not detached) is set up by the Shell to react the same way as the
parent process (except for imteractive Shell processes, which are always set up to ignore those three
signals). These features allow the user to abort the current process by entering CONTROL-C, while
not affecting detached processes and allow implementation of the Shell command kill 0. Additional
precaution is taken so that the parent process will not be aborted while the child process is still active.

The kill system call sends signals to processes. A user may only send a signal to a process which that
user initiated. Only a privileged user may send signals to processes initiated by other users. When a
signal is sent to process O, that signal is sent to all processes initiated from the terminal where the user
who invoked the call logged on. If a privileged user sends siguser to process 1, system shutdown is

1—6 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 1 Introduction to Cromix-Plus System Calls

initiated. When sigabort is sent to process 1, the Cromix system consults the /etc/ttys file to log on
any terminals that have been enabled and log off any disabled terminals.

1.7 The Use of Signals in Application Programs
The signal system call is commonly used to catch or ignore CONTROL-C (sigabort) or other signals.

Immediately after a signal is received, the process is automatically set up to ignore further signals of
the same type until the signal system call is repeated.

If address O is given as the address of the trap routine, the user program will abort on reception of the
signal. If address 1 is given as the address of the trap routine, the signal will be ignored.

Signals bave many uses, but they also have limitations. Signals are designed to terminate processes or
wake them up. Signals are not interrupts. Signals can be ignored, but not disabled. Mutual exclusion
capnot be easily achieved with signals. If an application requires that a process recejve and process
several signals per second from one or more processes, difficulties with stack overflow are likely to
arise.

The following program is an illustration that catches the sigabort signal sent by the CONTROL-C
entered from the terminal.

/*
This program demonstrates the use of the
signal system call. Note that this program
will run forever. It cannot be killed by CONTROL-C.
It must be killed from another terminal.
*/

#include <jsysequ.h>
#include <syslib.h>

main()
{
setuptrap(), /*Set up trap routine */
for () ; /* Infinite loop */
)
setuptrap()

{

extern trap_routine();

if (signal(sigabort.trap_routine) < 0)
error(STDERR), exit(ERR);

Cromemco Cromix-Plus Programmer’s Reference Manual 1—7

Introduction to Cromix-Plus System Calls Chapter 1

trap_routine()

{
printf("I do not want to die\n"),
setuptrap();

1.8 Signals and Forking a New Process

Whenever the user forks a mew process which does not fiddle with signals, the forking can be quite
simple: the child process should simply inberit signal treatment from the parent process. In more
complex cases, there is one pitfall that has to be avoided. It should never happen that the parent
process gets killed while the child process is still alive. If this happens, the grandparent process,
which is most likely an interactive Shell, will wake up and fight his grandchild process over the
characters being input from the terminal. Under such circumstances, the user can never fell which
process is going to pick up characters typed on the terminal.

If the child process can set up its own response to signals (it is certainly able to do so if it is an
interactive Shell) the parent process must be much more careful. A simple solution is for the parent
process, before forking the child process, to set itself up to ignore all signals, storing the old reactions.
After the child terminates, the parent process can restore the reactions to their original state. This
solution is not always satisfactory: if the user presses CONTROL-C while the child process is running,
the parent process will ignore it, though the user might have intended to kill both processes.

A reasonably complete solution can be described as follows:

1. Set up to ignore all signals, storing the old reactions.

2. Inspect the old reactions. If an old reaction was to ignore the signal, keep it that way. If an old
reaction was to abort or to trap the signal, a new trap is to be installed. The new trap function
(one for each signal) should only note the fact that it was called.

Fork a new process with whatever signal reactions are desired, and wait until it terminates.
4. Restore the old signal reactions.

5. K a signal was received in the interim, send the same signal to yourself, thereby causing the
same effect (except for the fact that it is postponed).

This description is still not complete, as it does not say what should happen if more than one signal is
recejived in the meantime. This can be handied by the new trap functions and by the processing after
the child process terminates. New trap functions can simply set a bit in a word initialized to zero and
not establish the trap again. If so, at the end we have a list of signals received while the child was
running. The program can now decide which signal to send to itself and in what order (if there is
more than one).

1.9 The Alarm System Call

After a specified number of seconds, the alarm system call sends an alarm signal (sigalarm) to the
process that made the system call. The signal system call is first used to set up the process for

1—8 Cromemco Cromix-Plus Programmer ‘s Reference Manual

Chapter 1 Introduction to Cromix-Plus System Calls

receiving the sigalarm signal. A typical use of alarm provides a time out feature for a program. If a
process must be prevented from hanging on an input request indefinitely, the process first makes the
alarm system call. The alarm system call specifies the pumber of seconds to wait after making the
request for input,

1.1¢ The Pause System Call

The pause system call is frequently used in conjunction with the alarm system call. The pause call
suspends execution of the calling process and waits for a signal. The pause call does not require the
signal system call to set up the process to receive the signal. It is ideal for putting a process to sleep
until another process signals it to continue. The pause and alarm calls can be used together to put a
process 1o sleep for a specified number of seconds.

For example:

if (alarm(10)) error(STDERR);
else pause();

1.11 The Sleep System Call

The equivalent of the routine above can be achieved with one system call, sleep. The sleep call stops
execution of a process for a specified number of seconds. The result shown above can be
accomplished as follows using sleep:

sleep(10);

1.12 Locks

The lock system call assists in implementing file locks, and allows the operating system to absorb part
of the overhead involved in the procedure. No locks are imposed by the operating system; this is done
by the application program. The lock and unlock calls merely make and delete entries in a table
residing in system memory.

The lock system call enters a string in the lock table. This string is the unique identifier of a record in
a file. The string is hereinafter referred to as the lock sequence. Should another process make a lock
system call using a lock sequence currently in the lock table, the Cromix Operating System does one
of two things. It either puts the process to sleep until the entry is removed, or it returns with an error
code set. An entry is removed from the table when the process that made the original lock system call
reverses it with an unlock system call, using the same lock sequence. Any process put to sleep while
attempting to lock that sequence is awakened and allowed to make an entry in the table,

The problem of record level lock is resolved by preceding any read or write to a file or record with a
lock system call. This achieves mutual exclusion for records and avoids the undesirable effects of
having multiple processes reading and writing the same file or record.

The other considerations associated with the lock system call are the type of lock to be made and the
character string to be used as the lock sequence.

Cromemco Cromix-Plus Programmer s Reference Manual 1—9

Introduction to Cromix-Plus System Calls Chapter 1

1.13 Shared and Unshared Locks

A shared lock allows other processes access to the lock. Shared locks are typically used when a file is
being read. A shared lock does not prevent other processes from entering the file, so that a process
that is reading a record does not prevent another process from reading the file. A process attempting
to establish an unshared lock when a shared lock has been granted either is put to sleep or receives an
error.

Unshared locks are typically used during a write to a file, since they prevent any other process from
getting access to the lock sequence. If a process has an unshared lock, any other process attempting to
lock the same sequence either is put to sleep or receives an error.

1.14 Conditional and Unconditional Locks

Locks can be made conditional or unconditional. A conditional lock returns with an error code set if
the sequence specified cannot be locked. An unconditional lock puts the calling process to sleep if the
sequence is currently locked. The process put to sleep awakens when the process that originally issued
the lock call issues an unlock call.

The programmer must decide whether to use a conditional or unconditional lock. For many
applications, putting a process to sleep for a brief period because another process has locked a file or
record does no harm. In other cases, such a maneuver may suspend execution of a program
indefinitely while waiting for some process to unlock a file or record. In this case, a conditional lock
may be used to print an error code informing the user that the record or file is in use. An ideal
strategy might employ both techniques, or use the alarm system call to prevent indefinite
postponement of file access.

1.15 Locking Schemes

If more than one program is relying on the lock system call, a mutually agreed upon scheme must be
devised so that all programs use the same identifier to reference records in a file. This identifier is the
locking sequence and may contain from one to 16 bytes. An example of a locking sequence is the first
8 bytes of the filename followed by the number of the record to be locked. This scheme works as
long as no two files simultaneously in use have names beginning with the same eight characters, and
as long as two different processes do pot access the same file through two links having different
names.

A more elaborate locking scheme uses the file device and inode numbers. The combination of device
and inode numbers is a unique file identifier. The number of the device on which a file resides can be
obtained by using the {fstat] system call. The locking sequence could be composed of a device
number followed by an inode number and a record number.

If the number of available locks is exceeded, the operating system returns from a lock system call with
an error message. This message merely indicates there is no room left in the lock table.

A _deadlock error is returned if the operating system detects a deadlock condition.

All Jocks installed by a process are automatically unlocked when the process is terminated.

1—10 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 1 Introduction to Cromix-Plus System Calls

1.16 Sample Impiementations of Locks

The uses of record locks are best shown through illustration. Consider an inventory management
system on a multi-user Cromix system at a music store. If salesperson A sells a guitar and wishes to
decrement the inventory record, the program would enter a section of code designed to perform the
following functions:

1. Request record number to read.
Lock the record with a shared, unconditional lock.

Read the record.

Bow o

Unlock the record.

The program might then inform the salesperson that three guitars are in stock. The salesperson rings
up the sale, decrements the count of guitars in stock to two, and writes the record to the database using
an unshared conditional lock during the write. Difficulties arise if another salesperson, B, also sells a
guitar at the same time. B might read the record at the same time as A, decrement the inventory, and
write the file out to the database. The record shows that two guitars are in stock, when in fact, there is
now only one.

There are several possible solutions to the problem. The simplest is to make an unshared lock at the
time of the original read and perform the unlock only after the record had been written out. The
problem with this scheme is the potential for barring another user from access to the record for a long
time.

A more adequate solution to the problem is to let the system resolve possible conflicts. All user reads
are preceded by a shared lock, which permits simultaneous access of the record by other users. When
the modified record is to be written out, the system checks to see if the record has been modified in the
interim period. If it has not been changed, it is written out. If it has been changed, the value of the
record must be recalculated.

1.17 Cremix-Plus Error Numbers

If the Cromix-Plus operating system cannot complete a system call normally, it will return an error.
The interface functions in syslib are designed so that they always return a particular value, most often
the integer (-1). This is used to indicate an error. If an error is returned, the error number is stored in
the global integer variable errno. Enough information is stored in other global variables to enable the
error function to write out a decent error message.

1.18 Error Numbers

29 _arglist The argument list that was provided is too big.
28 _argtable The argument table is exhausted

69 _badaddress Illegal address was passed to the system call,

15 _badcall Illegal system call

1 _badchan The channel number, that was passed to a system

call, was not obtained from the open function.

Cromemco Cromix-Plus Programmer’s Reference Manual T —11

Introduction to Cromix-Plus System Calls Chapter 1

54 _badformat A file (typically a .bin file) has illegal structure.

4?2 _badfree A block is out of range in the free list.

43 _badinum The inode number is out of range.

52 _badio An error in doing input or output.

8 _badname The filename, that was passed to the system call,
does not conform to the syntax.

47 _badpipe An attempt to write to a broken pipe.

34 _badvalue A value passed to the system call was out of range.

56 _cdossim The CDOS simulator (sim.bin) is required.

40 _chnaccess An attempt was made (o access a channel that
was not open for such type of access.

57 _corrupt System image is corrupted.

49 _deadlock A possible deadlock condition bas been detected.

36 _devopen A device cannot be open.

31 _difdev A system call tried to make a link from one
device to another.

9 _diraccess An attempt was made to access a directory and
that access was not granted.

37 _diruse An attempt was made to delete a directory that
was not empty.

4 _endfile End-of-file has been reached.

i1 _exists An attempt has been made to create a file that
already exists.

10 _filaccess An attempt was made to access a file and that
access was not granted.

16 _filsize An attempt was made to create a file too big.

6 _fiitable Too many files open for system, filent too small.

38 _filuse A system call requested exclusive access 10 a
file that is currently in use.

22 _fsbusy A file system cannot be unmounted.

14 _inotable The inode table is exhausted.

5 _loerror A physical data transmission error has occurred.

64 _ipc2big An IPC facility cannot handle so big an entity.

58 _ipcaccess The user does have such an access to the IPC

, facility.

63 _ipcagain The process would be put to sleep but has asked
to return an error instead.

60 _ipcexists The IPC facility to be created already exists.

61 _ipcnoent The IPC facility was not found.

65 _ipcnomsg There is no such message in the IPC message queue.

66 _ipcrange A value in the IPC system call is out of range.

62 _ipcremove The IPC facility has been removed.

59 _ipcspace There is not enough root to create an IPC facility.

19 _isdir The file referenced is a directory file and the
requested operation cannot be done on a directory.

50 _Icktable There is no room to lock another sequence.

43 _locked The sequence is already locked and the user asked
not to be put to sleep.

17 _mnttable There is no space to mount another device.

1—12 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 1 Introduction to Cromix-Plus System Calls

25 _nochild The child process referenced does not exist.

32 _nodevice There is no such device,

13 _noinode There are no free inodes.

39 _homaich There is no match on the specified ambiguous
pathname,

26 _homemory There is not enough free memory to execute
the system call.

45 _hoproc The process referenced does not exist.

12 _nospace There are no free disk blocks.

68 _nostext There no room to run another shared text program.

21 _notblk The device referenced is not a block device,

35 _notconn The requested I/O device is not connected to
the system.

41 _notcromix The block device referenced is incompatible
with Cromix-Plus operating system.

18 _notdir The file referenced is not a directory.

7 _notexist The file referenced does not exist.

24 _nhotmount The device to be unmounted is not mounted.

3 _notopen The specified channel is not open.

23 _notordin The specified file is not an ordinary file.

53 _noz80 Z80 programs cannot be run, or the /etc/z80.bin
simulator was not found.

30 _numlinks A file can have at most 255 links.

27 _ovflo Divide system call produced an overflow.

20 _priv A nonprivileged user made an attempt to execute
a privileged operation.

67 _ptable There is not enough page tables. Increase the
ptbent sysdef parameter.

44 _readonly The device is mounted for read-only and cannot
be written to.

55 _runaway A runaway Z80 program was aborted.

46 _ssignal System call was aborted by a signal.

51 _tapeio There was some kind of tape 1/O error.

2 _toomany The user has too many open files.

33 _usrtable There are no more process tables available

to run another process.

Cromemco Cromix-Plus Programmer’s Reference Manual 1—13

Chapter 2 Cromix-Plus System Call Descriptions

Chapter2 - Cromix-Plus System Call Descriptions

2.1 The Alarm Function

function: alarm
purpose: Send sigalarm to the calling process
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int alarm(snum)
int snum;
Description

The alarm function sends the alarm signal, sigalarm, to the current process after snum seconds have
elapsed. If the call alarm(0) is issued after an alarm has been set up, the previous alarm is canceled.

Return value:
0 if no error occurred;
ERR if an error occwrred.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—1

boot Chapter 2

2.2 The Boot Function

function: boot
purpose: Boot new operating system
user access: <jsyseq.h>
<syslib.h>
synopsis: nt boot(exadd,size)

unsigned short *exadd; unsigned long size;

Description
This call boots a new operating system. The user program must read the new operating system into his
memory. The boot function will shutdown the running system, move size bytes from address exadd to

address 000000, load:

D1.L size of code
D2.L current root device

and simulate the reset condition.
Return value:

does not return if no error occurred;
ERR if an error occurred,

Common errors:
_priv The call was issued by a nonprivileged user.

_badaddress The address passed to the system call
does not belong to user’s address space.

2—12 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 caccess

2.3 The Caccess Function

function: caccess
purpose: Test access of a channel.
user access: all users
include files: <jsysequ.h>
<syslib.b>
synopsis: int caccess(channel,mask)

int channel, mask;

Description

Caccess tests the specified open channel for access as specified by mask:

mask what to check
ac_read read access
ac_exec execution access
ac_writ write access
ac_apnd append access

More than one value can be "ORed" into mask to check for more than one permission at a time. If the
caller has all indicated access permissions, the function returns zero. If the calier lacks some of the
indicated access permissions, the value ERR is returned and errno indicates the error.

As implemented in the Cromix Operating System, the function does not test the access granted during
the open procedure. It tests the access the user could have obtained. In other words, the function works

like faccess except that the file is identified by the channel number instead of pathname.

Common errors:

_fileaccess The caller does not have the access he asked
_ for.
_notopen The specified channel is not open.

