
30

The FRANCES Melllory Board

Adding 32-hit RAM to the LUCAS board

By Brad Fowles and Eric Haberfellner

Back in Volume 1, issue 3 Transactor for the Amiga, I wrote
an article describing a 68020/68881 accelerator board of asyn­
chronous design called LUCAS (Little Ugly Cheap Accelerator
System). Now I'd like to introduce you to FRANCES (Fast Ram
At Nominal Cost, for Extended Storage).

FRANCES is a 32-bit wide memory board that fits onto the ex­
pansion connector of the LUCAS board. You should read the
original LUCAS article for a more complete understanding of
the project as a whole.

The raw computing power of the LUCAS/FRANCES combination
is pretty impressive. It will tum your Amiga 1000 into a full
32-bit platform running at clock speeds from 16 to 20 MHz
(MegaHertz). Like the LUCAS board, I will make available a
bare board, 2 PALS, hardcopy schematic and documentation
disk for $75.00 US. (See the end of the article for more infor­
mation.) If you've got the urge to hack or, like me, just can't
afford a full blown A2500, this project will tweek a wee bit
more life out of the AlOOO.

I should state my bias right up front. My real interest in the
Amiga is as an experimental platform for 3D character anima­
tion. My needs. therefore, are for raw computing power and
the project shows this bias.

Before we get into details, let me thank all of you who partici­
pated in an experiment in public domain hardware. To date I
have sent out 550 LUCAS boards. Some of you had problems
with the project, and a few had no luck at all; but judging by
the mail I receive, most of you seemed to get the project up
and running, and were able to improve the performance of the
A 1000. Now we are going to see if we can make the grand 01'
lady fly.

Eric Haberfellner, who is co-authoring this article, not only
wrote the AFM memory utility and all the diagnostic software
to help me design the system, he stayed up nights helping to
get it to work. I thank him for all his past work and all the an­
swers he'll be giving to you folks when the time comes. My
only complaint is that he and his brother slowed down the
development of the first running prototype by booting up with
the FAIl8 flight simulator whenever my back was turned. By

the way, at 20 MHz the FAilS demo runs in a little under 3
minutes, compared to 5 minutes, 47 seconds on a stock Amiga.

The thing that really kept the project going was the support
you all gave to each other. I was constantly heartened by calls
from local 'Jser group hardware gurus who were helping their
friends get their systems up. LUCAS is by no means perfect.
There were problems with some peripherals, bus noise prob­
lems and the now famous selection of U9. But with true hack­
er spirit, most of you found a way to sort out the problems,
and hopefully learned a little along the way.

In the original article I said that the main benefit of having an
'020 in your machine was that it provided a 32-bit wide up­
grade path. However, until FRANCES entered the picture, the
only 32-bit data transfers were those that were happening be­
tween the 68881 math coprocessor and the '020.

This was great for floating point math but really did little for
general purpose computing. All memory transfers were still
only 16 bits wide. What we really needed was a 32-bit wide
memory system to support the '020.

Design criteria

The first decision to be made was: "How much memory do
we need?" (All we can get, right?) I wanted to keep the board
to a form factor that would be able to sit in the A I 000 and still
allow the case to be put on. I didn't want to use those wonder­
ful little SIMMs (Single Inline Memory Modules) because they
can be hard to find, and can be quite expensive in small quan­
tities. I looked at the space available and decided that I could
put in 4 Mb (megabytes) of standard 20-pin DIP (dual inline
package) memory chips without too many problems.

Next: "How fast?" I priced out static memory fast enough to
operate with no wait states - back in February, '89 the price
would have been $1200.00 per megabyte.

SO, OK, we'll forget about that, what about DRAMs (dynamic
random access memory)? At $25.00 per chip, that's $200.00
per megabyte (at the time of writing, prices have dropped to
$19.00 U.S. per chip). That seemed a little more reasonable.

Transactor for the AMIGA

One-megabit by I-bit chips are slightly cheaper than 256-Kbit
by 4-bit chips, but with the former you would need to buy 32
chips right off. If I used 256-Kbit by 4-bit chips you could
start out with eight chips (for one megabyte) and build up in
one megabyte increments. Yeah! Better to do it that way.

