BL1300

C-Programmable Controller

User’s Manual

Revision 3

Z-World < BL1300

User’s Manual ¢ Part Number 019-0006-03
Revision 3 ¢ 021-0021-03 « Printed in U.S.A.
Last Revised by TI » August 25, 1998

Copyright
© 1998 Z-World, Inc. All rights reserved.

Z-World reserves the right to make changes and improvements to its
products without providing notice.

Trademarks

» Dynamic C® is a registered trademark of Z-World.

* PLCBus" is a trademark of Z-World.

« SmartBlock is a trademark of Z-World.

» Windows® is a registered trademark of Microsoft Corporation.

Notice to Users

When a system failure may cause serious consequences, protecting life and
property against such consequences with a backup system or safety device
is essential. The buyer agrees that protection against consequences
resulting from system failure is the buyer’s responsibility.

This device is not approved for life-support or medical systems.

Company Address

Z-World
2900 Spafford Street
Davis, California 95616-6800 USA

Telephone: (530) 757-3737
Facsimile: (530) 753-5141
24-Hour FaxBack: (530) 753-0618
Web Site: http://www.zworld.com
E-Mail: zworld@zworld.com

TABLE oF CONTENTS

About This Manual vii
Overview 11
BLI300 OVEIVIEW ..cuveiieiieiieiieieiteeeie sttt eeeeee s enae e sneesesseennenes 1-2
SmartBlock FEAtUIesccevveeuieieriieieieeieeeeeeee e 1-4
Options and Upgradesc.ceceververieuieininenienieineneneeeeeeeeeseeseene 1-5
Software Development and Evaluation Toolsccccevereriennennenne. 1-5
Getting Started 21
Initial BLI300 SEtUP ...veevvieeiieeiieieeieecee et 2-2
Parts REqUITEdccueevuieeiiiiieieeie ettt 2-2
Connecting the BL1300 to @a Host PC......cccoocvviiieiieiiiiieieeeee, 2-2
Running Dynamic C.........coceeviiiiienienie et 2-5
Test the Communication Lineccecevevinieneneninienencnienn 2-5
Selecting Communications Rate, Port, and Protocol 2-5
Running a Sample Programccccccoevvevieeiienienienieeie e 2-5
BL1300 Operation 31
Operating MOdESooveeieriieiieieeieee e 3-2
RUN MOE ...t 3-3
Changing Baud Rate on the BL1300cccoceveveenineciniencniennn 3-3
EPROM ...ttt ettt ens 33
Programming EPROMScccoceniniiiiinininicicincncceeeecnene 33
ChooSing EPROMSccccceriniiiiininiiniiiciceeeeeeeieeeeeesie e 3-4
(070757 741 113U 3-5
System Development 4-1
Dynamic C LADTATIESccveevveeriieiieeieeiiesiie e et eniee e eveeeeeseaeseneenees 4-2
Data CommuniCatioNceouereriieieniieieienerteiesie et 4-3
Parallel Communicationccceeeveeienenenienenieeieneneeeeesiene 4-3
Serial ComMMUNICALIONeveeuiiiiriieierieriieieieecee et 4-3

Z180 Serial POITS ...coeoriiiiieiiiiiieiieeseee e 4-7
ASCI Status REZISIETScccvvevveerieeiieiieieenie et eie et esiee e eaesreens 4-9
ASCI Control RegIStEr Acecvieviieiieeieeiieieeseenee e eve e 4-10

ASCI Control RegiSter Bcoccveviivieeiieiierieeiecie e 4-12
Software Drivers for Z180 Serial Ports.......c..ccccevcevevvevencncnnen. 4-14

BL1300 Table of Contents ¢ iii

Serial Communication Controller POrtsccccceevvvviiiviiveeeiinnnnn. 4-16

RS-485 NetWorkccoevieiiiniiiiiiiieneceeeeeeeeee e 4-17

SCC Baud Rate Generationc.ccecuerereeeenenenieneneeneenennees 4-19

SCC Software DIIVELScceoeerierieieniinieie e 4-21
Parallel Communicationc.cceoveriereevienenieneneneeseeee e 4-24
Parallel Connectionsccceeeevieririenenieieneeeec e 4-24
Using Protocol Switch PIOScccoovveviiiiiiiieieeeeieneeevees 4-27