Cromemco Cromix-Plus Programmer s Reference Manual 2—3

cchstat

Chapter 2

2.4 The Cchstat Function

function: cchstat
purpose: Change status information of an open file.
user access: see below
include files: <jsysequ.h>
<syslib.h>
synopsis: int cchstat(channel, statustype,statusvalue)

int channel, statustype, statusvalue;
or

int cchstat(channel,statustype,statusvalue,statusmask)
int channel, statustype, statusvalue, statusmask;

or

int cchstat(channel,statustype statustime)
int channel, statustype; struct st_time *statustime;

Description

Cchstat changes various components in the inode which is identified by the channel number. The first
two argwments are always the same. The remaining arguments depend on statustype:

cchstat(channel,st_owner,statusvalue)

Only a privileged user can change the owner ID of the file
to statusvalue.

cchstat(channel,st_group,statusvalue)

Only a privileged user can change the group ID of the file
to statusvalue.

cchstat(channel,st_aowner statusvalue,statusmask)

Only a privileged user or owner of the file can change the
access permissions of the owner. Statusmask specifies which
bits are to be changed, statusvalue specifies pew bit values.
Both statusvalue and statusmask should be formed as
described below.,

cchstat(channel,st_agroup,statusvalue, statusmask)

Only a privileged user or owner of the file can change the

Cromemco Cromix-Plus Programmer* s Reference Manual

Chapter 2

access permissions of the group. Statusmask specifies which
bits are to be changed. statusvalue specifies new bit values.
Both statusvalue and statusmask should be formed as
described below.
cchstat(channel,st_aother, statusvalue statusmask)
Only a privileged user or owner of the file can change the
access permissions of the public. Statusmask specifies which
bits are to be changed, statusvalue specifies new bit values.
Both statusvalue and statusmask should be formed as
described below.
cchstat(channel,st_stext,statusvalue)
Only a privileged user or owner of the file can change the
shared text flag. The low order bit of statusvalue is used
to define the shared text flag.
cchstat(channel,st_tcreate statustime)
Only a privileged user can change the time the file was created.
cchstat(channel,st_tmodify,statustime)
Only a privileged user can change the time the file was modified.
cchstat(channel,st_taccess,statustime)
Only a privileged user can change the time the file was accessed.
cchstat(channel st_tdumped.statustime)

Only a privileged user can change the time the file was dumped.

To change the access permissions statusmask and statusvalue should be formed from:

ac_read read permission

ac_exec execute permission

ac_writ write permission

ac_apnd append permission
For example,

statusmask ac_readlac_writ

statusvalue ac_read

will change read and write access permission to allow read and disallow write.

Cromemco Cromix-Plus Programmer’s Reference Manual

cchstat

cchstat Chapter 2

The function retwns

0 if successful
ERR if an error occurred

Common errors:

_fileaccess The caller does not have the access he asked for.
_priv The user is not a privileged user or he does
not own the file.
_hotopen The specified channe] is not open.
_badaddress The address passed to the system call does not

belong to user’s address space.

2—6 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 ccromix

2.5 The Ccromix Function

function: CCromix
purpose: General system call.
user access: depends on call
include files: <jsysequ.h>
<syslib.h>
Synopsis: int ccromix(syscall regs)

int syscall; struct sys_reg *regs;

Description

This call implements the general system call. The structure sys_reg contains all the registers which
take part in any system call. The user should load the sys_reg structure with appropriate values and
invoke the ceromix function to do a system call. The _error and _wrbyte system calls cannot be used
with the ccromix function.

The function returns:

0 if successful
ERR if error

Cromemco Cromix-Plus Programmer s Reference Manual 2—7

chdup Chapter 2

2.6 The Chdup Function

function: chdup
purpose: Create a duplicate channel number.
user access: all users
include files: <jsysequ.h>
<syslib.bh>
sSynopsis: int chdup(channel)
int channel;
Description

The chdup call duplicates a channel. The function will return the lowest available channel number
which can be used instead of the original channel number.

The function returns:

new channel number if successful
ERR if error

Common errors:;

_notopen The specified channel is not open.
_toomany There are no free channels left.

2—8 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 chkdev

2.7 The Chkdev Function

function: chkdev
purpose: Verify presence of a driver.
user access: all users
include files: <jsysequ.h>
<syslib.h>
SyRopsis: int chkdev(dtype,majorno.minorno)

int dtype, majorno, minomo;

Description
The chkdev call verifies the presence of a device driver. The device type should be:

is_block for block device
is_char for character device

The function returns:

0 if driver present
ERR if not

Common errors:

_nodevice The specified device driver does not exist.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—9

clink

2.8 The Clink Function

function:
purpose:

user access:

include files:

synopsis:

Description

Chapter 2

clink
Establish an additional link to an open file.

all users

<jsysequ.h>
<syslib.h>

int clink(channel,pathname)
int channel; char *pathname;

The clink call establishes a link from the file open on the specified channel to the new file pathname
The pew file pathname must not exist before the clink call is made.

The function returns:

0
ERR

Common errors:
_badname
_isdir
_numlinks

_diraccess

_notopen
_badaddress

2—10

if successful;
if error

The suggested pathname is an illegal Cromix pathname.
A directory cannot be linked.

The file has too many links.

The user does not have the appropriate access

to create the new pathname.

The specified channel is not open.

The address passed to the system call does not

belong to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 close

2.9 The Close Function

function: close

purpose: Close an open file.

user access: all users

include files: <jsysequ.h>
<syslib.h>

Synopsis: int close(channel)
int channel;

Description

The close call flushes all buffers associated with the specified channel number and disassociates the
channel number from the file to which it was assigned. This function is part of clib.obj.

The function returns:

0 if successful
ERR if error

Common errors:

_notopen The channel to be closed was not open to start with.

Cromemco Cromix-Plus Programmer’s Reference Manual 2— 11

create Chapter 2

2.10 The Create Function

function: create
purpose: Create and open a file.
user access: all users
include files: <jsysequ.h>
<syslib.b>
synopsis: int create(filename,accessmode,accessmask)

char *filename; int accessmode, accessmask;

Description
The create call creates a new file and opens it for the specified access.

Accessmode defines how the created file will be opened. The user may specify one of the
nonexclusive modes

op_read read only
op_write write only
op_rdwr read/write
op_append append only

or one of the exclusive modes

op_xread read only
Op_Xxwrite write only
op_xrdwr read/write
op_xappend append only

If a nonexclusive mode is selected the accessmask is not used. If an exclusive mode is selected, the
bits op_read, op_write, op_rdwr, op_append in the accessmask are set to prevent such an access
from other users.

Example:

To create a file "some” with exclusive read/write permission, use the call

create ("some", op_xrdwr, 1<<op_write | 1<<op_rdwr | 1<<op_append)

The current process will create the file and open it for read/write. Until the file is closed, other
processes may open this file only for read.

Two additional values may be "ORed" into accessmode to tell what should happen if the file to be
created already exists:

op_truncf delete existing data

2—12 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 create

op_condf return error if file exists
If the file was new, it will have the default access privileges (defined at crogen time). The default is
rewa.re.re (which means that the owner has all permissions, group and public permissions are for read

and execute). The function returns:

channel number of the open file if successful
ERR if error

Common errors;

_filtable Too many files were open in the system.
_badname Ilegal pathname

_diraccess The user lacks appropriate access to a directory
_badaddress The address passed to the system call does not

belong to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—13

cstat Chapter 2

2.11 The Cstat Function

function: cstat
purpose: Return status information of an open file.
uSer access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int cstat(channel,statustype,inodebuffer)

int channel, statustype; char inodebuffer[128];
or

int cstat(channel,statustype)
int channel, statustype;

or
int cstat(channel,statustype.statustime)
int channel, statustype; struct si_time *siatustime;
Description

The function estat extracts various components from the inode identified by the channel number. The
first two arguments are always the same. The remaining arguments depend on statustype:

cstat(channel,st_all,inodebuffer)
Copy all of the inode into 128 bytes inodebuffer. Return zero.
cstat(channel,st_owner)
Return the owner ID of the file.
cstat(channel,st_group)
Return the group ID of the file.
cstat(channel,st_aowner)
Return the access mask for the owner.
cstat(channel,st_agroup)
Return the access mask for the group.

cstat(channel,st_aother)

2— 14 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2

Return the access mask for the public.
cstat(channel,st_stext)

Return the shared text flag.
cstat(channel,st_ftype)

Return the file type (is_ordin, is_direct, is_char, is_block,
is_pipe).

cstat(channel st_size)

Return the file size in bytes.
cstat(channel,st_nlinks)

Return the number of file links.
cstat(channel,st_inum)

Return the inode number.
cstat(channel,st_tcreate statustime)

Store the time the file was created into the structure pointed
to by statustime. Return zero.

cstat(channel st_tmodify,statustime)

Store the time the file was modified into the structure pointed
to by statustime. Return zero.

cstat(channel,st_taccess,statustime)

Store the time the file was accessed into the structure pointed
to by statustime. Return zero.

cstat(channel st_tdumped,statustime)

Store the time the file was dumped into the structure pointed
to by statustime. Retwrn zero.

cstat(channel,st_devno)

Return the device number of the device specified by channel.
If the channel nwmber does not refer to a device file, zero
is retumed.

Cromemco Cromix-Plus Programmer s Reference Manuai

cstat

2—15

cstat Chapter 2

cstat(channel,st_pdevno)

Return the device number of the device specified by channel.
If the channel number does not refer to a device file zero

is returned. If the device number happens to be zero, the
device number of the controlling tty (character device) or

of the root device (block device) will be returned.

cstat(channel st_device)
Return the device number of the device where the file specified

by channel resides.

The access permission returned is build from the values

ac_read read permission
ac_exec execute permission
ac_writ write permission
ac_apnd append permission

The device numbers returned are built like this:
majomno << 8 | minorno
The function returns

as described above if successful
ERR if an error occurred

Common errors:
_notopen The channel referenced is not open.

_badaddress The address passed to the system call does not
belong to the user’s address space.

2—16 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 cxexit

2.12 The Cxexit Function

function: cxexit
purpose: Terminate the cwrent process.
user access: all users
include files: <jsysequ.h>
<syslib.h>
Synopsis: int cxexit(status)
int status
Description

Terminate the cwrrent process and return process termination status to the parent process. The wait
function issued by the parent process will return this value as its process termination status.

This function implements the _exit system call. The C callable function exit as described in the C
manual does more than just a simple cxexit.

The cxexit function does not return.

Cromemco Cromix-Plus Programmer s Reference Manual 2—17

cxopen Chapter 2

2.13 The Cxopen Function

function: cxopen
purpose: Open a file.
user access: all users
inchude files: <jsysequ.h>
<syslib.h>
synopsis: int cxopen(filename accessmode accessmask)

char *filename; int accessmode, accessmask;

Description
The exopen call opens the file for the specified access.

Accessmode defines how the file will be opened. The user may specify one of the nonexclusive modes

op_read read only
op_write write_only
op_rdwr read/write
op_append append only

or one of the exclusive modes

op_xread read only
op_xwrite write only
op_xrdwr read/write
op_xappend append only

If a nonexclusive mode is selected, the accessmask is not used at all. If an exclusive mode is selected,
the bits op_read, op_write, op_rdwr, op_append in the accessmask, are set to prevent such access
from other users.

Example:

To open the file "some" with exclusive read/write permission, use the call

cxopen("some”, op_xrdwr, 1<<op_write | 1<<op_rdwr | 1<<op_append)

The current process will open the file for read/write. Until the file is closed, other processes may open
this file only for read.

The cxopen function implements _open system call. The open function as described in the C manual
has different parameters.

The function returns:

2—18 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2

channel number of the open file
ERR

Common errors:

_filtable
_badname
_diraccess

_badaddress

if successful
if an error occurred

Too many open files.

The pathname is illegal.

The user lacks proper access to one of the
directories.

The address passed to the system call does not
belong to the user’s address space.

Cromemco Cromix-Plus Programmmer’s Reference Manual

cxopen

2—19

delete Chapter 2

2.14 The Delete Function

function: delete
purpose: Delete a directory entry.
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int delete(pathname)

char *pathname;

?
Description

The delete call attempts to remove the specified directory entry. If the removed directory entry is the
last link to the file, the space occupied by the file is released, and the file’s contents lost.

The delete call requires write permission to the directory from which the directory entry will be
removed.

If the file is open at the time the call is made and the specified directory entry is the last link to the
file, the directory entry is deleted immediately. The file itself is not deleted until the active process
closes the file. In order for a directory to be deleted, it must not

1. Contain any files;
2. Be the current directory for any user;
3. Be the root directory for a device.

The function returns:

0 if successful
ERR if error

Common errors:

_diraccess The user lacks proper access to one of the
referenced directories,

_notexist The file to be deleted does not exist.

__badaddress The address passed to the system call does not

belong to user’s address space.

2—20 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 error

2.15 The Error Function

function: error
purpose: Display Cromix-Plus error message.
user access: all users
include files: <jsysequ.h>
<syslib.h>
Synopsis: int error(channel)
int channel;
Description

Error displays the error message defined by the Cromix system for the value of errnmo, which was
loaded the last time a Cromix call returned an error. If the error function itself generates an error, the
error number will not be saved in errno.

The function error is part of the clib.obj library.

The function returns:

0 if successful
ERR if error

Cromemco Cromix-Plus Programmer s Reference Manual 2~ 21

exchg Chapter 2

2.16 The Exchg Function

function: exchg
purpose: Exchange contents of two open files.
user access: all users
include files: <jsysequ.h>
<syslib.h>
Synopsis: int exchg(ichannel,ochannel)

int ichannel, ochannel;

Description
Exchanges the contents of two open files.
The function returns:

0 if successful
ERR if error

Common errors:

_notopen One of the channels was not open.

222 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2

2.17 The Exec Function

exec

function: exec
purpose: Execute a program.
user access: all users
include files: <jsysequ.h>
<syslib.h>
Synopsis: int exec(pathname,argv)

char *pathname, *argv[];

Description

The exec system call replaces the current code with the code of a pew program. If an error is
encountered afier the original code has been scrapped, the original program quietly terminates.

This implementation of the exec system call differs in two aspects from the implementation of the exec
system call in the older versions of Cromix-Plus (older than 31.11);

- The new code actually overiays the old code so that at no
point the old and the new code reside in memory.

- Only the channels stdin, stdout, and stderr
are retained as opposed to all channels.

Array argv of pointers to the arguments must be terminated by a NULL pointer.

Common errors:

_notexist
_filaccess

_nomemory
_badaddress

The file to be executed does not exist.

The user coes not have execute access to the file
to be excuted.

There is not enough memory to load the program.
The address passed to the system call does not
belong to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—23

faccess Chapter 2

2.18 The Faccess Function

function: faccess
purpose: Test access to a file.
user access: all users
include files: <jsysequ.b>
<syslib.h>
Synopsis: int faccess(pathname,mask)

char *pathname; int mask;

Description

Faccess tests the specified file for the access as specified by mask:

mask what to check
ac_read read access
ac_exec execution access
ac_writ write access
ac_apnd append access

More than one value can be "ORed" into mask to check for more than one permission at a time. If the
caller has all indicated access permissions, the function returns zero. If the caller lacks some of the
indicated access permissions, the value ERR is returned and errno indicates the error.

Common errors:

_badname The pathname is not legal.

_filaccess The user does not have the access he asked for.
_notexist The file to be tested does not exist.
_badaddress The address passed to the system call does not

belong to the user’s address space.

2—24 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 fchstat

2.19 The Fchstat Function

function: fchstat
purpose: Change status information of a file.
user access: see below
include files: <jsysequ.h>
<syslib.h>
synopsis: int fchstat(pathname,statustype,statusvalue)

char *pathname; int statustype, statusvalue,
or

int fchstat(pathname,statustype,statusvalue,statusmask)
char *pathname; int statustype, statusvalue, statusmask;

or

int fchstat(pathnarpe,statustype,statustime)
char *pathname; int statustype;

struct st_time *statustime;

Description

The fchstat system call changes various components in the inode identified by pathname. The first
two arguments are always the same. The remaining arguments depend on statustype:

fchstat(pathname,st_owner statusvalue)

Only a privileged user can change the owner ID of the file to statusvalue.
fchstat(pathname,st_group,statusvalue)

Only a privileged user can change the group ID of the file to statusvalue.
fchstat(pathname,st_aowner,statusvalue,statusmask)

Only a privileged user or owner of the file can change the access permissions of the owner.
Statusmask specifies which bits are to be changed, statusvalue specifies new bit values. Both
statusvalue and statusmask should be formed as described below.

fchstat(pathname,st_agroup.statusvalue statusmask)
Only a privileged user or owner of the file can change the access permissions of the group.

Statusmask specifies which bits are to be changed. Statusvalue specifies new bit values. Both
statusvalue and statusmask should be formed as described below.

Cromemco Cromix-Plus Programmer s Reference Manual 225

fchstat Chapter 2

fchstat(pathname,st_aother statusvalue statusmask)
Only a privileged user or owner of the file can change the access permissions of the public.
Statusmask specifies which bits are to be changed. Statusvalue specifies pew bit values. Both
statusvalue and statusmask should be formed as described below.

fchstat(pathname,st_stext,statusvalue)

Only a privileged user or owner of the file can change the shared text flag. The low order bit of
statusvalue is used to define the shared text flag.

fchstat(pathname,st_protect,statusvalue)

Only a privileged user or owner of the file can change the delete-protect flag. The low order bit of
statusvalue is used to define the delete-protect flag.

fchstat(pathname,st_tcreate statustime)

Only a privileged user can change the time the file was created.
fchstat(pathname,st_tmodify,statustime)

Only a privileged user can change the time the file was modified.
fchstat(pathname,st_taccess statustime)

Only a privileged user can change the time the file was accessed.
fchstat(pathname,st_tdumped statustime)

Only a privileged user can change the time the file was dumped.

To change the access permissions, statusmask and statusvalue should be formed from:

ac_read read permission

ac_exec execute permission

ac_writ write permission

ac_apnd append permission
For example:

statusmask ac_readlac_writ

statusvalue ac_read

will change read and write access permission to allow read and disallow write.
The function returns:
0 if successful

2—26 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 fchstat

ERR if an error occurred

Common errors:

_filaccess The user does not have permission to change
the file attributes.