Keeping price in mind, how fast should the memory be? It
turns out that 100-ns. (nanosecond) DRAMs will operate at 16
MHz with only one wait state and at 20 MHz with two. Even
if we were to use 70-ns. DRAMS, the same number of wait
states would be required. Keeping these trade-offs in mind, I
decided that 256-Kbit by 4-bit, lOO-ns DRAMs were the best
choice; but check the price of 70-ns. parts - the difference
may be negligible.

How does the change from 16-MHz to 20-MHz clock speed
affect performance? The '020 has a three-cycle access. At 16-
MHz, three times 62.5 ns., plus one wait state of 62.5 ns.,
equals 250 ns. total. At 20 MHz, it's three times 50 ns., plus
two wait states of 50 ns., which equals, let's see, uh ... 250 ns.
Hmmmmmmm! At either 16 MHz or 20 MHz, the effective
memory speed will be equal. Of course, at 20 MHz the trans­
fers between the '881 and the '020 will be 1.25 times faster, as
will all the internal register stuff in the '020 itself. It is possi­
ble that running at 18 MHz with one wait state, using 70-ns.
DRAMS, would yield the best performance. In a simple test run
at presstime, this does appear to be the case.

Now we need to select a DRAM controller. I remember, just a
few short years ago, designing DRAM control circuitry with a
plethora of discrete components and delay lines. These days
there is a wide variety of highly integrated controllers from
which to choose. I decided on a controller which could be soft­
programmed to accommodate various clock speeds and DRAM
configurations, and chips made by different manufacturers. I
also wanted a controller which could support memory inter­
leaving - more on that later. The best choice, I believe, is the
National Semiconductor 8421A-20 or -25. So, with the con­
troller and memory chosen, and a bit of glue and a few buffers
added, we're almost there.

In order to squeeze all the performance we can out of the
memory board, it would be desirable to get all those routines
that are in the KickStart area of memory out of 16-bit wide
space and into 32-bit space. Since we don't have an MMU to
do the address translations for us, we're going to have to do it
some other way. To describe how this is done, it's time to go a
little deeper into the technical details. If you know nothing of
hardware, hang in there and I'll try to give enough background
so that it should make sense.

Practising 'Not Being Seen'

I assume that you have read the article on the LUCAS board.
When the '020 is accessing the '881, it does so at full speed
and the data path is 32-bits wide. If the circuitry of the Amiga
sees this access, it will become quite confused and respond
with a *DTACK (Data Transfer Acknowledge) long after the

Volume 2, Issue 5

original cycle has gone by. To prevent this, we simply don't
tell Amy that this is going on. This is accomplished by not as­
serting *AS (Address Strobe) or either of the two data strobes,
*UDS or "LDS (Upper Data Strobe, Lower Data Strobe). This is
done in PAL U7 on the LUCAS board by conditioning the term
for these signals with the *cpcs signal (Coprocessor Chip Se­
lect) nonasserted state. In this way. the '881 practises Not Be­
ing Seen by the Amiga system underneath it.

The FRANCES memory board has the same type of restrictions:
because it is much faster than the normal Amiga memory, we
don't want Amy to try and respond to these faster accesses, so,
same answer, we don't let her know about them.

In order to effect these clandestine accesses, we take the *CS
(Chip Select) signal from the FRANCES decode PAL and run it
back to U7. It just so happens that the U7 PAL on the LUCAS
board receives two signals from the LUCAS expansion connec­
tor: *SRDSACKO and *SRDSACKl (Static RAM Data Size Ac­
knowledge). I had put these lines in before I realized the costs
of high speed static RAM. SO I redefined them. The *SRDSACKO
line became the *FRANCYC (FRANCES Cycle) line and the *SRD­
SACKl line became *FDSACK (FRANCES DSACK). Only one
*DSACK line is needed because the FRANCES PAL takes care of
the byte addressability. We can therefore assume' that all
memory accesses on the FRANCES board are 32-bits wide. We
condition the terms for *AS, *UDS and *LDS with the *FRANCYC
line in the same way we did for the coprocessor. Thus, the
FRANCES memory practises Not Being Seen and there are no
conflicts with the Amiga's decode circuitry.

I started this section by talking about remapping KickStart into
32-bit memory space. To do this, the first thing we must deter­
mine is when an access to KickStart memory is about to take
place. The '020 initiates a memory cycle by putting the ad­
dress on the bus and then asserting *AS to tell the system that
the address is valid. At 16 MHz the address is valid 15 ns. be­
fore *AS is asserted. This is the amount of time we have to do
our remapping. (For a little perspective, 15 ns. is the time it
takes for light to travel approximately 15 feet.) KickStart re­
sides at the addresses $FCOOOO to $FFFFFF (it is also at $F80000 to
$FBFFFF). SO if we decode an address in which the top five bits
are ones, we know that this will be a KickStart access.