Use BL1300 to Drive a Printercoceeeveveeneneneeniencncenee. 4-27
BL1300 Printer Emulationcccccoevieviniineneniiieinceeeens 4-28
BL1300 Digital INterfacesccccceeeevricieerieeiienienieeie e eveesieenieens 4-29
PIO LSI Interface Chipccooccvevieviiiiieieceecieceeeie e 4-29
USINg PIO POTLS ..eeeiieeiieiieeeeeceeeeee et 4-31
References 5-1
Appendix A: Troubleshooting A-1
OUt Of the BOX ...coiiiiieiiiieieiee e A-2
Dynamic C Will NOt Startccccveeeveeiiienienieeieeiee e A-2
Dynamic C Loses Serial Linkcccccocvvevvieriienciienienienie e A-3
BL1300 Resets Repeatedlyccceeeviiiienienieniieiieeeee e A-3
Interrupts Off for Long Periodscccceeveevienienieneeieeieeeeeeen A-3
Input/Output Problemscceevvierieeiiiiieieeciecie e A-3
Power-Supply Problems..........ccoevievieriiiiieieciecieceee e A-3
Common Programming EITorsccceevveriieeiienciienieeeeneesie e A-4
Appendix B: Specifications B-1
Hardware DImensionsc.cecevererieieireninienieieeeesienieseeeeneenesie e B-2
Jumper and Header Specificationscecevvrveienieneeieiene s B-4

Appendix C: Memory, /0O Map, and Interrupt Vectors C-1

BL1300 MEMOTY ...oevieiieeiieeiieiienieeteeieeseseeveeteesenessaesseesssesssesssens C-2
Physical MEmMOTYcccveeviieriieiiieieecie ettt C-2
Memory and Input/Output Cycle Timingccccceevvereereerreennenns C-3

Input/Output Cycle TImingccceeveeveerienieeieeieecre e C-5
EXecution Timingccceeevereenienieeieeieeree e eveeveesieesaesene v e C-6

MEMOTY MAP .eeeneieiiiieiieeieeete ettt ettt e st eebe e eeaeesseeenbeessneenns C-7
Input/Output SEleCt Mapcooveeeeeeeieiieeiecieeiee e C-7
7180 Internal Input/Output Registers Addresses 00-3F C-8
KIO Registers 0040-004F on Dynamic Interface Board

(8-DIt AECOAE) .uvveviieiiieiieiieciieee ettt C-10
BL1300 Registers 0080-00D0 (8-bit decode)........ccceevveeeveninnee. C-11
Epson 72421 Timer Registers 4000-400Fccocvvvveecvennennen. C-12
Other AdAIresSesceevuerieiiriiieeieeeee e C-12

iv ¢+ Table of Contents BL1300

INEETTUPL VECLOTS ..vvieiiieiieeiie ettt ettt sttt seve e e e C-13

Nonmaskable INtEITUPLSccceevveeriieriieieiie e C-14
Power Failure INterruptsccceeveeveenienieiieeieeieeeeeeseee e C-14
JUMP VECLOTS ...ttt C-15
INterrupt Priorities ...ceeevverieiieeieeieeceecee e C-16
Initialized RAM LOCAtiONSc..coveeveriirieienieniieieniceeee et C-16
Appendix D: SmartBlock Subsystems D-1
EEPROM Parametersccccceevuerieriiienienienienieeseeseeseeeveesiee e D-2
Library ROULINESccceveuiririiniiieicinicncnenieecteeee st D-3
Time/Date ClOCKocviiieiieiieieeieert et D-3
Time/Date FUNCLionscccceevieeiieierieneiieieeeee e D-4
Watchdog TIMETco.eeieiieieeiieet e D-5
Use of Watchdog Timercccoeveierierinieieeceiee e D-5
Appendix E: PLCBus E-1
PLCBUS OVEIVIEW ..cuviiieniiiieiiiniieiienit ettt st E-2
Allocation of Devices on the Busccceoiniiiininininiincncen, E-6
4-Bit DEVICES ...veeveeniiriieiiniieiesitetenie ettt E-6
8-Bit DEVICES ..eouveviriieiiniieiieniieitente sttt ettt st E-7
Expansion Bus SOftwareccceceeciievienienieiiieeecesee e E-7
Appendix F: Simulated PLCBus Connection F-1
BLI300 ..ttt st eneens F-2
Appendix G: Power Management G-1
Power COnSUMPLIONcccveerueerieeieeieeiieseeeee e ereesieesieesreereenreeneees G-2
Intermittent OPerationc.cecveereerierieerieereenreeieesieenreesereeaeeseenes G-2
Appendix H: Hardware Configuration H-1
Appendix |I: Battery 1-1
Battery Life and Storage Conditions.........c.cccueecveevveerieenieeneeneeneennnens I-2
Replacing Soldered Lithium Batterycccoccvevieniencienienienieeieenene 1-2
Battery CaULIONScccvvevvieeieeiieiieeieeieeieesteereeteesneesaesbeesaneenneensees 1-3
Index