_priv The user must be a privileged user to execute
such a call.

_notexist The file does not exist.

_badname ' The file is referenced by an illegal pathname.

_badaddress The address passed to the system call does not

belong to the user’s address space.

Cromemco Cromix-Plus Programmer s Reference Manual 2—27

fexec Chapter 2

2.20 The Fexec Function

function: fexec
purpose: Fork and execute a program.
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int fexec(pathname,argv,sigmask,sigvalues)

char *pathname, *argv[]; int sigmask, sigvalues;

Description

The fexec call begins execution of a program and returns control to the calling program. The call is
similar to the exec call, except that a new process is created.

The values of sigmask and sigvalues define how the child process should respond to signals.

To each signal number there corresponds a bit in the sigmask and the sigvalues. The mask for signal
sigxxx is defined as

1 << (sigxxx-1)

If a bit in sigmask is zero, the corresponding bit in sigvalues is immaterial. The child process will
react to signals in the same way as the parent process:

parent child
abort abort
ignore ignore
trap abort

If a bit in sigmask is nonzero, the child process will react on a signal as defined by the corresponding
bit in sigvalues:

bit in sigvalues reaction by the child
0 abort
1 ignore

The child process may issue the signal system call to modify the reaction to the individual signals.
Array argv of pointers to the arguments must be terminated by the NULL pointer.

The function returns:

child process id if successful

2— 28 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 fexec

ERR if error

Common errors:

_notexist The file to be executed does not exist.

_filaccess The user does not have execute access to
the file.

_nomemory - There is not enough memory available to fork
this program,

_badname The program to be forked is referenced by an
illegal pathname.

_badaddress The address passed to the system call does not

belong to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual 2 — 29

flink Chapter 2

2.21 The Flink Function

function: flink
purpose: Establish a link to a file.
user access: all users
include files: <jsysequ.h>
<sgyslib.h>
synopsis: int flink(oldpath .newpath)

char *oldpath, *newpath,;

Description

The flink call establishes a link from an existing file to the new file pathname. The new file pathname
must not exist before the clink call is made.

The function returns:

0 operation successful;
ERR if error

Common errors:

_badname Ope of the pathnames is illegal.

_isdir As a rule, directories cannot be linked.

_numlinks The file has too many links.

_diraccess The user needs proper access to the directories
involved.

_exists The pathname to be created already exists.

_notexist The pathname to be linked does not exist.

_badaddress The address passed to the system call does not

belong to the user’s address space.

2—30 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 fshell

2.22 The Fshell Function

function: fshell
purpose: Fork a Shell process.
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int fsheli(argv, sigmask,sigvalues)

char *argv(]; int sigmask, sigvalues;

Description

The fshell call begins execution of a shell and retumns control to the calling program. The call is
similar to the shell call, except that a new process is created,

The values of sigmask and sigvalues define how the child process should respond to signals.

To each signal number there corresponds a bit in the sigmask and the sigvalues. The mask for signal
sigxxx is defined as

1 << (sigxxx-1)

If a bit in sigmask is zero, the corresponding bit in sigvalues is immaterial, and the child process will
react on signals in the same way as the parent process:

parent child
abort abort
ignore ignore
trap abort

If a bit in sigmask is nonzero, the child process will react to a signal as defined by the corresponding
bit in sigvalues:

bit in sigvalues reaction by the child
0 abort
1 ignore

Note that the child process may issue the signal system call to modify the reaction to the individual
signals.

In every case argv[0] should point to the string "shell” (or "sh").

If you want to execute a program, then

Cromemco Cromix-Plus Progratamer s Reference Manual 2—31

fshell

al'gv[l] —> ""p”

argv([2] --> full program name
argv[3] --> arg[1] of the program
argv{4] --> arg[2] of the program

Last pointer should be zero

Chapter 2

If you want to execute a comunand line, then

argv[1] -->
argv[2] -->
argv(3]

~C
command line
0

If you want to execute a command file, then

or

argv[l] -->
argv[2]
argv[1] >
argv[2] -->
argv(3]

command file
0

an'l
command file
0

In the first form, the commands from the
not be echoed.

The function returns:

child process id
ERR

Common errors:

2—32

_homemory
_badaddress

name

name

command file will be echoed. In the second form, they will

if successful
if error

There is not enough memory to fork another Shell.
The address passed to the system call does not
belong to the user’s address space.

Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 fstat

2.23 The Fstat Function

function: fstat
purpose: Return status information of a file.
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int fstat(pathname,statustype inodebuffer)

char *pathname; int statustype; char inodebuffer[128];
or

int fstat(pathname,statustype)
char *pathname; int statstype;

or

int fstat(pathname,statustype statustime)
char *pathname; int statustype;

struct st_time *statustime;

Description

The function fstat extracts various components from the inode identified by the pathname. The first
two arguments are always the same. The remaining arguments depend on statustype:

fstat(pathname,st_all,inodebuffer)

Copy all of the inode into 128 byte inodebuffer. Return zero.
fstat(pathname,st_owner)

Return the owner ID of the file.
fstat(pathname,st_group)

Return the group ID of the file.
fstat(pathname,st_aowner)

Return the access mask for the owner.
fstat(pathname,st_agroup)

Return the access mask for the group.

Cromemco Cromix-Plus Programmer s Reference Manual 2—33

fstat

2—34

Chapter 2

fstat(pathname,st_aother)

Return the access mask for the public.
fstat(pathname,st_stext)

Return the shared text flag.
fstat(pathname,st_protect)

Return the delete-protect flag.
fstat(pathname,st_ftype)

Return the file type (is_ordin, is_direct, is_char, is_block,
is_pipe).

fstat(pathname,st_size)

Return the file size in bytes.
fstat(pathname,st_nlinks)

Return the number of file links.
fstat(pathname,st_inum)

Return the inode number.
fstat(pathname,st_tcreate,statustime)

Store the time the file was created into the structure pointed
to by statustime. Retwn zero.

fstat(pathname,st_tmodify,statustime)

Store the time the file was modified into the structure pointed
to by statustime. Return zero.

fstat(pathname.st_taccess,statustime)

Store the time the file was accessed into the structure pointed
to by statustime. Return zero.

fstat(pathname,st_tdumped,statustime)

Store the time the file was dumped into the structure pointed
to by statustime. Return zero.

Cromemce Cromix-Plus Programmer s Reference Manual

Chapter 2

fstat(pathname,st_devno)

Return the device number of the device specified by pathname.
If the pathname number does not refer to a device file zero
is returned.

fstat(pathname,st_pdevno)
Retumn the device number of the device specified by pathname.
If the pathname number does not refer to a device file zero
is returned. If the device number happens to be zero the
device number of the controlling tty (character device) or
of the root device (block device) will be returned.

fstat(pathname,st_device)

Return the device number of the device where the file specified
by pathname resides.

The access permission returned is build from the values

ac_read read permission
ac_exec execute permission
ac_writ write permission
ac_apnd append permission

The device numbers returned are built like this:
majorno << 8 | minorno
The function returns

as described above if successful
ERR if an error occurred

Common errors:

_badname The file is referenced by an illegal pathname.
_badvalue Hllegal status type.
_badaddress The address passed to the system call does not

belong to the user’s address space.

Cromemco Cromix-Plus Programmer s Reference Manual

fstat

2—35

getdate Chapter 2

2.24 The Getdate Function

function: getdate

purpose: Get current date.

user access: all users

inciude files: <jsysequ.h>
<syslib.h>

synopsis: int getdate(date)

struct sys_date *date;

Description
The current date as kept by the system is stored in the structure pointed to by date.
The function returns:

0 if successful;
ERR if error.

2—36 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 getdir

2.25 The Getdir Function

function: getdir
purpose: Return current directory pathname.
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int getdir(buffer)

char buffer[128];

Description

The pathname to the current directory is stored in buffer. The pathname will be terminated by a zero
byte.

If the resulting pathname exceeds 128 characters it will be suitably abbreviated.
The function returns:

0 if successful;
ERR if error.

Cromemco Cromix-Plus Programmer’s Reference Manual 2 — 37

getgrent Chapter 2

2.26 The Getgrent Function

function: getgrent, getgrgid, getgrnam, setgrent, endgrent
purpose: read and decode group file.

user access: all users

include files: <grp.h>

synopsis: struct group *getgrent()

struct group *getgrgid(gid)
int gid;

struct group *getgrmam(name)
char *name;

void setgrent();

void endgrent();

Description

Getgrent, getgrgid, and getgrnam each return a pointer to an object with the group structure (see
/usr/include/grp.h).

Getgrent when first called, returns a pointer to the first group structure in the file; thereafter it returns
a pointer to the next structure in the group file. Successive calls can be used to search the entire file.

The group file is kept open and can be rewound by the setgrent function, or closed by the endgrent
function.

Getgrgid searches from the beginning of the file until a numeric group id matching gid is found, and
returns the pointer to the particular structure in which it was found.

Getgrnam searches from the beginning of the file until a group name matching name is found, and
returns the pointer to the particular structure in which it was found.

The functions returping pointers return the NULL pointer if entry is not found.

Note

All data is kept in static memory and each call will overwrite previous data.

2— 38 Cromemco Cromix-Plus Programmer’s Reference Magual

Chapter 2 getgroup

2.27 The Getgroup Function

function: getgroup

purpose: Return group ID.

user access: all users

include files: <jsysequ.h>
<syslib.h>

Synopsis: int getgroup(idtype)
int idtype;

Description

Get the group number of the type idtype (id_effective, id_login, id_program).
The function returns:

group number if successful
ERR if error

Cromemco Cromix-Plus Programmer’s Reference Manual 2—139

getmode Chapter 2

2.28 The Getmode Function

function: getmode
purpose: Return characteristics of a device.
user access: all users
include files: <jsysequ.h>
<syslib.h>
<modeequ.h>
<bmodeequ.h>
<tmodeequ.h>
synopsis: int getmode(channel,modenumber)

int channel, modenumber;

Description
See the modeequ.h files for the meaning of mode numbers and mode values.
The function returns:

mode value if successful
ERR if error occurred.

2 — 40 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 getpos

2.29 The Getpos Function

function: getpos
purpose: Get current file position
user access: all users
include files: <jsysequ.h>

<syslib.h>
synopsis: int getpos(channel)

int channel;
Description

Get current file position.
The function returns:

file position if successful
ERR if error.

Common errors:

_hotopen The channel is not open.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—41

getprior Chapter 2

2.30 The Getprior Function

function: getprior

purpose: Get process priority.

user access: all users

include files: <jsysequ.h>
<syslib.h>

Synopsis: int getprior()

Description

Get a process priority. The result is in the range 40 .. +40. The value -40 is the highest priority, +40
the lowest.

The function returns:

process priority

2—42 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 getproc

2.31 The Getproc Function

function: getproc
purpose: Get process ID number.
user access: all users
include files: <jsysequ.h>

<syslib.h>
synopsis: int getproc()
Description

Getproc is a function which enables a process to obtain its process ID number.
The function returns:

current process 1D

Cromemco Cromix-Plus Programmer s Reference Manual 2— 43

getpwent Chapter 2

2.32 The Getpwent Function

function: getpwent, getpwuid, getpwnam, setpwent, endpwent
purpose: read and decode password file.

user access: all users

include files: <pwd.h>

synopsis: struct passwd *getpwent()

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

void setpwent();

void endpwent();

Description

Getpwent, getpwuid, and getpwnam each returns a pointer to an object with the passwd structure
(see /usr/include/pwd.h).

Getpwent when first called returns a pointer to the first passwd structure in the file; thereafter it
returns a pointer to the next structure in the passwd file; so successive calls can be used to search the
entire file.

The passwd file is kept open and can be rewound by the setpwent function, or closed by the
endpwent function.

Getpwuid searches from the beginning of the file until a numeric user id matching wid is found, and
returns the pointer to the particular structure in which it was found.

Getpwnam searches from the beginning of the file until a login name matching mame is found, and
returns the pointer to the particular structure in which it was found.

The functions returning pointers return a NULL pointer if the entry is not found.

Note

All data is kept in static memory and each call will overwrite previous data.

2 —44 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 gettime

2.33 The Gettime Function

function: gettime

purpose: Get the current time.

user access: all users

include files: <jsysequ.h>
<syslib.h>

Synopsis: int geitime(time)

struct sys_time *time;

Description
Get cwrrent time. The value is stored in the structure pointed to by time.
The function returns:

0 if successful
ERR if erroor

Cromemco Cromix-Plus Programmer s Reference Manual 2— 45

getuser Chapter 2

2.34 The Getuser Function

function: getuser
purpose: Get the user ID of the calling process
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int getuser(idtype)
int idtype;
Description

The value of idtype should be one of the following:

id_effective return effective user id
id_login return user id from the login file
id_program return user id of the owner of the program

2—46 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 indirect

2.35 The Indirect Function

function: indirect
purpose: General system call.
user access: depends on call
include files: <jsysequ.h>
<syslib.h>
synopsis: int indirect(syscall,regs)
int syscall;

struct sys_reg *regs;

Description

This call implements the general system call. The structure sys_reg contains all of the registers which
take part in any system call. The user should load the sys_reg structure with appropriate values and
invoke the indirect function to do a system call. See description of assembler system calls for details.
The _wrbyte and _error system calls cannot be used with the indirect function.

The function returns:

0 if successful
ERR if error

Cromemco Cromix-Plus Programmer’s Reference Manual 2 —47

kill

2.36 The Kill Function

function:
purpose:

user access:

include files:

synopsis:

Description

Chapter 2

kill
Send the specified signal to the specified process

all users

<jsysequ.h>
<syslib.h>

int kill(pid,stype)
int pid, stype;

The kill function sends a signal to a process.

When any signal is received by a process, the process is aborted unless the signal system call specifies
that a subroutine be executed, or that the signal be ignored.

When a signal is received, unless it is ignored, an unsatisfied request for input or output from a
character device is cancelled. Examples: reading a buffered line from a console or writing a line to the

printer,

If a signal is sent to process O, the same type of signal is sent to all processes that belong to the user

invoking the call.

If the user is a privileged user and a siguser signal is sent to process 1, system shutdown is initiated.

If a sigabort signal is sent to process 1, the /etc/ttys file is reexamined. If an entry has a 0 in the
leftmost column, the appropriate terminal is logged off and all of its processes are terminated. If an
entry shows a 1 in that column, the terminal is logged in if it is not already logged in.

The function retwms:

0
ERR

Common errors:
_priv

_noproc

2 —48

if successful
if error

Only a privileged user can send signals to processes
he did oot initiate.
Such a process does not exist.

Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 lock

2.37 The Lock Function

function: lock
purpose: Lock out the process
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int lock(lock_sequence,ltype llength)

char *lock_sequence; int ltype, llength;

Description

Lock makes (or attempts to make) a lock table entry. If (Itype & 1) is "true”, the lock is shared. If
(Itype & 2) is "true", the lock is conditional.

The lock will "fail” if the following is true:

The lock_sequence has already been locked and either this lock is
meant to be unshared or the sequence is aready locked as unshared.

In the opposite case the lock will "succeed".

If the lock "fails” and the lock is conditional, errno is set to _locked and the value ERR is returned
immediately.

If the lock "fails" and the lock is unconditional, the process is put to sleep until the lock can
"succeed".

The function returmns:

0 operation successful;
ERR if error.

Common errors:

_locked The sequence is already locked.

_deadlock Locking the sequence would result in a deadlocked
situation.

_Icktable There are no more lock table entries available.

__badaddress The address passed to the system call does not

belong to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—49

makdev Chapter 2

2.38 The Makdev Function

function: makdev
purpose: Create a device file
user access. privileged user
include files: <jsysequ.b>
<syslib.h>
SyRopsis: int makdev(pathname,dtype majomo,minorno)

char *pathname;

int dtype, majornc, minomo;
Description
This call creates a device file. The value returned is:

0 if successful
ERR if error

Common errors:

_badname Pathname points to illegal path name.

_exists The file identified by the pathname already
exists.

_badaddress The address passed to the system call does not

belong to the user’s address space.

2— 50 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 makdir

2.39 The Makdir Function

function: makdir

purpose: Create a directory file

user access: all users

include files: <jsysequ.h>
<syslib.h>

Synopsis: int makdir(pathname)

char *pathname;

Description
Makes a specified directory. The function returns:

0 if successful
ERR if error

Common errors:

_badname Pathname points to an illegal path name.
_exists The file identified by pathname already exists.
_badaddress The address passed to the system call does not

belong to the user’s address space,

Cromemco Cromix-Plus Programmer s Reference Manual 2 — 51

memory Chapter 2

2.40 The Memory Function

function: memory
purpose: Allocate memory to the process
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int memory(mode,paddr,size,mask)

int mode; unsigned char **paddr;
unsigned long size, mask;

Description

The memory system call will allocate or deallocate user memory:

mode action

0 Allocate size bytes according to mask and
store the pointer to allocated memory into
*paddr.

1 Deallocate size bytes of user memory pointed

to by *paddr.
The mask value used for allocating can be used to get memory aligned according to mask: the
resulting pointer, if masked with mask, will be zero. The normal value of mask should be zerc (no
special requirements). If, for example, the mask of Oxffff is used, the allocated memory will be at a
64K boundary.