If you look at the schematic you'll see that I used a 74F30,
eight input NAND gate to decode the address. If the top five
bits of the address are ones, the 74F30 will output a low true
signal, which I call *REMAPK. If we split this signal into two
and invert one of them, one will be low true when there is a
KickStart access, and one will be low true when there is a non­
KickStart access.

I added two address buffers between the '020 and the DRAM con­
troller on the upper six bits of the address bus. If the '020 puts a
KickStart address on the bus, one buffer will substitute the top six
bits with the contents of the jumper block that selects the 32-bit
KickStart copy address. If the '020 puts a non-KickStart address
on the bus, the other buffer passes it through.

31

32

The final requirement is that we copy KickStart to the area de­
fined by the jumper block and then tell the circuitry that it is
okay to begin remapping. We do this by setting a flip-flop that
enables the 74F30 to begin decoding. Again, there is no con­
tention with the Amiga's circuitry because any access to the
FRANCES memory will assert the *FRANCYC signal and it will
practise Not Being Seen. Nifty, huh?!

Addressing scheme of FRANCES

While designing the board, I did a very non-Amiga thing. The
FRANCES memory doesn't autoconfigure. Before you send
somebody for a rope, listen to my reasons and the ways I've
solved various problems ... and then send somebody for the
rope.

First: to keep the design as flexible as possible, I used a highly
programmable DRAM controller. But autoconfiguring does not
allow it to be programmed.

Second: we have this nifty KickStart remapping scheme, but
games that take over the system won't be able to use it because
they are not able to initialize the KickStart remapping circuitry.

We have found a way that these games can also take advantage
of KickStart in 32-bit space. My good buddy Eric will de­
scribe how this is done in much greater detail a little later,
which is only fair, since he came up with the solutions to all
the problems of not autoconfiguring.

While we are waiting for the guy with the rope to get back, let
me give you the bad news. There is no provision on the
FRANCES board to allow DMA (Direct Memory Access) trans­
fers. There are three reasons for this:

Cop-Out #1: It's a very knotty problem. It necessitates that
the memory look like 32-bit wide memory to the '020, but
like 16-bit wide memory to the expansion connector. I had
a paper design that grew in complexity to the point where I
realized that this beast was going to be very difficult to
layout on the PCB (Printed Circuit Board).

Cop-Out #2: There are very few DMA devices available
for the Al 000. I couldn't see adding six more months delay
to the project for a feature that very few people will use.

Cop-Out #3: My dog ate the original paper design ...
honest, teacher!

FRANCES can be run in or out of the normal Amiga 24-bit ad­
dress space. Most people have 2 Mb of FAST ram, so if you're
running in Amiga space, the board will reside between
$400000 and $7FFFFFF. This has the added feature of keeping
the decode circuitry as simple as possible.

If you want to run the board outside of Amiga space, perhaps
because you have more than 2 Mb of FAST RAM, you can run it
from $40400000 to $407FFFFF.

I also used two other high address spaces: $80800000 is the
address that controls the flip-flop to enable the KickStart
remapping, called ERKS (Enable Ram KickStart); and
$80400000 is the address to strobe the programming pin of the
DRAM controller. The DRAM controller doesn't have any data
lines going to it so it must be programmed using the address
bus. This is done by strobing a pin on the controller called *ML

(ModeLoad) and placing the value to be put in the 23-bit pro­
gramming register on the address bus.

The programming details of the DRAM controller are beyond
the scope of this article. They are described both on the docu­
mentation disk that comes with the FRANCES board and in the
'spec' sheets that are available from National Semiconductor.

Interleaving

There is another way that we can squeeze a little more perfor­
mance out of the memory system. The memory array is in four
banks of one megabyte each. If you have a full four megabytes
installed, it is possible to interleave the memory accesses to
shorten the access time. Under normal circumstances, the top
two address bits (in this case, lines A20 and A21) select which
bank is active. If, however, we use the bottom two address
lines, A2 and A3, then the long word sequential accesses that
are the most common type of memory access will happen on
separate banks. This allows the DRAM controller to reduce the
*RAS (Row Address Strobe) precharge time on the second ac­
cess. (AO and AI, and SIZO and SIZl, are not used for memory
addressing directly; they are used by the PAL on the FRANCES

board to allow byte addressability.)