BL1300 Table of Contents ¢ v

vi ¢+ Table of Contents BL1300

ABour THiIs MANUAL

This manual provides instructions for installing, testing, configuring, and
interconnecting the Z-World BL1300 controller.

Instructions to get started using Dynamic C programming functions are
included. Complete C and Dynamic C references and programming
resources are referenced when necessary.

Assumptions

Assumptions are made regarding the user's knowledge and experience in
the following areas:

» Ability to design and engineer the target system that a BL1300 will
control.

¢ Understanding of the basics of operating a software program and
editing files under Windows on a PC.

* Knowledge of the basics of C programming.

AN For a full treatment of C, refer to the following texts.

The C Programming Language by Kernighan and
Ritchie (published by Prentice-Hall).

and/or

C: A Reference Manual by Harbison and Steel
(published by Prentice-Hall).

» Knowledge of basic Z80 assembly language and architecture.
For documentation from Zilog, refer to any of the
&

following texts.

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

BL1300 About This Manual ¢ v

Acronyms

Table 1 lists acronyms that may be used in this manual.

Table 1. Acronyms

Acronym Meaning

EPROM Erasable Programmable Read Only Memory

EEPROM Electronically Erasable Programmable Read
Only Memory

NMI Nonmaskable Interrupt

PIO Parallel Input/Output Circuit
(Individually Programmable Input/Output)

PRT Programmable Reload Timer

RAM Random Access Memory

RTC Real Time Clock

SIB Serial Interface Board

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

Conventions

Table 2 lists and defines the typographic conventions that may be used in

this manual.

Table 2. Typographic Conventions

Example

Description

Whi |l e
// IN-01...

Italics

Edit

[]

< >

albjc

Courier font (bold) indicates a program, afragment of a
program, or a Dynamic C keyword or phrase.

Program comments are written in Courier font, plain face.

Indicates that something should be typed instead of the
italicized words (e.g., in place of filename, type afile’s
name).

Sans serif font (bold) signifies amenu or menu selection.

An dlipsisindicates that (1) irrelevant program text is
omitted for brevity or that (2) preceding program text may
be repeated indefinitely.

Brackets in a C function’s definition or program segment]
indicate that the enclosed directive is optional.

Angle brackets occasionally enclose classes of terms.

A vertical bar indicates that a choice should be made fro
among the items listed.

m

vi ¢+ About This Manual

BL1300

Programming Pseudo Types

For convenience, this manual uses the following pseudo types:

¢ uint means unsigned integer
¢ ulong means unsigned long

These pseudo types are not standard C keywords; therefore, they will not
function in an application unless first declared with typedef or

#define.
Pin Number 1

A black square indicates
pin 1 of all headers.

Measurements

Pinl—rm

All diagram and graphic measurements are in inches followed by millime-

ters enclosed in parenthesis.

Ilcons

Table 3 displays and defines icons that may be used in this manual.

Table 3. Icons

Icon Meaning
é;: /1 | Refertoor see
o
‘ﬂf Please contact
A Caution
/ Note
A High Voltage
Tip |7
Factory Default

BL1300

About This Manual ¢ vii

viii + About This Manual BL1300

OVERVIEW

Chapter 1 provides an overview and a brief description of the BL1300
features.

BL1300 Overview ¢+ 1-1

BL1300 Overview

The BL1300 is a general-purpose communications hub that transfers and
controls data across any of its six communication ports, with an emphasis
on supporting IBM PC or compatible computers. The BL1300 consists of
a main board with a Z-World SmartBlock™ that provides the processing
power, as shown in Figure 1-1.

DB25 Connector
26-pin square
connectors
~/ parallel ports SmartBlock
Microprocessor
3 Module

Reset
Pushbutton

RS-232 Drivers
RS-485 Drivers

Figure 1-1. BL1300 Features

Figure 1-2 shows the layout of the main board and Figure 1-3 shows the
layout for the SmartBlock.™

Two ASCI serial ports (1 and 2) are implemented using the serial ports of
the Z180 microprocessor chip. These RS-232 ports are asynchronous.