Only the memory obtained from the memory call, mode 0, can be deallocated by the memory call,
mode 1.

All memory obtained from one call will be contiguous. Two consecutive calls of memory will not
necessarily return contiguous pieces of memory.

The function will return:

0 if successful;
ERR if error.

Common errors:

_homemory There is not enough memory to fulfill the
request.
_badaddress The address passed to the system call does not

belong to the user’s address space.

2—52 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 mount

2.41 The Meount Function

function: mount
purpose: Enable access to a file system
user access: privileged user
include files: <jsysequ.h>
<syslib.h>
Synopsis: int mount(dummypath,devpath,access)

char *dummypath, *devpath; int access;

Description

Mount a file system on the device identified by devpath. Dummypath sbould be the pathname of an
arbitrary file. After a successful mount, the dummypath will be the directory identifying the root of
the mounted device.

Access should be:

0 read/write
1 read only

The function returns:

0 if succesful;
ERR if error.

Common errors:

_mnttable Too many mounted devices.

_fsbusy The device to be mounted is currently in use.
_notblk The device to be mounted is not a block device.
_badname One of the pathnames is illegal.

_notexist One of the files quoted does not exist.
_badaddress The address passed to the system call does not

belong to the user’s address space.

Cromemco Cromix-Plus Programmer s Reference Manual 2—353

msgctl

Chapter 2

2.42 The Msgctl Function

function:
purpose:

user access:

include files:

Synopsis:

Description

msgctl
Message queue control operations

all users

<jsysequ.h>
<syslib.h>
<ipc.h>
<msg.h>

int msgctl(msqid,cmd,buf)
int msqid, cmd; struct msqid_ds *buf;

Msgctl provides a variety of message queue control operations as specified by emd. The following
commands are available:

IPC_STAT

IPC_SET

IPC_RMID

The function returns:

Place the current value of each member of the data
structure associated with the message queue identifier msqid
into the structure pointed to by buf.

Set the values of the following members of the data
structure associated with msqid to the corresponding values
found in the msqid_ds structure pointed to by buf:

msg_perm.uid

msg_perm.gid

msg_perm.mode (low order 9 bits only)
msg_gbytes

This cmd can only be executed by the super user or by a
process that has an effective user ID equal to the msg_perm.uid
in the data structure associated with the msqid. Only the super
user can raise the value of msg_qbytes.

Remove the message queue identifier specified by msqid

from the system and destroy the message queune and data structure
associated with it. This command can only be executed by a
privileged user or by the creator of the message queue.

if succesful;
if error.

Cromemco Cromix-Plus Programmer’s Reference Manunal

Chapter 2

Common errors:
_badvalue
_ipcaccess

__badaddress

msgetl

Invalid command or msqgid not a valid message
queue identifier.

Operation permission is denied to the calling
process.

The address passed to the system call does not
belong to the user’s address space.

Cromemco Cromix-Plus Programmer s Reference Manual 2— 55

msgget Chapter 2

2.43 The Msgget Function

function: msgget
purpose: Get a message queue identifier
user access: all users
inctude files: <jsysequ.h>
<syslib.h>
<ipc.h>
<msg.h>
synopsis: int msgget(keymsgflg)

long key; int msgflg;

Description
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure, are created for key if one
of the following are true:

Key is equal to JPC_PRIVATE.

Key does not already have a message queue identifier associated
with it, and (msgflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue identifier is imitialized as
follows:

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid,
msg_perm.gid are set to be equal to the effective user I and

effective group ID, respectively, of the calling process.

The low order pine bits of msg_perm.mode are set equal to the low
order nine bits of msgflg.

Msg _qgnum, msg_lspid, msg_Irpid, msg_stime,
msg_rtime are set equal to zero.

Msg_ctime is set to be equal to the current time.
Msg_gbytes is set to be equal to the system limit.
The function returns:

a non-negative message queue identifier if successful;
ERE. if error.

2—56 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 msgget

Common errors:

_ipcaccess A message queue identifier exists for the key,
but the operation permission as specified by the
low order nine bits of msgflg will not be granted.

_ipcnoent A message queue identifier does not exist for key
and the create bit in msgflg is not set.

_ipcspace There is no space in the system to create another
message queue identifier.

_ipcexists A message queue identifier exists for the key but
both the create and the exclusive bits in the msgflg
are set.

_badaddress The address passed to the system call does not

belong to the user’s address space.

Cromemco Cromix-Plus Programmer s Reference Manual 2 — 57

msgrcy Chapter 2

2.44 The Msgrcv Function

function: msgrcv
purpose: Receive a message from a message queue
user access: all users
include files: <jsysequ.h>
<syslib.h>
<ipc.h>
<msg.h>
Synopsis: int msgrcv(msqid,msgp.msgsz,msgtyp.msgflg)

int msqid, msgsz, msgflg; long msgtyp;
struct msgbuf *msgp;

Description

Msgrev reads a message from the message queue associated with the message queue identifier msqid
and places it in the structure pointed to by msgp. The structure is composed of the following members:

long mtype; /* Message type */
char mtext[]; /* Message text *f

Mtype is the received message’s type as specified by the sending process. Mtext is the text of the
message. Msgsz specifies the size in bytes of mtext. The received message is truncated to msgsz bytes
if it is larger than msgsz and (msgflg & MSG_NOERROR) is "true". The truncated part of the
message is lost and no indication of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to zero, the first message in the queue is
received.

If msgtyp is greater than zero, the first message of the type
msgtyp is received.

If msgtyp is less than zero, the first message of the lowest
type that is less than or equal to the absolute value of msgtyp
is received.

Msgflg specifies the action to be taken if a message of the specified type is not on the queue. These
are as follows:

If (msgflg & IPC_NOWAIT) is "true”, the calling process will return
immediately with the return value of ERR and errno set to _ipcnomsg.

If (msgflg & TPC_NOWAIT) is "false", the calling process will suspend
execution until one of the following occurs:

2-—58 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2

A message of the desired type is placed on the queue.

Msqid is removed from the sysiem. When this occurs, errno
is set to _ipcremove, and value ERR is returned.

The calling process receives a signal that is to be caught. In this
case a message is not received, errno is set to _ssignal,
and the value ERR is returned.

msgrcy

Upon successful completion the following actions are taken with respect to the data structure associated

with msqid:

Msg_qnum is decremented by one.

Msg_lrpid is set equal to the process ID of the calling process.

Msg_rtime is set equal to the current time.

The function will return:

The number of bytes actually placed into mtext

ERR
Common errors:

_badvalue
_ipcaccess

_badvalue
_ipc2big

_ipcagain
_badvalue
_ipcremove
_ssignal

_badaddress

if error.

Msqid is not a valid message queue identifier.
Operation permission is denied to the calling
process.

Mtype is less than one.

Message to be received is longer than msgsz and the
truncate bit in msgflg is not set.

No message of the required type is waiting right
now and the nowait bit is set in the msgfig.
Message size is less than zero.

While the system call was waiting to receive the
message, the message queue was removed from the
system.

A signal was received by the process while it was
waiting for the message to be received.

The address passed to the system call does not belong

to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual

if successful

2 -— 59

msgsnd Chapter 2

2.45 The Msgsnd Function

function: msgsnd
purpose: Send a message to a message queue
user access: all users
include files: <jsysequ.h>
<syslib.b>
<ipc.h>
<msg.h>
synopsis: int msgsnd(msqid,msgp.msgsz.msgflg)

int msqid, msgsz, msgflg; struct msgbuf *msgp;

Description
Msgsnd is used to send a message to the message queue associated with the message queue identifier
msqid. Msgp points to a structure containing the message. The structure is composed of the following

members:

long mtype; /* Message type */
char mtext[]; /* Message text */

Mtype is a positive integer that can be used by the receiving process for message selection (see
msgrev). Mtext is any text of length msgsz bytes. Msgsz can range from zero to a system imposed
maximum.

Msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_gbytes.

The total number of messages on all queunes system wide is equal to
the system imposed limit.

These actions are as follows:

If (msgflg & IPC_NOWAIT) is "true”, the calling process will return
immediately with the return value of ERR and ermno set to _ipcspace.

If (msgfig & IPC_NOWAIT) is "false”, the calling process will suspend
execution until one of the following occurs:

The condition responsible for the suspension no longer exists, in
which case the message is sent.

Msgid is removed from the system. When this occurs, errne is
set to _ipcremove, and value ERR is returned.

2 —60 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 msgsnd

The calling process receives a signal that is to be caught. In this
case a message is not sent, errno is set to _ssignal, and the
value ERR is returned.

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid:

Msg_gpnum is incremented by one.
Msg_Ispid is set equal to the process ID of the calling process.
Msg_stime is set equal to the current time.

The function will return:

0 if successful;
ERR if error.

Common errors:

_badvalue Msgqid is not a valid message queue identifier.

_ipcaccess Operation permission is denied to the calling
process.

_badvalue Mtype is less than one.

_ipcagain Message cannot be sent right now and the nowait
bit is set in the msgflg.

_badvalue Message size is less than zero or grater than the
system imposed limit.

_ipcremove While the system call was waiting to get the
resources the message queue was removed from the
system.

_ssignal A signal was received by the process while it was
waiting for resources to send the message.

_badaddress The address passed to the system call does not

belong to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual 2 — 61

pause Chapter 2

2.46 The Paunse Function

function: pause

purpose: Wait for any signal

user access: all users

include files: <jsysequ.h>
<syslib.h>

synopsis: int pause()

Description

Pause suspends execution of the process until a signal arrives.
Returns:

ERR and errno set to _ssignal

2— 62 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 phys

2.47 The Phys Function

function: phys
purpose: Change user access to system memory
user access: privileged user
include files: <jsysequ.b>
<syslib.b>
Synopsis: int phys(addr,size,access)

char *addr; int size, access;

Description

This function changes user access privileges to system memory. Addr is the starting address where the
access is to be changed. It must be a multiple of page size (4096). Size is the size of address range
that will have the access changed. Size must be again a multiple of page size (4096). Access is the the
combination of access privileges:

0x02 read access
0x04 write access
0x08 execute access

The function must be used with great caution. If used it will allow the user arbitrary access anywhere
in memory. The function is primarily intended to allow specialized user programs the access to such
areas as the I/O space and graphics memory.

The function returns int:

0 if successful
ERR if error

Common errors:

_badvalue Unreasonable value passed as an argument.
_priv You must be a privileged user to use this call.

Example

To use the Baseline package with 1/2 Megabyte of graphic memory at address 0x800000 you have to
use the code.

if (phys(0x800000,0x080000,6) H
phys(0x£fff000,0x001000,6))
error(STDERR), exit(ERR);

The first line gives you read and write access to graphic memory,
the second line gives you read and write access to the /O space.

Cromemco Cromix-Plus Programmer’s Reference Manual 2 — 63

phys Chapter 2

2.48 The Pipe Function

function: pipe
purpose: Create a pipe
user access: all users
include files: <jsysequ.h>
<gyslib.h>
Synopsis: int pipe(pipeout,pipein)

int *pipeout, *pipein;

Description

The function pipe creates a pipe. If there is no error, the function returns zero and two channel
numbers in pipein and pipeout. If there is an error, the function returns ERR.

Note: Pipeout should be used for writing, pipein should be used for reading.
Common errors:

_toomany Too many open channels.

2—64 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 popen

2.49 The Popen Function

function: popen. pclose

purpose: Initiate pipe to/from a process.
user access: all users

include files: <stdio.h>

Synopsis: FILE *popen{command,type)

char *command, *type;

int pclose(stream)
FILE *stream;

Description

The arguments to popen are pointers to null-terminated strings containing, respectively, a Shell
command line and an I/O mode, either "r" for reading or "w" for writing. Popen creates a pipe
between the calling program and the command to be executed. The value returned is a stream pointer
such that one can write to the standard input of the command, if the I/O mode is "w", by writing to the
file stream; and one can read from the standard output of the command, if the I/O mode is "r", by
reading from the file stream.

A stream opened by popen should be closed by pclose which waits for the associated process to
terminate and returns the exit status of the command.

Popen will return NULL pointer if the files or processes cannot be created, or if the Shell cannot be
accessed.

Pclose returns -1 if the stream is not associated with a "popened” command.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—65

ptrace Chapter 2

2.50 The Ptrace Function

function: ptrace
purpose: Trace execution of another process.
user access: all users
include files: <jsysequ.h>
<syslib.bh>
<ptrace.h>
synopsis: int ptrace(command pid.addr.data.cnt)

int command, pid, cnt; unsigned char *addr, *data;

Description

Ptrace system call is intended to be used in debuggers like Ddt. The system call has a number of
subfunctions selected by the first argument (command):

P_START The parent process (debugger) issues this call to notify
the system that the next fexec (fshell) system call will fork
a debugged process. The debugged process does not start execution
by itself. It is waiting in a suspended state until the parent
process issues a P_RUN, or a P_TRACE, or a P_TERM ptrace
function. (The debugged process behaves as if it just hit a
breakpoint).

The pid, addr, data, cnt arguments are not used.

P_RDSEQ When the debugged process is in the suspended state, this
call will read cnt bytes from the (absolute) address data,
belonging to process pid, into caller’s memory at addr. The
specified process must be started with the P_START function
preceding the fexec call.

P_WRSEQ ‘When the debugged process is in the suspended state, this
call will write cnt bytes from the caller’s memory address to the
(absolute) address data, belonging to the process pid. The
specified process must be started with the P_START function
preceding the fexec call.

P_RDSTA When the debugged process is in the suspended state, this
call will read all of the process pid registers (see ptrace.h)
into the parent address addr. The specified process must be
started with the P_START function preceding the fexec call.

The data and cnt arguments are not used.

P_WRSTA When the debugged process is in the suspended state, this call

2 — 66 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 ptrace

will write all of the process pid registers (see ptrace.h)
from the parent address addr. The specified process must be
started with the P_START function preceeding the fexec call.

The data and ent arguments are not used.

P_RUN When the debugged process is in the suspended state, this call
will restart the process pid. The parent process will normally
install breakpoints before issuing this call. Breakpoint can be
installed by patching the child code with the TRAP 5 instruction.
If the child process executes the TRAP 5 instruction it will go
into a suspended state. The system will notify the parent process
by sending him the sigtrace signal. The specified process must
be started with the P_START function preceding the fexec call.

The addr, data, and cnt arguments are not used.

P_TRACE When the debugged process is in the suspended state, this call
restarts the process pid for the duration of one instruction.,

After one instruction has been executed the system will notify the
parent process by sending it the sigtrace signal. The specified
process must be started with the P_START function preceding the
fexec call.

The addr, data, and cnt arguments are not used.

P_TERM When the debugged process is in the suspended state, this call
terminates the process pid. The specified process must be started
with the P_START function preceding the fexec call.

The addr, data, and cnt arguments are not used.

The function retwns

0 if no error;
ERR if error.

Common errors:

_badvalue Bad command argument.
_badaddress Bad address value.
_poproc There is no such process.

Cromemco Cromix-Plus Programmer s Reference Manual 2—67

rand43 Chapter 2

2.51 The Rand48 Function

function: drand48, erand48, irand48, krand48, lrand48, nrand48,
mrand48, jrand48, srand48, seed48, lcongd8

purpose: generate uniformly distributed pseudo-random numbers

uger access: all users

synopsis: double drand48()

double erand48(s)
unsigned short s{3];

fong irand48(m)
unsigned short m;

long krand48(s,m)
unsigned short s[3], m;

long trand48()

fong nrand48(s)
unsigned short s[3];

long mrand48()

long jrand48(s)
unsigned short s[3];

void srand48(seedval)
long seedval;

unsigned short *seed48(s)
unsigned short s{3];

void lcong48(param)
unsigned short param[7];
Description

This family of functions generates pseudo-random numbers using well known linear congruential
algorithm and 48-bit integer arithretic.

Functions drand48 and erand48 return non-pegative double-precision floating-point values uniformly
distributed over the interval [0.0, 1.0).

Functions irand48 and krand48 return non-pegative long integers uniforinly distributed over the
interval {0, m-1].

2 — 68 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 rand48

Functions Irand48 and nrand48 return non-negative long integers uniformly distributed over the
interval [0, 2 ** 31).

Functions mrand48 and jrand48 return signed long integers uniformly distributed over the interval [-
2 *% 3] 2 ** 31),

Functions srand48, seed48 and lcong48 are initialization entry points, one of which should be invoked
before either drand48, irand48, Irand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied automatically if drand48, irand48, Irand48
or mrand48 is called without a prior call to an initialization entry point.) Functions erand4§,
krand48, nrand48 and jrand48 do not require an initialization entry point to be called first.

All the routine work by generating a sequence of 48-bit integer values, X[i], according to the linear
congruential formula

Xo+1]=(@* X[n] +¢) % M, n>=0

The parameter M = 2 ** 48; hence 48 bit integer arithmetic is performed. Unless lcong48 has been
invoked, the multiplier value a and the addend value ¢ are given by:

a = Ox5DEECEG6D
c =0xB

The value returned by any of the functions drand48, erand48, irand48, krand48, Irand48, nrand48§,
mrand48 or jrand4§ is computed by first generating the next 48-bit X[i] in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied from the high
order (left-most) bits of X[i] and transformed into the returned value.