Interleaving provides a relatively small performance improve­
ment that is highly application specific; but it was easy to do
and didn't cost anything. If you only have one, two or three
megabytes installed then you cannot interleave the memory.
There are jumpers on the FRANCES board to select the inter­
leaving option.

The FRANCES board will take either a right angle or straight
96-pin DIN connector to mate with the LUCAS board. The right
angle connector is preferable to the straight one, and is the one
I intended. However, I forgot to specify this in the original LU­

CAS docs, so [made the FRANCES board compatible with both.
However, the form factor of the board is slightly different for
each of the two connectors. If you are ordering a FRANCES

board, make sure you indicate which type of connector you
used on the LUCAS board.

The FRANCES board is L-shaped and takes up the rest of the
'second level' inside the AIOOO. Installing the board requires
that you first unplug the power connector that goes from the
Amiga's power supply to the motherboard. Once the FRANCES

board is in, this power connector plugs into a matching con­
nector on the FRANCES board. Then you take another cable and
plug one end into the second connector on the FRANCES board
and the other end into the power connector on the mother­
board.

Transactor for the AMIGA

'.

"

AFM: the FRANCES memory configuration utility

Since the FRANCES memory does not autoconfigure, we were
faced with the task of making it available to AmigaDoS.

The program usually used to add non-autoconfig RAM is the
Addmem program written by Commodore-Amiga. There are,
however, some problems with this program that make it a less
than perfect utility for our purposes:

1. Addmem clears the memory that it adds to AmigaDos. This
makes it unsuitable for use with rebootable ram disks like
ASDG's VDO: or AmigaDos's RAD:, since it clobbers them.

2. Addmem is usually invoked by the s:startup-sequence script
file that gets executed as AmigaDos is booting. By the time it
gets executed, some things have been loaded into CHIP RAM
that could have been loaded into the FRANCES memory - the
trackdisk.device for example. Since CHIP RAM is probably the
most precious resource available on an Amiga 1000, and since
programs may run slower there than in FAST RAM (depending
on system DMA load), we decided that it would be desirable to
come up with an alternative approach that would permit us to
configure the FRANCES memory as soon as possible in the
boot. This would insure that as much executable code as
possible would get loaded into the FRANCES memory (and
really fly), and that as much CHIP RAM as possible would
remain available.

3. Addmem must be run every time that the system is
booted or the memory will not be visible to AmigaDos.
This means that any memory made available to the system
using the Addmem utility will not be used by applications
that require rebooting the system, and that do not have
easily alterable startup-sequence files. This includes many
copy protected applications, games particularly.

4. Addmem has no mechanism for setting the priority of the
memory that it adds. In the regular course of events, CHIP RAM
is assigned a priority of -10, and autoconfigured FAST RAM is
assigned a priority of zero. This insures that the FAST RAM will
get allocated before CHIP RAM, unless CHIP RAM is explicitly
indicated either in the hunks which the AmigaDos loader
reads. or in a program's memory allocation request.

Addmem assigns a priority of zero, the same as FAST RAM,
to the memory it adds. This is reasonable in most cases:
you can't Addmem CHIP RAM to the system and, because
the data bus on the 68000 is only 16 bits wide, any memory
added to the system is assumed to be 16-bit FAST RAM. The
latter, of course, is not true of the LUCAS/FRANCES
combination. The 32-bit wide FRANCES memory is clearly
the fastest RAM in the system. We wanted a method to
specify that the FRANCES memory have a higher priority
than 16-bit FAST RAM.

5. Addmem also requires specifying the start and end
addresses of the RAM being made available. This was

Volume 2, Issue 5

awkward for our purposes since most people who build this
memory board will probably not want to populate it with
four megabytes of memory right away. It would be quite a
nuisance for you to have to edit the startup-sequence files
on all 42 of your boot disks every time you wanted to add
more RAM.

If you are running KickSsnetart out of FRANCES RAM, you
would also have to correctly specify the range of RAM
available as 256 Kb smaller than the full range of memory.
This is not a big deal, but it would mean changing two
places in the startup-sequence file instead of only one: the
Addmem command, and the load KickStart into FRANCES
RAM utility.