Both Zilog Serial Communication Controller (SCC) serial ports (3 and 4)
can be configured as either RS-485/RS-422 or RS-232 interfaces, and are
implemented using the SCC. The SCC supports both asynchronous and
synchronous communications with various protocols, such as SDLC,
HDLC and Bisync. The clock can be transmitted on a separate signal line
or embedded in the data signal using any of several standard techniques.
Either full-duplex or half-duplex can be implemented in RS-485 multidrop
systems.

1-2 + Overview BL1300

Jack

=
5

Q00000000000
BOOOO0000O00O

[e]leleleleJololo)ole)olole)]
BOOO00O0O0O0O00O00O

0
o
o

[
.lm - gooooO0oooOooOooOoooooooao
0000000000000 000O00 o . mm C|WbDpODOODOOROOODDDOOOR
BEOOOO0O0O0O0OO0O0O0OOOOOOOOO Rm = i b
er oLr = Ofe i Sl
o sH s | SE)
[®] Q ‘I] O i
aLr [®e » an B = m “m
e 3 nm Boob o 1/
S ! I
Pd¥4©@00006009 vd S nm 0~ P 1
(] = AMn =
cLr N £ M & m
or © o O © o
o ed = o 1> =]
=oin pir en S o
u] oo —
€ddCoooo0o000 \r m_ O 1 [E—
_N&Ea o
Nld¥E 000606060 2d o~ 5 5mmm
) g 0
b o
3 2 !
o o
ld - |
5
 —
(0000000000000 000000m]

Overview ¢+ 1-3

J10

Figure 1-3. SmartBlock Layout

CRYSTAL

BL1300

The BL1300 has two 16-bit parallel ports with 16 lines that can be
configured as a Centronics style interface. Each line can be configured as
a TTL-level input or output. The lines can be programmed to interrupt the
microprocessor in response to various external signals. The ports are
implemented with the Zilog PIO. Cabling and software make it easy to use
these ports for bidirectional communications with a PC bidirectional
printer port. The maximum data rate is approximately 60,000 bytes per
second from the computer to the BL1300, or 30,000 bytes per second to
the PC. The parallel ports are general and can be used for other purposes,
such as driving industrial I/O Opto 22 racks.

The BL1300 can be mounted in the standard enclosure shown in Fig-
ure 1-4. The four mounting holes in the board can be used to mount the
board in another enclosure. Screw holes are also provided to fasten the
SmartBlock to the main board for high-vibration environments.

r,,,f
——

000

Figure 1-4. Optional BL1300 Enclosure

SmartBlock Features

e Z180 microprocessor running at 9.216 MHz

* Memory management unit (MMU) to address 1M

e Two programmable reload timers

* Two DMA channels.

* Two asynchronous serial ports

* One clocked serial port

* Dynamic Random Access Memory (DRAM) refresh unit
* Wait state generator

* Interface device for Motorola-type peripherals

* 32K SRAM with provision for battery backup, also accepts 128K,
256K, or 512K memory chips with 28 or 32 pins

* 32K EPROM, also accepts up to 256K chips with 28 or 32 pins

1-4 + Overview BL1300

* Epson 72421 battery backed time of day clock.
e 512 byte EEPROM, the upper 256 bytes can be write-protected

* Microprocessor supervisor provides power fail detect, power on reset,
battery backup and watchdog timer.

* 18.432 MHz system crystal providing a 9.216 MHz microprocessor
clock

* Lithium backup battery
é?o/“ Appendix B provides detailed specifications for the BL1300.

Options and Upgrades
The following accessories are available for the BL1300.
* Protective enclosure

* Developer’s kit with RS-485/RS-422 driver chips and resistor packs for
RS-485 multidrop networks

* Switching power regulator

* Mini DIN-8 to DB25M cable

* Mini DIN-8 to DBYF null modem cable
* Mini DIN-8 to bare leads cable

For ordering information, or for more details about the
'ﬂ' various options and prices, call your Z-World Sales
Representative at (530) 757-3737.

Software Development and Evaluation Tools

Dynamic C, Z-World’s Windows-based real-time C language development
system, is used to develop software for the BL1300. The host PC down-
loads the executable code through the Dynamic C Interface Board to one
of the following places:

* Dbattery-backed RAM, or

¢ ROM written on a separate ROM programmer and then substi-
tuted for the standard Z-World ROM.