The functions drand48, irand48, Irand48 and mrand48 store the last 48-bit X[i] generated in an
internal buffer; that is why they must be initialized prior to being invoked. The functions erand4§,
krand48, nrand48 and jrand48 require the calling program to provide storage for successive X[i]
values in the array specified as an argument when the functions are invoked. That is why these
routines do not have to be initialized; the calling program merely has to place the initial value of the
X[i] into the array and pass it as an argument. By using different arguments, functions eramdd47,
krand48, nrand48 and jrand48 allow separate modules of a large program to generate seversl
independent streams of pseudo-random numbers, i.e., the sequence of numbers in each stream will not
depend upon how many times the routines have been calied to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of X[i] to the 32 bits contained in its
argument. The low order 16 bits are set to the arbitrary value 0x330E.

The initializer function seed48 sets the value of X[i] to the 48-bit value specified in the argument
array. In addition, the previous value of X[i] is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by seedd8. This returned pointer, which can
be just ignored if not needed, is useful if a program is to be restarted from a given point at some future
time - use the pointer to get at and store the last X[i] value, and then use this value to reinitialize via
seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial X[i], the multiplier value a, and

Cromemco Cromix-Plus Programmer’s Reference Manual 2 — 69

rand48 Chapter 2

the added value c¢. Argument array elements param([0..2] specify X[i], param[3..5] specify the multiplier
a, and param[6] specifies the 16-bit addend c. After lcongd8 has been called, a subsequent call to
either srand48 or seed48 will restore the "standard” multiplier and addend values, a and ¢, as specified
earlier.

2—170 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2

2.52 The Rdbyte Function

function:
purpose:

user access:

include files:

synopsis:

Description

rdbyte
Read a byte

all users

<jsysequ.h>
<syslib.h>

int rdbyte(channel)
int channel;

Read next byte from channel.

Retums:

byte read
ERR

Common errors:

_hotopen
_filaccess

_loerror

_endfile
_ssignal

if successful
if error

The channel to read from is not open.

The user does not have read access to the
file to read from.

Any kind of driver error, diagnosed on the
raw terminal.

The file is positioned at the end of the file.

A signal was received while waiting for a byte.

Cromemco Cromix-Plus Programmer’s Reference Manual

rdbyte

2— 71

rdline Chapter 2

2.53 The Rdline Function

function: rdline
purpose: Send a line
user access: all users
include files: <jsysequ.hr>
<syslib.hx>
Synopsis: int rdline(channel buffer. maxbytes)

int channel, maxbytes; char *buffer;

Description

Read bytes until either:
0’ is read
N is read
maxbytes are read
a signal is received

Returns:

number of bytes read if successful
ERR if error

Comimon errors:

_notopen The channel to read from is not open.
_filaccess The user does not have read access to the

file to read from.
_loerror Any kind of driver error, diagnosed on the

raw terminal.
_endfile The file is positioned at the end of the file.
_ssignal A signal was received while waiting for a byte.
_badaddress The address passed to the system call does not

belong to the user’s address space.

2—72 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2

2.54 The Rdseq Function

function:
purpose:

user access:

include files:

synopsis:

Description

Reads bytes until:

rdseq
Read sequential bytes

all users

<jsysequ.h>
<syslib.b>

int rdseq(channel,buffer,bytecount)
iint channel, bytecount; char *buffer;

bytecount bytes are read
a signal is received

Returns:

number of bytes read if successful

ERR
Common errors:

_notopen
_filaccess

_ioerror
_endfile

_ssignal
_badaddress

if error

The channel to read from is not open.

The user does not have read access to the

file to read from.

Any kind of driver error, diagnosed on the
raw terminal.

The file is positioned at the end of the file.

A signal was received while waiting for a byte.

The address passed to the system call does not
belong to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual

rdseq

2—173

semctl

2.55 The Semctl Function

function:
purpose:

user access:

include files:

synopsis:

Description

Semctl provides a variety of semaphore control operations as specified by cmd.

semctl
Semaphore control operations

all users

<jsysequ.h>
<syslib.h>
<ipc.h>
<sem.h>

int semctl(semid.semnum,cmd,arg)
int semid, semnum, cmd;
union semun |
mnt val;
struct semid_ds *buf;
unsigned short array(];
} arg;

Chapter 2

The following commands are executed with respect to the semaphore specified by semid and semnum:

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

The following cmds return and set, respectively, every semval in the set of semaphores.

GETALL

SETALL

Return the value of semval.

Set the value of semval to arg.val. When
this command is succesfully executed the semadj value
corresponding to the specified semaphore in all processes is

cleared.
Retumn the value of sempid.
Return the value of semncnt.

Return the value of semzcnt.

Place semvals into array pointed to by arg.array.

Set semvals according to the array pointed to by
arg.array. When this command is succesfully executed
the semadj values comesponding to each specified
semaphore in all processes are cleared.

The following cmds are also available:

2— 74

Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data
structure associated with semid into the structure
pointed to by arg.buf.

Set the values of the following members of the data

structure associated with semid to the corresponding
values found in the semid_ds structure pointed to by
arg.buf:

sem_perm.uid
sem_perm.gid
sem_perm.mode (low order 9 bits only)

This cmd can only be executed by the super user or by
a process that has an effective user ID equal to the
sem_perm.uid in the data structure associated with the
semid.

Remove the semaphore identifier specified by semid

from the system and destroy the set of semaphores and data

structure associated with it. This command can only
be executed by a super user or by the creator of the
semaphore group.

Upon successful completion, the value returned depends on the emd as follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
A value of zero.

Otherwise, a value ERR is returned and errno is set to indicate the error.

Common errors:

_badvalue
_lipcaccess
_badvalue
_ipcrange
_badaddress

Semid is not a valid shared memory identifier.

Operation permission is denied to the calling process.

Invalid command.
An invalid semaphore number is used.

The address passed to the system call does not belong

to the user’s address space.

Cromemco Cromix-Plus Programmer s Reference Manual

semctl

2—175

semget Chapter 2

2.56 The Semget Function

function: semget
purpose: Get a semaphore identifier
user access: all users
include files: <jsysequ.h>
<syslib.h>
<ipc.h>
<sem.h>
synopsis: int semget(key,nsems,semflg)

long key; int nsems, semflg;

Description
Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores are created
for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does pot alredy have a semaphore identifier associated with it,
and (semflg & IPC_CREAT) is "true”.

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:
Sem_perm.cuidf, sem_perm.uid, sem_perm.cgid,
sem_perm.gid are set equal to the effective user ID and effective

group ID, respectively, of the calling process.

The low order nine bits of sem_perm.mode are set equal to the
low order nine bits of semflg.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set to zero and sem_ctime is set equal to
the current time.

The function returns:

a nonnegative semaphore identifier if successful;
ERR if error.

Common errors:

_ipcaccess A semaphore group identifier exists for the key but

2—176 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2

_ipcnoent
_ipcspace
_ipcexists

_badvalue

_badaddress

semgel

operation permission as specified by the low order
nine bits will not be granted.

A semaphore group identifier does not exist for key
and the create bit in flags is not set.

There is no space in the system to create another
semaphore group identifier.

A semaphore group identifier exists for the key but
both create and exclusive bits in flags are set.

The number of semaphores specified is either not
positive, or greater than system imposed limit, or
greater then the existing number in case the
semaphore group identifier alredy exists.

The address passed to the system call does not belong
to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—77

semop Chapter 2

2.87 The Semop Functien

function: semop
purpose: Execute semaphore operations
user access: all users
include files: <jsysequ.h>
<syslib.h>
<ipc.h>
<sem.b>
Synopsis: int semop(semid,sops,nsops)

int semid, nsops; struct sembuf sops;

Description

Semop is used to automatically perform an array of semaphore operations on the set of semaphores
associated with the semaphore identifier semid. Sops is a pointer to the array of semaphore-operation
structures. Nsops is the number of such structures in the array. The contents of each structure includes
the following members:

unsigned short sem_num; /* Semaphore number *f
short sem_op; /* Semaphore operation *f
short sem_flg; /* Operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding semaphore specified
by semid and sem_num.

Sem_op specifies one of the three semaphore operations as follows:
If sem_op is a negative integer, one of the following will occur:

If semval is greater than or equal to the absolute value
of sem_op, the absolute value of sem_op is

subtracted from semval. Also, if (sem_flg &
SEM_UNDO) is "true”, the absolute value of sem_op
is added to the calling process’s semadj value for

the specified semaphore.

If semval is less than the absolute value of sem_op
and (sem_flg & IPC_NOWAIT) is "true", semop will
return immediately.

If semval is less than the absolute value of sem_op

and (sem_flg & IPC_NOWAIT) is "false", semop will increment
the semncent associated with the specified semaphore and
suspend execution of the calling process until one of the
following occurs:

2—178 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 semop

Semval becomes greater than or equal to the

absolute value of sem_op. When this occurs,

the value of semncnt associated with the

specified semaphore is decremented, the absolute

value of sem_op is subtracted from sem_val

and, if (sem_flg & SEM_UNDO) is "true", the absolute
value of sem_op is added to the calling process’s
semadj value for the specified semaphore.

The semid for which the calling process is awaiting
action is removed from the system. When this occurs,
errno is set 10 _ipcremove, and a value of

ERR is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semncnt associated

with the specified semaphore is decremented, and the
calling process resumes execution. Errno is set to
_ssignal and a value of ERR is returned.

If sem_op is a positive integer, the value of sem_op is added to semval and, if (sem_flg &
SEM_UNDQO) is "true”, the value of sem_op is subtracted from the calling process’s semadj value for
the specified semaphore.

If sem_op is zero, one of the following will occus:
If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem_fig & IPC_NOWAIT)
is "true”, semop will return immediately.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT)
is "false", semop will increment the semzcnt

associated with the specified semaphore and suspend execution
of the calling process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt
associated with the specified semaphore is decremented.

The semid for which the calling process is awaiting
action is removed from the system. When this occurs,
errno is set to _ipcremove, and a value of

ERR is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semzent associated with
the specified semaphore is decremented, and the calling
process resumes execution. Errno is set to

_ssignal and a value of ERR is returned.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—179

semop Chapter 2
Upon successful completion, the value of sempid for each semaphore specified in the array sops is
set equal to the process ID of the calling process.

The function returns:

0 if successful;
ERR if error.

Common errors:

_badvalue Semid is not a valid semaphore group identifier.
_ipcaccess Operation permission is denied to the calling
process.
_ipcspace ‘ The system imposed limit on the number of undo
structures that a process can use, has been reached.
_ipcagain The process would be put to sleep, but (sem_flg &
IPC_NOWAIT) is nonzero.
_badaddress The address passed to the system call does not belong

to the user’s address space.

2 — 80 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 setdate

2.58 The Setdate Function

function: setdate
purpose: Set current date
user access: privileged user
include files: <jsysequ.h>
<syslib.h>
Synopsis: int setdate(date)

struct sys_date *date;

Description

This function (must be issued by a privileged user) sets the system date. The day of the week need not
be specified.

The function returns:

0 if successful
ERR if error

Common errors:

_priv Only a privileged user can set the system date,

Cromemco Cromix-Plus Programmer s Reference Manual 2 — 81

setdir Chapter 2

2.59 The Setdir Function

function: setdir
purpose: Change current directory
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int setdir(pathname)

char *pathname;

Description
Change current directory to pathname. Returns:

0 if successiul
ERR if error

Common errors:

_notdir The path name specified does not identify a

directory.
_diraccess The user has no execute access into the directory.
_badaddress The address passed to the system call does not belong

to the user’s address space.

2 — 82 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 setgroup

2.60 The Setgroup Function

function: setgroup
purpose: Change group 1D
user access: al} users
include files: <Jsysequ.r>
<syslib.h>
sypopsis: int setgroup(idtype.idvalue idnumber)

int idtype, idvalue, idnumber;

Description

This call sets the chosen group id (id_effective, id_program, id_login) to the value specified by
idvalue:

idvalue new id
id_effective present effective id
id_login user login id
id_program program owner id
id_number idaumber specified

The function returns:

0 if successful
ERR if error

Common errors:

_priv Only a privileged user can set the group to an arbitrary
number.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—83

setjmp, longjmp Chapter 2

2.61 The Setjmp and Longjmp Functions

function: setjmp, fongjmp

purpose: Provides returns from somewhere deep in the
C program

user access: all users

include files: <setjmp.h>

synopsis: int setjmp(env)
jmp_buf env;

longjmp(env,val)
jmp_buf env; int val;

Description

Functions setjmp and longjmp can be used to organize a premature return from somewhere deep in
the sequence of C functions.

The function setjmp saves its stack environment into env for later use by the function longjmp. The
setjmp function returns the value zero.

The function longjmp restores the environment saved into emv by a call to the function setjmp. It then
returns in such a way that execution continues as if the call of setjmp had just returned the nonzero
vajue val to the function that invoked setjmp. It must not have itself returned in the interim. All
accessible data have the values as of the time longjmp was called.

2— 84 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 setlev

2.62 The Setlev Function

function: setlev
purpose: Set interrupt level of the processor
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int setlev(level)
int level;
Description

The setlev function sets the interrupt level of the process to prescribed level thereby disabling
interrupts of a given or lower level to occur. Interrupt level cannot be set to a value that exceeds the
sysdef parameter Maxlev. System administrators are strongly encouraged to set Maxlev to zero thereby
effectively disabling the setlev function.

If the interrupt level is set to a nonzero value strange things may occur:

- the process will become not abortable
- all other processes may be suspended

The changed interrupt level will stay in effect (for this process) until reset to zero. If the user program
that set the interrupt level to a nonzero value executes any system call, the system will take over the
interrupt handling for the duration of the system call. This means that during the system call interrupts
will be enabled and even process switching may occur. When the user process regains control the
interrupt level will be set back to the user value.

We would like to point out that users that do need to use the setlev function should write their own
driver to do the job.

Return value:

0 if no error occurred;
ERR if an error occurred.

Cromemco Cromix-Plus Programmer s Reference Manual 2 —85

setmode Chapter 2

2.63 The Setmode Function

function: setmode
purpose: Change characteristics of a device
user access: all users
include files: <jsysequ.h>
<syslib.h>
<modeequ.h>
<bmodeequ.h>
<tmodeequ.h>
synopsis: int setmode(channel,modenumber,modevalue, modemask)

int channel, modenumber, modevalue, modemask;

Description
See modeequ.h files for the mode number and for the meaning of mode values.
The function returns:

old mode value if successful
ERR if error

Common errors:

_badvalue Invalid mode number.

2—86 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 setpos

2.64 The Setpos Function

function: setpos
purpose: Change file position
user access: all users
include files: <jsysequ.h>
<syslib.b>
Synopsis: int setpos(channel filepointer.mode)

int channel, filepointer, mode;

Description

The current file position is set according to mode:

fwd_begin filepointer bytes from the beginning
fwd_current filepointer bytes from the current position
fwd_end filepointer bytes from the end of a file
bak_curmet filepointer bytes back from the beginning
bak_end filepointer bytes back from the end of a file

Note: Filepointer must be nonnegative.
Returns:

0 if successful
ERR if error

Common errors:

_hotopen The channel is not open.
_notblk The channel does not reference a file or a block
device.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—87

setprior Chapter 2

2.65 The Setprier Function

function: setprior

purpose: Set process priority

user access: all users

include files: <jsysequ.h>
<gyslib.h>

synopsis: int setprior(priority)
int priority;

Description

Set process priority to priority. Only a privileged user can set the priority to a negative value. Priority
must be in the range from 40 to +40.

Returns:

0 if successful
ERR if error

Common errors:;

_priv Only privileged users can set the priority to a negative
number.

2 —88 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 settime

2.66 The Settime Function

function: settime

purpose: Set system time

user access: privileged user

include files: <jsysequ.h>
<syslib.h>

Synopsis: int settime(time)

struct sys_time *time;

Description
This function may be used by the privileged user to define the system time.
The function returns:

0 if successful
ERR if error

Common errors:

_priv Only a privileged user can set the system time.

Cromemco Cromix-Plus Programmer’s Reference Manual 2 — 89

setuser Chapter 2

2.67 The Setuser Function

function: setuser
purpose: Change user D
user access: all users
include files: <jsysequ.h>
<syslib.h>
Synopsis: int setuser(idtype.idvalue, idnumber)

int idtype, idvalue, idnumber;

Description

This call sets the chosen user id (id_effective, id_program, id_login) to a different value specified by
idvalue:

idvalue new id
id_effective present effective id
id_login user login id
id_program program owner id
id_number idnumber specified

The function returns:

0 if successful
ERR if error

Common errors:

_priv Only privileged users can set the user number to an
arbitrary integer.

2—90 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 shell

2.68 The Shell Function

function: shell
purpose: Execute a Shell process
user access: all users
include files: <jsysequ.h>

<syslib.h>
Synopsis: int shell(argv)

char *argv[];
Description

The shell call begins execution of a shell and does not return control to the calling process. The call is
similar to the fshell call, except that a new process is not created.

In every case argv0 should point to the string "shell” (or "sh").