Since we were already going to have to write our own utility
to configure the program able 8421 A DRAM controller, copy
KickStart to RAM and enable it, we decided to have it also add
the memory and address the concerns listed above. Thus was
born AFM, the FRANCES memory configuration utility. The
name AFM stands for Add FRANCES Memory. This simple-to­
use program is executed from your startup-sequence and deals
with all of the situations listed above as best as possible for
non-autoconfiguring memory.

The syntax for AFM is as follows:

AFM -mxxxxxx [-k] [-d] [-r] [-b]

Switches in square brackets are optional.

The -m is the ModeLoad switch and it is the only required switch.
It is followed by a six digit hexadecimal number (24 bits) that
specifies the programming of the DRAM controller. Don't panic -
the FRANCES board documentation comes with the standard val­
ues for 16-, 18- and 20-MHz operation for all possible memory
configurations. You will only have to pick the one that is right for
your system. For brave souls who want to experiment with pro­
gramming the DRAM controller, the description of what these bits
do is provided in the FRANCES documentation.

The -k is the optional 32-bit KickStart switch. If it is specified,
the top 256 Kb of FRANCES memory will not be made
available to AmigaDos. Instead, AFM will copy KickStart from
the Amiga 1000 wcs (Writable Control Store) RAM to this
area. and then enable the RAM KickStart feature of the
FRANCES board by asserting ERKS. Once this is done, Kick­
Start will run from 32-bit wide FAST RAM, which can make a
whale of a difference for many applications.

The -d is the optional debug switch. It can be used to display
information about AFM'S activities if you are having any prob­
lems or if you are just interested. It will report where it found
the the FRANCES memory and how much of it, and so on.

The -r is the optional Resident switch, the key to one of the
most powerful features of the AFM program. If it is specified,
AFM spawns a little program of less than 300 bytes that is

33

34

hooked into the AmigaDos resident module list. It is then exe­
cuted by AmigaDos at warm boot time, even before autocon­
figuration of peripherals occurs.

This resident module remembers what parameters AFM was
run with, and will subsequently configure the FRANCES board
the same way every time the Amiga is booted, until the Amiga
is powered off. In other words, the FRANCES board will act as
if it were an autoconfigure memory board until power is re­
moved. Once the resident module is added, you can boot your
favourite copy-protected version of Raster-Blaster, and if it
can use fast RAM. it will use the 32-bit FRANCES RAM.

Whenever AFM is run, it checks to see if the resident module is al­
ready present. If it is, AFM knows that the memory has already
been configured, and it exits without further ado. Someone once
said about the RAMBO: RAM disk that it "hangs on like grim
death" until the system is powered down. AFM is like RAMBO: in
this respect. If you want to experiment with different program­
ming values for the DRAM controller, don't use this switch.

The -b is the optional boot switch. Using this switch only
makes sense in conjunction with the -r switch. If -b is speci­
fied, AFM will reboot the Amiga as soon as the resident module
is spawned. The reason: the first time that you boot, the resi­
dent module will not be present, which will result in some
stuff being loaded into CHIP RAM or 16-bit FAST RAM that
should have gone into FRANCES RAM. These things will be
loaded into FRANCES RAM the next time that you warm boot
because the resident module will have already run. The -b
switch will cause this second boot to happen immediately.
This only takes a few seconds, and insures that you are run­
ning with as much stuff as possible loaded into FRANCES RAM

right away. If you are using this switch, you really should have
the AFM program as the first line of your startup-sequence file
since anything you have done during the boot-up to this point
will be lost.

The first time we saw this complete re-boot from software, we
were quite startled; you have to experience it to understand.

The AFM program first programs the DRAM controller. It then
checks location $40400000 and $00400000 for memory, in
that order. If it does not find memory in either of those loca­
tions, it announces that no FRANCES memory was found and
exits. Once the FRANCES memory has been found, AFM non­
destructively checks the first byte of each megabyte boundary
up to four megabytes to determine the amount of FRANCES

memory available. If the RAM KickStart switch was selected,
the size of the available memory is reduced accordingly, and
KickStart is copied up to FRANCES RAM and enabled. AFM adds
the available FRANCES memory to the AmigaDos memory list
with a priority of 10. If the resident module was requested, it is
spawned and added to the resident list awaiting the next re­
boot. To the resident module is passed the location and extent of
the FRANCES RAM. and whether KickStart is to be run from
FRANCES memory. Finally, if the automatic reboot was requested,
the Amiga is now rebooted; otherwise, AFM exits cleanly.

AFM has been written so that it will run whether or not there is
an '020 or FRANCES memory in the system. If AFM finds that
there is no '020, it exits with a return value of 5. This value
can be checked in the startup-sequence script and conditional
action taken. This is useful for those of you who have done
Evan Sidorak's modification to the LUCAS board that allows
you to switch between the 68020 and the 68000 (with a
reboot, of course). The 32-bit FRANCES memory will not be
available when using the 68000; by checking the return code
of AFM, it is possible to write a startup-sequence script that
will work for both 68000 and 68020 boots.

If AFM does find an '020 in the system, but cannot find the
FRANCES memory, it exits with a return value of 10. This is
taken to be the more serious failure because it indicates that
the FRANCES memory may have failed.

We believe that this scheme gives the startup-sequence pro­
grammer sufficient flexibility to deal with any LUCAS/FRANCES

situation.

Benchmarks

The following benchmarks give an indication of the raw com­
puting performance of a stock A1000, an A2500 with A2626
card running KickStart in 32-bit space, and the LUCAS­

FRANCES combination running at 16 and 20 MHz. These are
the same bench marks that I used in the LUCAS article. The
results will vary slightly each time you run them.

You should bear in mind that these benchmarks do not take in­
to account hard disk transfer speed. To give you an idea of
how this affects the system, Eric compiled his Handshake
program once the LUCAS & FRANCES was installed. The hard
disk light came on and just stayed on until the compile and
link was complete. Guess where the bottleneck is now?

Where raw computing power really helps is with applications
like ray-tracing. I find that, with the LUCAS-FRANCES installed,
I am seeing my images rendered 2 1/3 times faster than with
just the LUCAS board.

Benchmarks

Whetstone Savage Ca1cpi Float

Stock A1000 24 23842 4.87 286.1
A2500/2620 247 444 23.75 58.1
(K32)
LUCAS-FRANCES 277 402 26.18 54.8
(16 MHz, K32)
LUCAS-FRANCES 295 352 29.46 48.0
(20 MHz, K32)

UNITS KWhets/sec 50-sec Kflops/sec. seconds,

256000 i

(K32 means KickStart running in 32-bit space)

Transactor for the AMIGA

Conclusion

There is much more information available on the disk that
comes with the bare FRANCES board. If you have questions,
Eric can be contacted on BIX as ehaberfellner or through
USENET at becker! haberfellner! eric; and I can be reached
on BIX as anakin . 1 or via USENET at utgpu ! anakin.

If you're interested in acquiring either a bare LUCAS or
FRANCES board and PALs, send a cheque or international mon­
ey order to:

The LUCAS Project
c/o Brad Fowles
RR #5, Caledon East
Ontario, Canada.
LON lEO

LUCAS, 4 pals, and documentation disk: $75.00 US
FRANCE,s 2 pals, and documentation disk: $75.00 US

Don't forget to specify the type of 96-pin DIN connector you used.

PAL equations:

PARTNO 054 ;
NAME FRANCES3 ;
REV 03 ;
DATE March 3rd 1989;
DESIGNER Brad Fowles ;
COMPANY Anakin ;
ASSEMBLY Frances;
LOCATION 054 ;

1* PAL1618B2 *1
1* PAL DESIGN SPECIFICATION *1
1* 68020-68881 168000 AMIGA INTERFACE *1

PIN 1 = OS ;
PIN 2 = AO ;
PIN 3 = A1 ;
PIN 4 = SIZO ;
PIN 5 = SIZl ;
PIN 6 = MA23 ;
PIN 7 = MA22 ;
PIN 8 = A31 ;
PIN 9 = A30 ;
PIN 11 = AMY ;
PIN 12 = 000 ;
PIN 13 = OMD ;
PIN 14 = LMD ;
PIN 15 = LLO ;
PIN 16 = CS ;
PIN 17 = ERKS ;
PIN 18 = ML ;
PIN 19 = SP01 ;

!OOO !AO & 'A1

!OMD !SIZO & !Al
#AO & !A1
SIZ1 & !A1

& !OS;

& !OS
& !OS
& 'OS;

!LMD !AO & Al & !OS
!A1 & !SIZO & !SIZ1 & !OS
SIZO & SIZl &!Al & !OS
* 'SIZO & !Al & AO & !OS;

Volume 2, Issue 5

!LLO = AO & SIZO & SIZl & !OS
!SIZO & !SIZ1 & !OS
#AO &Al & !OS
#Al & SIZ1 & !OS;