If you want to execute a program then:

argv[1] > "-p"

argv([2] --> full program name
argv[3] --> argl of the program
argv{4] --> arg2 of the program

Last pointer should be zero

If you want to execute a command line then

argv(l} --> "c"
argv([2] --> command line
argv([3] 0

If you want to execute a command file then

argv[1] --> command file name
argv[?] | 0

or
argv[l] —_> ll_q"
argv[2] --> command file name
argv{3] 0

In the first form the commands from the command file will be echoed. In the second form, they will
not be echoed.

Cromemco Cromix-Plus Programmer s Reference Manual 2—91

shell Chapter 2
The shell system call replaces the cwrent code with the code of the Shell program. If an error is
encountered after the original code has been scrapped, the original program quietly terminates.

This implementation of the shell system call differs in two aspects from the implementation of the shell
system call in the older versions of Cromix-Plus (older than 31.11):

- The new code actually overlays the old code so that at no point
do the old and the new code reside in the memory.

- Only channels stdin, stdout, and stderr are
retained instead of all channels.

The function returns:

does not return if no errors
ERR if error

Common errors:

_badaddress The address passed to the system call does not
belong to the user’s address space.

2—92 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 shmat

2.6%9 The Shmat Function

function: shmat
purpose: Attach shared memory segment
user access: all users
include files: <jsysequ.h>
<syslib.h>
<ipc.h>
<shm.l>
synopsis: char *shmat(shmid,shmflg)

int shmid, shmfig;

Description

Shmat attaches the shared memory segment associated with the shared memory identifier shmid and
returns its address.

The segment is attached for reading if (shmflg & SHM_READONLY) is "true", otherwise it is
attached for reading and writing.

The function returns

address of the attached segment if no emror;
NULL if error.

Comion errors:

_badvalue Shmid is not a valid shared memory identifier.

_ipcaccess Operation permission is denied to the calling
process.

_ipcspace The system imposed limit on the number of shared

memory segments, that a process can attach, has
been reached.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—93

shmctl Chapter 2

2.70 The Shmct]l Function

function: shmct]
purpose: Control operations for shared memory
user access: all users
include files: <jsysequ.h>
<syslib.h>
<ipc.h>
<shm.h>
synopsis: int shmctl(shmid,cmd,buf)

int shmid, cmd; struct shmid_ds *buf;

Description

Shmctl provides a variety of shared memory control operations as specified by cmd. The following
commands are available:

IPC_STAT Place the current value of each member of the data
structure associated with the shared memory identifier shmid
into the structure pointed to by buf.

IPC_SET Set the values of the following members of the data structure
associated with shmid to the corresponding values found in the
shmid_ds structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode (low order 9 bits only)

This command can only be executed by the super user of by a
process that has an effective user ID equal to the
shm_perm.uid in the data structure associated with the
shmid.

PC_RMID Remove the shared memory identifier specified by shmid
from the system and destroy the shared memory segment and data
structure associated with it. This command can only be
executed by a privileged user or by the creator of the shared
memory segment.

The function returns:

0 if succesful;
ERR if error.

Common errors:

2—94 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2
_badvalue
_ipcaccess

_badvalue
_badaddress

Shmid is not a valid shared memory identifier.
Operation permission is denied to the calling

process.

Invalid command.

The address passed to the system call does not belong
to the user’s address space.

Cromemco Cromix-Plus Programmer’s Reference Manual

shmctl

2—95

shmdt Chapter 2

2.71 The Shmdt Function

function: shidt
purpose: Detach shared memory segment
user access: all users
include files: <jsysequ.hi>
<syslib.b>
<ipc.h>
<shm.h>
Synopsis: int shmdt(shmp)
char *shmp;
Description

Shmdt detaches from the calling process the shared memory segment located at address shmp.
The function will return:

0 if successful;
ERR if error.

Common errors:

_badvalue The shared memory pointer supplied was not obtained
from the previous _shmat system call.
_badaddress The address passed to the system call does not belong

to the user’s address space.

2—96 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 shmget

2.72 The Shmget Function

function: shmget
purpose: Get shared memory identifier
user access: all nusers
include files: <jsysequ.h>
<gyslib.h>
<ipc.h>
<shm.h>
Synopsis: int shmget(key.size,shinflg)

long key:; int size, shmflg;

Description
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated date structure and shared memory segment of size bytes are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier associated with
it, and (shmflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory identifier is initialized as
follows:

Shm_perm.cuid, shm_perm.uid, shm_perm.cgid,

shm_perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low order nine bits of shm_perm.mode are set equal to the low
order nine bits of shmflg. Shm_segsz is set equal to the value

of size.

Shm_lpid, shm_pattch, shm_atime, shm_dtime are set
equal to zero.

Shm_ctime is set equal to the current time.
The function returns:

a nonnegative shared memory identifier if successful;
ERR if error.

Common errors:

Cromemco Cromix-Plus Programmer’s Reference Manual 2—97

shmget

2—98

_ipcaccess

_ipcnoent
_ipcspace
_ipcexists

_badvalue

A shared memory identifier exists for key but
operation permission as specified by the low order
nine bits will not be granted.

A shared memory identifier does not exist for key
and the create bit in flags is not set.

There is no space in the system to create another
shared memory identifier.

A shared memory identifier exists for key but both
create and exclusive bits in flags are set.

The size specified is either not positive, or

greater than the system imposed limit, or greater
than the existing size in case the shared memory
identifier already exists.

Chapter 2

Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 signal

2.73 The Signal Function

function: signal
purpose: Set up a trap to receive a signal
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: void (*signal(stype,execution_address))()

int stype; void (*execution_address)();

Description

This function sets up an execution address for a signal of type stype. Note that the execution address
is set to 1 (ignore) after the signal routine is called.

An execution address of zero means the process should abort on reception of the signal, an address of
one means the process should ignore the signal.

This function is coded in assembler so that it actually installs its own trap routines which in turn call
the user’s trap routine. The assembler part of the trap routine takes care to save and restore all user
registers before calling the user trap routine.

The user trap function is called with the signal number as its only argument.

The function retuns:

Previous trap function (or zero or 1) if successful;
ERR if error.

Common errors:

_badvalue Bad signal number.

Cromemco Cromix-Plus Programmer’s Reference Manual 2—99

sleep Chapter 2

2.74 The Sieep Function

function: sleep
purpose: Sleep a number of seconds
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int sleep(numsec)
int numsec;
Description

This call puts the process to sleep for numsec seconds. The function returns the number of seconds the
process was to sleep when a signal interrupted its dreams.

Common errors:

_Ssignal The sleep was interrupted by a signal.

2 — 100 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 string

2.75 The String Function

function: strcat, strocat, stremp, strncmp, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strespn, strtok

purpose: String functions.

user access: all users

include files: <string.h>

synopsis: char *strcat(s1,s2)

char *sl, *s2;

char *strncat(s1,s2,n)
char *s1, *s2; int n;

int strcemp(sl,s2)
char *sl, *s2;

int strncmp(s1,52,n)
char *s1, *s2; int n;

char *strncpy(s1,s2.n)
char *sl, *s2; int n;

int strien(s)
char *s;

char *strchr(s,c)
char *s, c;

char *strrchr(s,c)
char *s, c;

char *strpbrk(s1,s2)
char *sl, *s2;

int strspn(s1,s2)
char *s1, *s2;

int strcspn(sl,s2)
char *sl, *s2;

char *strtok(s1,s2)
char *s1, *s2;
Description

The arguments s1, s2, and s point to strings (arrays of characters terminated by a null character). The
Cromemco Cromix-Plus Programmer s Reference Manual 2— 101

string Chapter 2

functions strcat, strncat, and strncpy all alter s1. These functions do not check for overflow of the
array pointed to by s1.

Strcat appends a copy of string s2 to the end of string s1. Strncat appends at most n characters. Each
returns a pointer to the null terminated result.

Strcmp compares its arguments and returns an integer less than, equal to, or greater than zero,
according as sl is lexicographically less than, equal to, or greater than s2. Strncmp makes the same
comparison but looks at most n characters.

Strncpy sopies string s2 to s1. It copies exactly n characters, truncating s2 or adding null characters to
s1 if necessary. The result will not be null terminated if the length of s2 is n or more. The function
returns s1.

Strien returns the number of characters in s, not including the terminating null character,

Strchr (strrchr) returns a pointer to the first (last) occurence of character ¢ in string s, or a NULL
pointer if ¢ does not occur in the string. The null character terminating a string is considered to be part
of the string.

Strpbrk returns a pointer to the first occurence in string s1 of any character from string s2, or a NULL
pointer if no character from s2 exists in si.

Strspn (strcspn) returns the length of the initial segment of string sl which consists entirely of
characters from (not from) string s2.

Strtok considers the string s1 to consist of a sequence of zero or more text tokens separated by spans
of one or more characters from the separator string s2. The first call (with pointer s1 specified) returns
a pointer to the first character of the first token, and will have written a null character into sl
immediately following the returned token. The function keeps track of its position in the string between
separate calls, so that on subsequent calls (which must be made with the first argument a NULL
pointer) will work through the string s1 immediately following that token. In this way subsequent calls
will work through the string s1 until no tokens remain. The separator string s2 may be different from
call to call. When no tokens remain in s1, a NULL pointer is returned.

Notes
For user convenience, all these functions are declared in the optional <string.h> header file.
Stremp uses native character comparison.

All string movement is performed character by character starting at the left. Thus overlapping moves
towards the left will work as expected, but overlapping moves to the right may yield surprises.

2— 102 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2 strtol

2.76 The Strtol Function

function: strtol, atol, atoi

purpose: Convert string to integer
user access: all users

Synopsis: fong strtol(str,ptr,base)

char *str, **ptr; int base;
P

long atol(str)
char *str;

int atoi(str)
char *str;
Description

Strtol returns as a long integer the value represented by the character string str. The string is scanned
up to the first character inconsistent with the base. Leading "white-space"” characters are ignored.

If the value of ptr is not (char **) NULL, a pointer to the character terminating the scan is returned in
*ptr. If no integer can be formed, *ptr is set str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion. After an optional
leading sign, leading zeros are ignored, and Ox or 0X is ignored if base is 16.

If base is zero, the string itself determines the base thus: after an optional leading sign, a leading zero
indicates octal conversion, and a leading "0x" or "0X" hexadecimal conversion. Otherwise decimal
conversion is used.

Atol(str) is equivalent to strtol(str, (char **) NULL, 10).

Atoi(str) is equivalent to (int) strtol(str, (char **) NULL, 10).

Cromemco Cromix-Plus Programmer’s Reference Manual 2— 103

Tgread Chapter 2

2.77 The Tgread Function

function: tgread, tgnum, tgbool, tgstr, tprint
purpose: Termcaps decoding
user access: all users
include files: none
synopsis: int tgread(channel,buffer size)
int channel;
char *buffer;
int size;

int tgnum(buffer,name)
char *buffer;
char *name;

int tgbool(buffer,name)
char *buffer;
char *name;

int tgstr(buffer,name,string size)
char *buffer;

char *name;

char *string;

int size;

int tprint(buffer format,arg,...)
char *buffer;
char *format;
Description
This set of functions is used to decode the /etc/termcaps (or an equivalent) file. First the tgread

function should be called to read the description of the current terminal into buffer. With buffer
succesfully filled up, functions tgnum, tgbool, and tgstr can be used to extract individual descriptions.

Tgread

The tgread function has the arguments

channel channel number of the termcaps file

buffer where the current terminal information will be
stored

size size of buffer

The function returns

2— 104 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2

Zero

nonzero

Tgnum

Normal termination. In this case buffer will
contain one long zero terminated line, or an empty
line if there is no description for the current
terminal

On I/O error or buffer overflow.

The tgmum function has the arguments

buffer
name

The function returns
value

-1

Tgbool

The buffer filled in by tgread.
The character string identifying the numeric
capability.

The value of the pumeric capability.
If the capability is not found or it is not numeric.

The tghool function has the arguments

buffer
name

The function returns

Tgstr

The buffer filled in by tgread.
The character string identifying the Boolean
capability.

If the capability is not defined.
If the capability is defined.
If the capability is defined but not Boolean.

The tgstr function has the arguments

buffer
name

string
size

The function returns

The buffer filled in by tgread.

The character string identifying the string
capability.

Buffer where the zero terminated extracted string
will be stored.

Size of string.

Cromemco Cromix-Plus Programmer’s Reference Manual

Tgread

2-— 105

Tgread Chapter 2

length Length of the string. The terminating zero byte
is not counted.

-1 If the capability is not found or is not of string
type.

Tprint

Escape sequences should be written out in one piece. The wrseq system call should be used to do it.
In case of strings with arguments like cursor movement strings; the string to be written out must first
be constructed by the tprint function. .

The tprint function acts like sprintf function. It can be used to construct a string from the termcaps
description.

The tprint function has the arguments:

buffer The buffer where the string will be built.
format The terminal capability string.

Additional arguments might be needed as in the
case of cursor addressing strings.

The function returns:

length Length of the constructed string. The terminating
zero byte is not counted.

2 — 106 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 trunc

2.78 The Trunc Function

function: trunc
purpose: Truncate file length to current position
user access: all users
include files: <jsysequ.h>
<syslib.h>
Synopsis: int trunc(channel)
int channel;
Description

Trunc truncates (or extends) an open file to current file position.
Returns:

0 if successful
ERR if error

Common errors:

_nhotopen The channel is not open.

Cromemco Cromix-Plus Programmer’s Reference Manual 2 — 107

uchstat Chapter 2

2.79 The Uchstat Function

function: uchstat
purpose: Change status of a process
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int uchstat(procid,type,val)

int procid, type, val;

Description
Uchstat changes the component of the process table belonging to the process procid, to value val. If
(procid == 0) it will affect the current process. Only a privileged user can change process tables other

than his own.

The components that can be changed are

usr_ctty controlling terminal device number
usr_prior process priority

usr_term termcaps ident

usr_hdevn user home directory device number
usr_hinum user home directory inode number
usr_cdevn user current directory device number
usr_cinum user current directory inode number
usr_static user defined data pointer

usr_job job ID

The function returns:

0 if successful
ERR if error

Common errors:

_noproc Such a process does not exist.
_priv Only a privileged user can change somebody else’s
process table.

2—108 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 unlock

2.80 The Undeck Function

function: unlock
purpose: Unlock a locked sequence
user access: all users
include files: <jsysequ.bh>
<syslib.b>
SYDOpsis: int unlock (lock_sequence, ltype, llength)

char *lock_sequence; int ltype, llength,;

Description
Unlock the locked sequence.
Returns:

0 if successful
ERR if error

Common errors:

_badaddress The address passed to the system call does not belong
to the user’s address space.

Cromemco Cromix-Plus Programmer ‘s Reference Manual 2— 109

unmount Chapter 2

2.81 The Unmount Function

function: unmount
purpose: Disable access to a file system
user access: privileged user
include files: <jsysequ.bh>
<syslib.h>
synopsis: int unmount(devpath eject)

char *devpath; int eject;

Description

Unmount the device. The argument eject should be

0 do not eject
1 do eject

Returns:
0 if successful
ERR if error

Common errors:
_hotmount The file system is not mounted.
_fsbusy The file system is in use.
_badname Pathname to device is illegal.
_notexist Such a device does not exist.
_badaddress The address passed to the system call does not belong

to the user’s address space.

2 — 110 Cromemco Cromix-Plus Programmer ‘s Reference Manual

Chapter 2 update

2.82 The Update Function

function: update

purpose: Update all open files

user access: all users

include files: <jsysequ.h>
<syslib.h>

synopsis: int update()

Description

This call flushes all buffers belonging to the process. The function returns:

0 if successful
ERR if error

Cromemco Cromix-Plus Programmer s Reference Manual 2— 111

ustat

2.83 The Ustat Function

function:
purpose:

nser access:

include files:

synopsis:

Description

ustat
Get status of a process

all users

<jsysequ.h>
<syslib.h>

int ustat(procid,type)
int procid, type;

Chapter 2

Ustat extracts the component of the process table belonging to the process procid. If (procid == 0) it
will affect the current process. Only a privileged user can change process tables other than his own.

The components that can be accessed are

usr_ctty
usr_prior
usr_parent
usr_memp
usr_mems
usr_time
usr_ctime
usr_user
usr_group
usr_term
usr_hdevn
usr_hinum
usr_cdevn
usr_cinuwm
usr_static
usr_job

The function returns:

requested value
ERR

Common errors:

_noproc
_priv

2 — 112

controlling terminal device number
process priority

parent process ID

program address

total memory size

process time (miliseconds)

children time (miliseconds)

process owner

process group

termcaps ident

user home directory device number
user home directory inode number
user current directory device number
user current directory inode number
user defined data pointer

job ID

if successful
if error

There is no such process.

Only a privileged user can access an arbitrary

process.

Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 version

2.84 The Version Function

function: version
purpose: Get version number of operating system
user access: all users
include files: <jsysequ.h>
<gyslib.h>
synopsis: int version()
Description

This function returns the current version of the system in BCD form. The function also computes the
CRC of the copy of the kernel code in memory and compares it to a stored value. If they do not
match, ERR is returned and errno is set accordingly.

Common errors:

_corrupt The "readonly" part of the operating system has been
corrupted.

Cromemco Cromix-Plus Programmer’s Reference Manual 2 —113

wait Chapter 2

2.85 The Wait Function

function: wait
purpose: Wait for a child process to terminate
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int wait(flag childid,statuses)

int flag, childid, statuses[2];

Description
Wait for execution of a child process to terminate and store the child’s termination status in statuses.