!CS !MA23 & MA22 & !A31 & 'A30 & AMY
!MA23 & MA22 & !A31 & A30 & !AMY;

!ML A31 & !A30 & MA23 & !MA22 & !OS ;

!ERKS = A31 & !A30 & !MA23 & MA22 ;

1*
DESCRIPTION: BYTE WRITE DECODE FOR *CAS GENERATION AND SYSTEM DECODE
*1

PARTNO U7 ;
NAME NEW07 ;
REV 01 ;
DATE MARCH 3RD, 1989 ;
DESIGNER Brad Fowles ;
COMPANY Anakin ;

ASSEMBLY Lucas & Frances ;
LOCATION U7 ;

1* PAL1618B2 *1
1* PAL DESIGN SPECIFICATION *1
1* 68020-68881 168000 AMIGA INTERFACE *1

PIN 1 = HIGHZ ;
PIN 2 = OS200LY ;
PIN 3 = AO ;
PIN 4 = SIZO ;
PIN 5 = SIZ1 ;
PIN 6 = AS200LY ;
PIN 7 = CPCS ;
PIN 8 = CPDSACKO ;
PIN 9 = FOSACK ;
PIN 11 = SYSDSACKl ;
PIN 12 = OSACKO
PIN 13 = FRANCYC ;
PIN 14 = OSACK1 ;
PIN 15 = CPOSACK1 ;
PIN 16 = ASOOBOF ;
PIN 17 = ASOO ;
PIN 18 = LOS;
PIN 19 = ODS ;

ASOO.OE = HIGHZ & FRANCYC ;
!ASOO = (CPCS) & (!AS200LY);

ASOOBOF.OE = HIGHZ &FRANCYC;
!ASOOBOF = (CPCS)& (!AS200LY);

ODS.OE = HIGHZ & FRANCYC;
!ODS = (!OS200LY)& (!AO) & (CPCS) ;

LOS.OE = HIGHZ & FRANCYC ;
!LOS = (!OS200LY) & (SIZl) & (CPCS) #

(!OS200LY) & (! SIZO) & (CPCS) #
(!OS200LY) & (AO) & (CPCS)

!OSACKl = (!FOSACK) & (!AS20DLY) #
('CPOSACK1)& (!AS20DLY)#
(!SYSDSACK1)& (!AS20DLY)

!OSACKO = (!FOSACK)& (!AS20DLY)#
(!CPOSACKO)& (!AS20DLY)

It
DESCRIPTION: ADDRESS STROBE, OPPER AND LONER DATA STROBE AND FINAL DSACKX

GENERATION
*1

35

(,.)
0.

.... a
:::J en
0
0 -Q
Q
5'
CD

~

~
~

AO,A1
A2 A17

I'.: ILl-I:!. Jill ~+ AS rllO C5 115 E5 I
ts fBs Ci' & E8 ! U51 ~IP< 9

i t7 f'7C71 ~ E7 ! 8 74F04
•. • ~ ~ II 74F30

8

1 19

5Y+

~IP<

MI 98 C8 IJI 1 1:.11 1 _ 16M Ii

Ita f's Cs Os E9 '-L>CLK II REMAPK <J----C!! U53
~. ~W J
AID 810 I!1Or;to El° tJ ll~

1:11 1-'11 e11 roll 'rn~lll[Igl~

~<tF244
10 00 1
11 01
12 02 •

I- !> • hot. I~P ,-c> AS20 FRANPAL U54 A18-A23 Iq
A12 B12 C12 012 E12 1 ~ 1 •

I _. • !II !I'll i-1L '-----:-"
A13~3 C13ro13 E13 ~DS20 1 I---! III 11: 118 ~ tt1L- l==:ll

1 • ~ • r.-.I.!. I'-"'" ~ AI .. 17 ==- ERKS
A14 B14 C14' 014' ; lUll II 16 1S CS

1 :15 815 1 CIS il!IS ~IS -8 DBEN ; :: : ~ n _l1li1

tIS BIS Cis DIS 1 E16 -r: All l1li 1 --. AID.
ItI7~17 C17 ~17 E17 I-L>R/W20 L--

I. • I. It l~FRANCYC 1 J6 A
Al9 B19 CIS 'llll~'11 FDSACK '<j) CD'

I t19 ~191 Ci9 1019 t,g hlll n RESET m ~IP<
I t20 :20 'C2O ~t5rr ~ U ~
•. I..!_ I. ~_ .!:":-h.l [g ~
A21 rlli::l C21 021 E21

!>. :t:,., ~

·~IJ

13 03 1

14 04 L

IS 05~ 16 06 1
17 07

-

~---------"I"\I\r-' -D MQ8
.-----------"'N\'::.--D MQ7

.----------'""""7:---,C> MQ6
on -c> MQ5

-c> t-iQ4
.--------'~ MQ3

-c> MQ2
-c> MQ1

!'::,...-c> MQO

R181~1~1~1~1~1 lsi I~
L.......:.:.;..

30 ohm
ALL

-l:::l==.c::.r.., IiUml

~
~

9~ R4
C4
R5
C5
R6
C6

8421
DRAM

CONTROLLER
+

~'~

R7 U56
C7
R8
C8
R9
~~~~~~~~ 

[§Em 
,---~~I 

'------'W.-~ RASO 
'-------'W.---f""'> WE 

30 ohm 
ALL 

FRANCES l 
re> R/W20 

32 BIT DATA BUS TO 68020 J DATABUSEN 

DATA BUFFERS 
ARE 74LS245 
OR 
74AS2645 
(SEE DOCS) 

L/ 

• 



< 
0 c 
3 
CD 
.1\:1 

ii) 
en 
c: 
CD 
(II 

(,) ....., 

I:;;: I=:; ..JI 

1----CJMl 

J8 

l\5Vt 

T C82 ,rh .1mF. 

SYNCDT~ AS120lY D .(1)~I-jIH-1 ----~ 
74 0 

16M 
ClK 

REMAPK ~ 
10m~ 

RESET D----, 
& R8 

) 3O~FOSACK ERKS~ 

gl~ 

SYNCDT x;C "I xllif 

MQO C>--i 

MQ1 C>--i 

MQ2 C>--i 

MQ3 C>--i 

MQ4 C>-"'" 
MQ5 C>--i 

MQ6 C>--i 

MQ7 C>--i 
MQ8 r-....._--' 

RASO C>-"'" 
RAS1 C>-"'" 
RAS2 C>-"'" 
RAS3 ~----' 
CASO C>--i 
CAS1 ........... _--' 
CAS2 C>-"'" 
CAS3 C>---l 

WE C>-"'" 

4 MEGABYTE MEMORY ARRAY 
TYPICAL 

32 256 X 4 POWER ~ TF DRAMS OGNO 1& ~ AD & MQO 
70ns.- 100ns. WE 3 wt: A1 MQ1 

CASX 17 ~ A2 8 MQ2 
RASX 4 m A3 9 MQ3 

U7 A4 11 MQ4 

~
9 12 "n5 Data Bits DQ4 AS "' .. 

connected 18 DQ3 AS 13 MQ6 
acros::s the 2 14 "n7 
ro~ In8 D~ ~ "' .. 
4 b; t busse~ 'DO' AS" "00 

CASO TO U12,U13,U14,U15,U16,U17,U18,U19 
CAS1 TO U20,U21,U22,U23,U24,U25,U26,U27 
CAS2 TO U28,U29,U30,U31,U32,U33,U34,U35 
CAS3 TO U36,U37,U38,U39,U40,U41,U43,U43 
RASO TO U15,U19,U23,U27,U31,U35,U39,U43 
RAS1 TO U14,U18,U22,U26,U30,U34,U38,U42 
RAS2 TO U13,U17,U21,U25,U29,U33,U37,U41 
RAS3 TO U12,U16,U20,U24,U28,U32,U36,U40 
DO - 03 U12-U15 04 - 07 U16-U19 
08 - 011 U20-U23 012 - 15 U24-U27 
016 - 019 U28-U3i,020 - 023 U32-U35 
024 - 027 U36-U39,028 - 031 U40-U43 

TYPICAL 

m 3 1R11 I~-<il 11 
AS20 ~ 30 oIw R1 0 

OATABUSEN 

OS~ 
OBEN e>---=E) 

J4 

74F04 

A 

• 

MClK~U 
AS20D V ", I } 

DESIGN 
SELECT 74F32 

AS/20LY C8~+ 3 4 

5V+ 

100.f~·~: &G---0F /h DGND 
7 G---0G 

SYSTEM POWER CONNECTOR 

32 BIT MEMORY 
DATA BUS 

FRANCES - I 