Childid is the process ID number of the process upon which the Wait function must wait. If childid is
zero, the function will wait for the termination of any child process.

If (flag&1) is zero, the function will not return until a child terminates. If (flag&1) is nonzero, the
function will return immediately. If there is no terminated child, the function will return an error.

When a child process terminates, its process table remains allocated so that the parent wili be able to
inspect its termination status. There are only two ways to get rid of the terminated child’s process
table:

- the parent collects its termination status by means of the Wait
function;

- the parent process terminates, whereupon all process tables
belonging to its terminated children will be assigned to process one.

If (flag&2) is monzero, the process table will not be discarded, in all other respects the wait
function behaves as determined by (flag&1). This possibility is useful to find out when the process
terminates. As the process table is not yet discarded, the ustat function can be used to pick up various
pieces of data from it.

The function returns:

child ID and statuses if no error
ERR if error
Statuses are
statuses{0] process termination status (exit value)
statuses[1] system termination status (signal number if killed)

Common errors:

2— 114 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 wait

_nochild There is no such child to wait for.

Cromemco Cromix-Plus Programmer’s Reference Manua]l 2—115

wrbyte Chapter 2

2.86 The Wrbyte Function

function: wrbyte
purpose: Write a byte
user access: ali users
include files: <jsysequ.h>
<syslib.h>
synopsis: int wrbyte(channel,byte)

int channel, byte;

Description

Write a byte.

Returns:
0 if successful
ERR if error

Common errors:

_notopen The channel is not open.
_filaccess The user does not have write access to the channel.

2 —116 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 2

2.87 The Wrline Function

function: wrline
purpose: Write a line
user access: all users
include files: <jsysequ.h>
<syslib.b>
synopsis: int wrline(channel buffer)

int channel; char *buffer;

Description

Write bytes from the buffer to the channel until one of the following happens:
the “n’ character is written out
the O’ character is written out
a signal was trapped

The function returns

number of bytes written if successful
ERR if error

Common errors:

_notopen The channel is not open.
_filaccess The user does not have write access to the channel.
_badaddress The address passed to the system call does not belong

to the user’s address space.

Cromemco Cromix-Plus Programmer s Reference Manual

wrline

2—117

wrseq Chapter 2

2.88 The Wrseq Function

function: wrseq
purpose: Write sequential bytes
user access: all users
include files: <jsysequ.h>
<syslib.h>
synopsis: int wrseq(chanoel,buffer bytecount)

int channel, bytecount; char *buffer;

Description
Write bytes from buffer until:

bytecount bytes are written
a signal has been trapped

Return:

number of bytes written if successful
ERR if error

common errors:

_notopen The channel is not open.
_filaccess The user does not have write access to the channel.
_badaddress - The address passed to the system call does not belong

to the user’s address space.

2— 118 Cromemco Cromix-Plus Programmer’s Reference Manual

Chapter 2 z80t068

2.89 The Z80t068 Function

function: dz801068, fz80t068, 12801068, 12801068, uz80t068
purpose: Convert from Z80 C format to 68000 C format.
user access: all users
include files: <jsysequ.h>

<syslib.b>
Synopsis: double dz80to68(p)

char *p;

double fz80t068(p)
char *p;

int iz80to68(p)
char *p;

int 1z80to68(p)
char *p;

int uz80to68(p)
char *p;

Description

The dz80to68 function converts data of type double from Z80 C format to 68000 C formai. The
pointer p should point to an 8-byte string holding a double value in Z80 format. The value returned is
the same double value in 68000 format.

The fz80t068 function converts data of type float from Z80 C format to 68000 C format. The pointer p
should point to a 4-byte string holding a float value in Z80 format. The value returned is the same
value (of type double) in 68000 format.

The iz80t068 function converts data of type integer from Z80 C format to 68000 C format. The pointer
p should point to a 2-byte string holding an integer value in Z80 format. The value returned is the
same value in 68000 format.

The 1z80t068 function converts data of type long from Z80 C format to 68000 C format. The pointer p
should point to a 4-byte string holding a long value in Z80 format. The value returned is the same
value in 68000 format.

The uz80to68 function converts data of type unsigned from Z80 C format to 68000 C format. The
pointer p should point to a 2-byte string holding an unsigned value in Z80 format. The value returned
is the same value in 68000 format.

Cromemco Cromix-Plus Programmer s Reference Manual ' 2— 119

Chapter 3 Summary of System Calls from 68000 Assembler

Chapter 3 - Assembler System Call Summary

The system call instruction (Jsys) will return with the Carry bit clear if the call was successful. If the
call was unsuccessful for any reason, the Carry bit will be set and the DO register will contain the error
number.

_alarm
move.LL <pumber of seconds>, D3
J5ys # alarm
_boot
lea <address of new system>, AQ
move.LL <size>, D1
jsys #_boot
_caccess
move <channel>, D1
move <access bits>, D2
Jsys #_caccess
_cchstat
move <channel>, D1
move <status type>, D2
move <pew value>, D3
move <access mask>, D4 (only for access)
lea <buffer>, Al (only for times)
jsys #_cchstat
_chdup
move <existing channel>, D1
isys #_chdup
move.L D2, <duplicate channel>
_chkdev
move <type of device>, D2
move <major device number>, D3
move <minor device number>, D4
jsvs #_chkdev
_clink

Cromix-Plus Programmer s Reference Manual 3—1

Summary of System Calls from 68000 Assembler

_close

_create

_cstat

_delete

_divd

__error

_exchg

_exec

move
lea

jsys

move
jsys

lea
move
move
jsys
move.L

move
move
lea

jsys

lea
Jsys

move.LL
move.LL
jsys

move.L
move.L

move
move
lea
lea

jsys

move
move

isys

lea
lea

jsys

<channel>, D1
<pew pathname>, Al
#_clink

<channel>, D1
#_close

<pathname>, A0
<access mode>, D2
<exclusive mask>, D3
#_create

D1, <channel>

<channel>, D1

<status type>, D2

<buffer>, Al

#_cstat <depends on status type>

<pathname>, AQ
delete

<dividend>, D1
<divisor>, D2

divd
D3.<quotient>
D4, <remainder>

<error number>, D0
<channel>, D1
<pathname>, A0
<alternate pathname>, Al
error

<channel number>, D1
<channel number>, D2
#_exchg

<argument list>, Al
<pathname>, AQ
_exec

(if necessary)

(if needed)
(if needed)

Chapter 3

Cromix-Plus Programmer’s Reference Manuat

Summary of System Calls from 68000 Assembler

(only for access)
(only for times)

(if necessary)

Chapter 3

_exit
move <termination status>, D3
jsys #_exit

_faccess
move <access bits>, D2
Jea <pathname>, AO
isys #_ faccess

_fchstat
lea <pathname>, A0
move <status type>, D2
move <new value>, D3
move <access mask>, D4
lea <buffer>, Al
jsys # fchstat

_fexec
lea <argument list>, Al
lea <pathname>, AQ
move <signal mask>, D1
move <signal values>, D2
jsys # fexec
move.LL D3, <new PID>

_flink
lea <old pathname>, AQ
lea <new pathname>, Al
isys # flink

_fshell
lea <argument list>, Al
move <signal mask>, D1
move <sgignal values>, D2
Jsys #_fshell
movelL D3, <new PID>

_fstat
lea <pathname>, A0
move <status type>, D2
lea <buffer>, Al
jsys #_fstat

_getdate
jsys #_getdate
move.LL D0, <weekday>
move.L D1, <year>
move.L. D2, <month>
move.LL D3, <day>

Cromix-Plus Programmer’s Reference Manual

Summary of System Calls from 68000 Assembler

_getdir

_getgroup

_getmode

_getpos

_getprior

_getproc

_gettime

_getuser

_indirect

_kill

flea
jsys

move
sys
move.L

move
move
isys
move.L

move
jsys
move.L

sys
move.lL

isys
move.L

jsys

move.L.
move.LL
move.lL

move
Jsys
move.LL

move

<buffer>, AO
#_getdir

<id type>, D2
#_getgroup

Chapter 3

D3, <group number requested>

<channel>, D1
<mode type>, D2
#_getmode

D3, <mode value>

<channel number>, D1
#_getpos
D3, <file position>

#_getprior
D3, <process priority>

#_getproc
D3, <PID>

#_gettime
D1, <hour>
D2, <minute>
D3, <second>

<id type>, D2
#_getuser
D3, <user>

<call number>, DO

;all other registers as required by the call

isys

move
move

isys

#_indirect

<signal type>, D2
<process id>, D3
#_kill

Cromix-Plus Programmer’s Reference Manual

Chapter 3

_lock
move
move
lea

jsys

_makdev
move
move
move
lea

jsys

_makdir
lea

jsys

_memory
move.L.
move
move.L
lea
isys
move.LL

_mount
move
lea
lea

isys

_msgctl
move.L
move.L
lea

isys

_msgget
move.L.
move.L
isys
move.L

_msgrev
move.LL
move.L
move.lL
move.lL
lea

Summary of System Calls from 68000 Assembler

<Jock type>, D2
<lock length>, D3
<lock sequence>, AQ
lock

<type of device>, D2
<major device #>, D3
<minor device #>, D4
<pathname>, A0
#_makdev

<pathname>, A0
#_makdir

<mask>, D1

<type>, D2

<size>, D3

<memory pointer>, A0
#_memory

AQ, <memory pointer>

<type of access>, D2

<dummy pathname>, A0
<block device pathname>, Al

mount

<msqid>, D1
<command>, D2
<buffer>, A0
#_msgctl

<key>, D1
<msgflg>, D2
#_msgget
D3, <msqid>

<msqid>. D1
<msgfig>, D2
<msgsz>, D3
<msgtyp>, D4
<message>, A0

Cromix-Plus Programmer s Reference Manual

(if allocating)

(if deallocating)

(if allocating)

Summary of System Calls from 68000 Assembler

_msgsnd

_mult

_open

_pause

_phys

_pipe

_printf

_ptrace

isys
move.L

move.L
move.L
move.LL
lea

jsys

move.L
move.L
jsys

move.LL

lea
move
move
jsys
move.LL

isys

lea
move.L
move

isys

Jsys
move.l
move.}

move
lea

#_msgrcv
D3, <msgsz>

<msqid>, D1
<msgflg>, D2
<msgsz>, D3
<message>,A0
msgsnd

<multiplicand>, D1
<multiplicator>, D2
#_mult
D3.<product>

<pathname>, AQ
<access mode>, D2
<exclusive mask>, D3
#_open

D1, <channel>

#_pause

<addr>, A0
#<size>, D3
#<access>, D2
phys

#_pipe
D1, <reading side>
D2, <writing size>

<channel>, D1
<control string>, AO

;push all arguments, last argument first

jsys

#_printf

;pop all arguments

move
move
lea
lea

<function code>, D1
<pid>, D2
<address>, AQ
<data>, Al

Chapter 3

Cromix-Plus Programmer’s Reference Manuai

Chapter 3 Summary of System Calils from 68000 Assembler

move.L <count>, D3

isys #_ptrace
_rdbyte

move <channel>, D1

jsys #_rdbyte

move.L D0, <value read>
_rdline

move <channel>, D1

move.L <maximum bytes>, D3

lea <buffer>, AQ

isys #_rdline

move.L D3, <bytes read>
_rdseq

move <channei>, D1

move.L <byte count>, D3

lea <buffer>, A0

isys #_rdseq

move.L D3, <bytes read>
_semcitl

move.L. <semid>, D1

move.L <command>, D2

move.lL <semnum>,1D4

move.LL <arg>, D3

isys #_semct]

move.LL D3,<return value)
_semget

move.L <key>, D1

move.L <semflg>, D2

move.LL <nsems>, D4

jsys #_semget

move L D3, <semid>
_semop

move.LL <semid>, DI

move L <msops>, D2

move.L. <sembuf>, AQ

Jsys #_semop
_Ssetdate

move <year>, D1

move <month>, D2

move <day of the month>, D3

jsys # setdate

Cromix-Plus Programmer s Reference Mapual 3—7

Summary of System Calls from 68000 Assembler

_setdir

_setgroup

_setlev

_setmode

_setpos

_setprior

_settime

_setuser

_shell

_Shmat

lea
jsys

move
move
move
isys

move.L
isys

move
move
move.L
move

isys

" move.L

move
move
move.lL
jsys

move
jsys

move
move
move

jsys

move
move
move

jsys

lea
jsys

<buffer>, AO
setdir

Chapter 3

<type of id to change>, D1

<new id type>, D2
<pew id number>, D3
#_setgroup

<interrupt level>.D1
#_setlev

<channel>, D1
<mode type>, D2
<new value>, D3
<mask>, D4
#_setmode

D3, <old value>

<channel number>, D1
<mode>, D2

<file pointer>, D3
#_setpos

<priority number>, D3
#_setprior

<hours>, D1
<minutes>, D2
<seconds>, D3
#_settime

<type of id to change>, D1

<new id type>, D2
<new id number>, D3
#_ setuser

<argument list>, Al
#_fexec

Cromix-Plus Programmer’s Reference Manual

Chapter 3

move.L
move.L
jsys

move.LL

_shmctl
move.L
move.LL
lea

isys

_shmdt
move.LL

jsys

_sShmget
move.L
move.LL
move.L
jsys
move.L

_signal
move
lea
jsys
move.L

_sleep
move.LL
jsys
move.LL

trunc
move

jsys

_uchstat
move
move
move

isys

_unlock
move
move
lea

jsys

<shmid>, D1
<shmflg>, D2
shmat

AQ, <memptr>

<shmid>, D1
<command>, D2
<buffer>, AQ

shmctl

<memptr>, AQ
#_shmdt

<key>, D1
<shmflig>, D2
<gize> D4
#_shmget
D3, <shmid>

<type of signal>, D2

Summary of System Calls from 68000 Assembler

<execution address>, AQ

#_signal

AQ, <old trap address>

<number of seconds to sleep>,D3

#_sleep

D3,<number of seconds left>

<channel>, D1
trunc

<process id>, D1
<status type>, D2
<new value>, D3
#_uchstat

<lock type>, D2

<lock length>, D3
<lock sequence>, AQ

unlock

Cromix-Plus Programmer s Reference Manual

Summary of System Calls from 68000 Assembler

_unmount

_update

_ustat

_version

_wait

_wrbyte

_wrline

_wrseq

3—10

move
lea

jsys

jsys

move
move
jsys
move.LL

jsys
move.L

move
move
jsys
move.L
move.L
move.L

move
move.B

jsys

move
lea

jsys
move.LL

move
move.L
lea

isys
move.LL

<eject flag>, D2

Chapter 3

<block device pathname>, AQ

#_unmount

#_update

<process id>, D1

<status type>, D2
#_ustat

D3, <status value>

version
D3, <version number>

<conditional flag>, D1
<process ID>, D3
#_wait

D3, <child PID>

D2, <termination status>
D1, <signal pumber >

<channel>, D1
<byte>, DO
#_wrbyte

<changel>, D1
<buffer>, AQ
#_wrline

D3, <bytes written>

<channel>, D1
<byte count>, D3
<buffer>, AQ
¥_wrseq

D3, <bytes written>

Cromix-Plus Programmer s Reference Manual

Chapter 4 Disk Allocation Under Cromix-Plus

Chapter 4 - Disk Allocation Under Cromix-Plus

This chapter describes disk allocation under the Cromix Operating System. Any small or large floppy
disk or hard disk formatted for use under the Cromix system is divided into three major sections: the

System Area, Imode Area, and Data Area. These disks are formatted with a block size of 512 bytes
(decimal).

bytes
120-12F
bytes Disk Type ldentification
0
Boot
512
Superbiock
1024 System Area
Boot
22 10K
Inode Area
Data Area

Figure 4-1: LAYOUT OF A CROMIX DISK
Cromemco Cromix-Plus Programmer s Reference Manual 4 —1

Disk Allocation Under Cromix-Plus Chapter 4

4.1 System Area

The System Area has a default size of 10K bytes for all disk types. Although it is not recommended,
the size of this area can be specified when running the Makfs (make file system) utility program.,

The System Area contains system information required for booting up (boot tracks) and disk type
identification. In addition, it contains the Superblock, and, for hard disks, the alternate track table and
the partition table.

4.2 Disk Type Identification

On Cromix-format floppy disks, bytes 120 through 127 (in the first block) contain ASCII-encoded data
detaijling the type and use of the disk.

Floppy disks have six letters in this position. When formatted for use with the Cromix Operating
System, byte 120 contains a C. Byte 121 contains an S or L, to indicate a Small (5") or Large (8")
floppy disk. Bytes 122-123 contain the characters S§ or DS, indicating a Single Sided or Double
Sided Disk. Bytes 124-125 contain the characters SD or DD, indicating a Single Density or Double
Density disk. Bytes 126-127 are not significant, but are reserved for future use.

Cromix-Plus also supports uniform-format floppy disks, which contain no identification information in
the first block. In uniform format, all tracks are the same. All seciors are the same size: the sector
size might be 128, 256, or 512 bytes.

On hard disks, bytes 68h through 7Fh contain disk type identification. The following table details this
area of the disk.

68-69 Number of cylinders, not counting alternate tracks (2 bytes)
6A-6B Number of alternate tracks (2 bytes)

6C Number of surfaces (1 byte)

6D Number of sectors per track (1 byte)

6E-6F Number of bytes per sector (2 bytes)

70-71 Byte count of start of alternate track table (2 bytes)

72-73 Cylinder number of start of disk (2 bytes)

74-75 Cylinder number where alternate tracks are located (2 bytes)
76-77 Byte count of start of partition table (2 bytes)

78-71B Hard disk identifier, usually CSTD (4 bytes)

7C-TD Cylinder number where write precompensation starts

7E-7F Reserved for future use (4 bytes)

4.3 Superblock

The second block (bytes 512-1023) is the Superblock. This block contains housekeeping information
for the disk, including the Block Free List and the Inede Free List.

The Block Free List (sometimes called the Free List) is a stack of 80 4-byte pointers, preceded by a

2-byte counter. Each pointer in the Block Free List points to a disk block not in use. As information
is deleted from the disk, the Block Free List grows; as information is written to the disk, it shrinks.

4—2 Cromemco Cromix-Plus Programmer s Reference Manual

Chapter 4 Disk Allocation Under Cromix-Plus

The last pointer used (actually, the first pointer in the list) points to a block on the disk that contains
another Block Free List. When the Block Free List in the Superblock is exhausted, the next Block
Free List is loaded into the Superblock. When the Block Free List in the Superblock is full, it is
moved to the Data Area of the disk.

The Inode Free List is a stack of 80 2-byte inode pumbers preceded by a 2-byte counter. Each entry
in the Inode Free List is the number of an unused inode. When this stack is exhausted, the Cromix
system searches through the inode table and replenishes the stack with the numbers of additional
inodes not in use.

4.4 Alternate Track Table

The Alternate Track Table for the hard disk is located at the top of the System Area, before the Inode
Area.

4.5 Inode Area

An inode is a descriptor for one file; it contains a collection of information pertaining to the file.

The first 48 bytes contain information on the number of links to the file, allowable access modes, and
most recent access times for various types of access.

The last 80 bytes of the inode contain 4-byte pointers to the file itself. The first 16 of these pointers
each points to a block of the file. The first pointer points to the first block (bytes 0-511); the second
pointer points to the second block (bytes 512-1023), and so on. This continues until the whole file has
been pointed to, or until the sixteenth pointer has been used (pointing to bytes 7680-8191). Thus, if
the file is 8 Kbytes or smaller, only the first 16 (or fewer) pointers need be used.

If the file described by the inode is larger than 8 Kbytes, the seventeenth pointer is used. This pointer
points to a block of 128 pointers. Each of these pointers points to a block of the file in a manner
similar to the first 16 pointers described above. Thus the seventeenth pointer describes the next 64
Kbytes of the file.

Cromemco Cromix-Plus Programmer’s Reference Manual 4—3

Disk Allocation Under Cromix-Plus

Chapter 4

48 bytes access and link
4 information
1 pointer f—— -~ block |
2 poter p————~ ~——{"block]
3 ponter —— - bioch |
80 S :/\’\,Q
bytes . -~ _block |
(4 tyres . e e BloCk
23
R block
JE— — / P ' [block L :
16 painter ! i 128 porrters | s o/ JBREE]
S s
—— - —— —— - ~ 128 oommsj L TERTT e /CEI“’—CT—]
17 pointer — ~o—~ 128 pomnters I Rl /7 block 1
— i T ST
{128 pomnters Rlogt) 5 Thioek
IS,] ; p
pes Z //////// A block]
1 7 -
olock //’// " A block |
7 /// -
. e i o ‘
29 i oot /‘ 128 pointers ﬁ////@
e /
—
128 pointers ¥~ //
’ : e -
[Ervee— e .
128 pointers !
P
o block
...... /// e
| 128 po[r\lgrs-} ,{ 128 pomnters ,_—block
. -
- -7 it —————‘-——b(ock
—I 128 pointers [m——1"128 pormiers t—*bw pomnters Ei‘
. .
- . block
~|
[\ 128 pomnters
\[138 pointers 28 o \[@

-

Figure 4-2: INODE LAYOUT

If the file is Jarger than 72 Kbytes, the eighteenth pointer is used. This pointer points to a block of
128 pointers. Each of these points to a block of 128 pointers. These pointers, in turn, point to a block
in the file. Thus, the eighteenth pointer describes the next 8192 Kbytes of the file. The nineteenth
pointer extends one more level, covering the next 1,048,576 Kbytes of the file.

4.6 Data Area

The Data Area occupies most of the disk. All data on the disk is stored in the data area. All blocks

pointed to by inodes are in this area.

4 —4

Cromemco Cromix-Plus Programmer’s Reference Manual

Appendix A Z80 System Calls

Appendix A - Z80 System Calls

A.1 Summary of Z80 System Calls

alarm:
HL = Number of seconds
isys .alarm
caccess:
B = Channel number
C = Mask
Isys .caccess
cchstat:
B = Channel number
C = st_owner, st_group
DE = Value
Isys .cchstat
or
B = Channel number
C = st_aowner, st_agroup, st_aother
D = Value
Jsys .cchstat
or
B = Channel number
C = st_tcreate, st_tmodify, st_taccess, or st_tdumped
DE = Point to 6 byte buffer
Isys .cchstat
chdup:
B = Channel pumber
Isys .chdup
C = New channel number
chkdev:
C = Device type

Cromemco Cromix-Plus Programmer s Reference Manual A—1

Z80 System Calls

Jsys
clink:

DE
Isys

close:
Jsys

create:

cstat:

Isys

or

Isys
DEHL

or

Isys

mo

or

= Major device number
= Minor device number
.chkdev

= Channel number
= New pathpame
.clink

= Channel number
.close

= Mode

= Exclusive mask
= Pathname
Create

= Channel number

= Channel number

Appendix A

= st_owner, st_group, st_nlinks, or st_inum

.cstat
= Value

= Channel number

= st_aowner, st_agroup, st_aother, or st_f{type

.cstat
= Value

= Channel number
= §t_size

.cstat

= Value

= Channel number

= st_devno, st_device, or st_pdevno

.cstat
= Major device number
= Minor device number

Cromemco Cromix-Plus Programmer ‘s Reference Manual

Appendix A Z80 System Calls

B = Channel number
C = st_all
DE = Point 10 128 byte buffer
Isys .cstat
or
B = Channel number
C = st_tcreate, st_tmodify, st_taccess, or st_tdumped
DE = Point to 6 byte buffer
Isys .cstat
delete:
HL = Pathname
Xsys .delete
divd:
DEHL = Dividend
BC = Divisor
Isys divd
DE = Remainder
HL = Quotient
error;
B = Channel number
DE = Point to alternate pathname
HL = Point to pathname
Isys L£ITOF
exchg:
B = Channel number
C = Channel number
Isys exchg
exec:
DE = Argv vector
HL = Pathname
Isys .exec
exit:
HL = EXxit status
Jsys £exit
faccess:
C = Mask
HL = Pathname
Isys faccess
fchstat:

Cromemco Cromix-Plus Programmer’s Reference Manual A—3

Z80 System Calls Appendix A

C = st_owner, st_group
DE = Value
HL = Pathname
Isys Jfchstat
or
C = st_aowner, st_agroup, st_aother
D = Value
HL = Pathname
Jsys fchstat
or
C = st_tcreate, st_tmodify, st_taccess, or st_tdumped
DE = Point to 6 byte buffer
HL = Pathname
Isys fchstat
fexec:
B = Signal mask
C = Signal values
DE = Argv vector
HL = Pathname
Isys fexec
HL = PID
flink:
DE = New pathname
HL = Pathname
Isys flink
fshell:
B = Signal mask
C = Signal values
DE = Argv vector
Jsys Sshell
HL = PID
fstat;
C = st_owner, st_group, st_nlinks, or st_inpum
HL = Pathname
Jsys fstat
DE = Value
or
C = si_aowner, st_agroup, st_aother, or st_ftype
HL = Pathname

A—4 Cromemco Cromix-Plus Programmer’s Reference Manual

Appendix A Z80 System Calls

Jsys fstat

D = Value

or

C = st_size

HL = Pathname

Isys stat

DEHL = Value

or

C = st_devno, st_device, or st_pdevno

HL = Pathname

Isys Sstat

D = Major device number

E = Minor device number

or

C = st_all

DE = Point to 128 byte buffer

HL = Pathname

Isys stat

or

C = st_{create, st_tmodify, st_taccess, or st_tdumped

DE = Point to 6 byte buffer

HL = Pathpame

Jsys fstat
getdate:

Isys .getdate

D = Day of the week

E = Year

H = Month

L = Day of the month
getdir:

HL = Buffer

Isys .makdev
getgroup:

C = Type

Isys .getgroup

HL = Group number
getmode:

Cromemco Cromix-Plus Programmer s Reference Manual A—35

Z80 System Calls

Isys

or
DE

or

DEHL

getpos:
B
Isys

DEHL

getprior:
Isys
HL

getproc:
Isys
HL
gettime:
Isys
E
B
L

getuser:

Isys
HIL.

kilt:

Jsys
lock:

DE

Isys
makdev:

A—6

= Channel number
= Mode number

.getmode

= Mode value

= Mode value

= Mode value

= Channel number

.getpos

= File position

.getprior
= Priority

.getproc
= PID

.gettime
= Hours
= Minutes
= Seconds

= Type
getuser

= User number

= Signal number

= PID
kill

= Lock type

= Length of lock sequence
= Lock sequence

Jock

Appendix A

Cromemco Cromix-Plus Programmer’s Reference Manual

Appendix A
C = Device type
D = Major device number
E = Minor device number
HL = Pathname
Isys .makdev
makdir
HL = Pathname
Isys Jmakdir
memove:
BC = Flag (0 = read, 1 = write)
DE = Size of move
HL = Local address
DEHL’ = Global address
Isys Jnemove
msgget:
DE = Flags
DEHL’ = Message key
Isys .msgget
BC = Message queue identifier
msgrcy:
BC = Message queue identifier
DE = Message size
HL = Message buffer
BC’ = Message flags
DEHL”’ = Type of message
Isys .msgrcv
DE = Actual message size
msgsnd:
BC = Message queue identifier
DE = Message size
HL = Message buffer
BC’ = Message flags
Isys .msgsnd
mount:
C = Read-only flag
DE = Dummy pathname
HL = Device pathname
Isys .mount
mult:
BC = Multiplicator
HL = Multiplicand
Isys mault

Cromemco Cromix-Plus Programmer s Reference Manual

Z80 System Calls

Z80 System Calls

DEHL

open:

wg;cn

pause:
Isys

pipe:
Isys

printf:

Ew

rdbyte:

Jsys

rdline:
DE

Isys

rdseq:
DE

Jsys
DE

semget:
BC
DE
DEHL’
Isys
BC

Appendix A

= Product

= Mode

= Exclusive mask
= Pathname

.open

= Channel number

.pause

.pipe
= Read channel
= Write channel

= Channel number

= Point to format string
Push Arguments
Isys .printf
Pop Arguments

= Channel! number
Jxdbyte
= byte

= Channel number

= Line size

= Buffer

Jxdline

= Number of bytes read

= Channe] number

= Number of bytes

= Buffer

rdseq

= Number of bytes read

= Flags

= Number of semaphores

= Semaphore key

.semget

= Semaphore group identifier

Cromemco Cromix-Plus Programmer’s Reference Manual

Appendix A

semop:
BC
DE
HL
Isys

setdate:

E

H

L

Isys
setdir:

HL

Jsys
setgroup:

B

C

HL
Isys

setmode:

monOow

or
DE

or
DEHL
Isys

D

or

DE

or

DEHL

Cromemco Cromix-Plus Programmer s Reference Manual

= Semaphore group identifier
= Number of operations
= Sembuf pointer

.semop

= Year
= Month

= Day of the month

.setdate

= Buffer
setdir

= Destination type
= Source type
= Group number (if source type is id.hl)

.setgroup

= Channel number
= Mode number

= Mode value

= Mode mask

= Mode value

= Mode value

= Mode value

.setmode

= Mode value

= Mode value

= Mode value

Z80 System Calls

Z80 System Calls

setpos:
B
C
DEHL
Jsys

setprior:
L
Jsys

settime:
E
H
L
Jsys

setuser:

Jsys

shell:
DE
Jsys

shmat:
BC
DE
Isys
DEHL’

shmdt:
DEHL’
Isys

shmget:
BC
DEHL
DEHL’
Isys
BC

signal:

ggEO

A—10

= Channel number
= Mode

= Offset

.setpos

= Priority
.setprior

= Hours
= Minutes
= Seconds
settime

= Destination type
= Source type

Appendix A

= User number (if source type is id.hl)

setuser

= Argv vector
.shell

= Shared memory identifier

= Flags
.shmat

= Shared memory pointer

= Shared memory pointer

.shmdt

= Flags

= Size of shared memory
= Shared memory key

.shmget

= Shared memory identifier

= Signal type
= Trap address

.signal
= Old trap address

Cromemco Cromix-Plus Programmer s Reference Manual

Appendix A

sleep:

=

= Number of seconds
Jsys sleep

HL = Number of seconds left
trunc:
B = Channel number
Isys trunc
unlock:
C = Lock type
DE = Length of lock sequence
HL = Lock sequence
Isys unlock
unmount:
C = Eject flag
HL = Device pathname
Isys unmount
update:
Jsys .update
version:
Jsys .version
HL = Version number
wait:
C = Flag
HL = PID
Isys wait
C = Signal number
DE = Exit status
HL =PID
wrbyte:
A = Byte
B = Channel number
Jsys .wrbyte
wrline:
B = Channe] number
HL = Buffer
Isys wrline
DE = Number of bytes written
wrseq:
B = Channel number
DE = Number of bytes

Cromemco Cromix-Plus Programmer’s Reference Manual

Z80 System Calls

A—11

Z80 System Calls Appendix A

HL = Buffer
Isys wrseq
DE = Number of bytes written

A—12 Cromemco Cromix-Plus Programmer s Reference Manual

Appendix B

ASCII Character Codes

Appendix B - ASCII Character Codes

HEX CHARACTER HEX CHAR HEX CHAR HEX CHAR
00h NUL (CONTROL-€) 20h SPACE 40h e 60h '
0th SOH (CONTROL-A) 21h 1 41h A 61h a
02h STX (CONTROL-B) 22h " 42h B 62h b
03h ETX (CONTROL-C) 23h # 43h C 63h c
04h EOT (CONTROL-D) 24h $ 4lh D 64h d
05h ENQ (CONTROL-E) 25h % 45h E 65h e
06h ACK (CONTROL-F) 26h & 46h F 66h f
07h BEL (CONTROL-G) 27h ! 47h G 67h g
08h BS (CONTROL~H) 28h (48h H 68h h
09h HT (CONTROL-I) 29h) 4goh I 69h i
OAh LF (CONTROL~J) 2Ah * LAh J 6Ah j
OBh VI (CCNTROL-K) 2Bh + 4Bh K 6Bh k
0Ch FF (CONTROL-L) 2Ch , 4Ch L 6Ch 1
0Dh CR (CONTROL-M) 2Dh - 4Dh M 6Dh m
OEh SO (CONTROL-N) 2Eh . LEh N 6Eh n
0Fh SI (CONTROL-0) 2Fh / 4Fh 0 6Fh o
10h DLE (CONTROL~P) 30h o] 50h P 70h p
11h DC1 (CONTROL~Q) 31h 1 51h Q 71h q
12h DC2 (CONTROL-R) 32h 2 52h R 72h r
13h DC3 (CONTROL-3) 33h 3 53h S 73h s
T4h DC4 (CONTROL~-T) 34h 4 54h T T4h t
15h NAK (CONTROL~U) 35h 5 55h U 75h u
“16h SYN (CONTROL-V) 36h 6 56h v T6h v
17h ETB (CONTROL~W) 37h T 57h 1% TTh W
18h CAN (CONTROL-X) 38h 8 58h X 78h X
19h EM (CONTROL~Y) 3%h 9 59h Y 79h y
14h SUB (CONTROL~Z) 34h : 54h Z TAh z
1Bh . { ESC (CONTROL-[) 3Bh ; 5Bh [7Bh i
1Ch FS (CONTROL-\) 3Ch < 5Ch \ 7Ch i
1Dh GS (CONTROL-1) 3Dh = 5Dh] 7Dh }
1Eh RS (CONTROL-™) 3Eh > 5Eh ~ TEh -
1Fh US (CONTROL~-_) 3Fh ? 5Fh _ 7Fh’ DEL

NUL = null DC1 = device control 1

SOH = start of heading DC2 = device control 2

STX = start of text DC3 = device control 3

ETX = end of text . DC4 = device control 4

EOT = end of transmission NAK = negative acknowledge

ENQ = enguiry SYN = synchronous idle

ACX = acknowledge ETB = end transmission block

BEL = bell CAN = cancel

BS = backspace EM = end of medium

HT = horizontal tab SUB = substitute

LF = line feed ESC = escape

VT = vertical tab FS = file separator

FF = form feed G3 = group separator

CR = carriage return RS = record separator

SO0 = shift out US = unit separator

SI = shift in SP = space

DLE = data 1link escape DEL = delete

Cromemco Cromix-Plus Programmer’s Reference Manual