This allows fast in-target development and debugging.

3 ~ Z-World’s Dynamic C reference manuals provide complete
software descriptions and programming instructions.

BL1300 Overview ¢+ 1-5

1-6 ¢+ Overview BL1300

GETTING STARTED

Chapter 2 provides instructions for connecting the BL1300 to a host PC
and running a sample program.

BL1300 Getting Started ¢+ 2-1

Initial BL1300 Setup

Parts Required
* 24 V unregulated DC power supply
* Programming cable

* Dynamic C Interface Board

Connecting the BL1300 to a Host PC
1. Connect the power supply to the BL1300 power supply jack J4.

i: Do not plug the transformer into the wall until all the
connections and jumpers have been set.

2. Check the drivers in positions U1, U2, U3, and U4. The factory-
installed LT1180 chips at Ul and U2 support RS-232 communication
at P3 and P4. To enable the RS-485/RS-422 ports at P3 and P4,
remove the LT1180 drivers from Ul and U2, and install a 75175 in U3
and a 75174 in U4. Figure 2-1 illustrates the locations.

Only one set of drivers may be installed in U1/U2 or U3/U4

A at one time. The ports will not work if both sets of drivers
are installed at the same time, and the components may be
damaged.

For information about the BL1300 accessory kit
'ﬂ' containing the RS-485 drivers, call your Z-World Sales
Representative at (530) 757-3737.

— ANM

oo

Yoo E

(o)

088 o
10 0 plkk 0

[e] [e]
isholsildl 5 s | o

ofofo < o
020 0=>flololol 12012 hle =1
100 beo o
i I i S

N~
-
5 =
— — -
rl —]
e ®
o o o o
Reset
Pushbutton

Figure 2-1. Location of Driver Chips and Serial Ports

2-2 + Getting Started BL1300

3. Set the jumpers on jumper block J04 of the Dynamic C Interface Board
for RS-232 or RS-485 according to the communication protocol to be
used. Set the baud rate using pins 3-4 and 5-6 on jumper block JO7 on
the Interface Board. Connect pins 1-2 on JO7 to run the program in the
battery-backed RAM on reset, instead of Dynamic C. Figure 2-2
shows the Interface Board and its jumper configurations.

Baud Rate
57,500
Ind
28,800 Connect pins 7-8 to
[l disable Interface Board
WE 19,200 (behave as if not connected)

Connect pins 1-2 9600

RS-485 RS-232
to run program

in RAM EBo (B
4 6 810121416
Jo1
(mO] Jo7 15 JO] HO| o\
oo | —— ool @
5ol J06 oY &
o 29
oo uo1 20
o0 o]
oo o0 §
oo KIO uo2 ool
oo oo X
o Joz
o0 1 [,
oo - ' i
oo O — — [
JO5
29 - 25 Tuos|] “Jack
Ji Button N Jog L ! |
|
40-pin connection to BL1300 Leave disconnected DC Power
SmartBlock™ Connector

Figure 2-2. Dynamic C Interface Board

4. Establish a serial communications link. Connect header JO6 on the
Dynamic C Interface Board to the 40-pin header, J1, on the BL1300’s
SmartBlock.™ The 40-wire cable is included with the Dynamic C
Interface Board. Figure 2-3 shows the connections.

To PC \,'\{500 Transformer

/ Joe

Programming J01/402
Cable Dynamic C
Interface
Board

Figure 2-3. Using Dynamic C Interface Board to Program BL1300

BL1300 Getting Started ¢ 2-3

A PC “communicates” with the BL1300 via the Dynamic C Interface
Board using an RS-232 or an RS-485 serial link. There are two 10-pin
serial headers on the Dynamic C Interface Board, one for RS-232
communication (JO1) and one for RS-485 communication (J02).
Connect the programming cable to the appropriate header. Figure 2-4
shows the programming cable included in the developer’s kit.

9-pin to 25-pin
adapter
(optional)

/ 3 1
To Dynamic C

Interface Board

Figure 2-4. BL1300 Developer’s Kit Programming Cable

Although the Interface Board has its own power supply connections at
J03, as shown in Figure 2-2, do not connect the transformer to the
Interface Board. The Interface Board will receive its power through
the 40-wire cable connecting it to the BL1300 SmartBlock.™

The reset button on the Interface Board is connected in parallel with
the reset button on the BL1300.

5. Connect pins 2-3 on SmartBlock jumper block J2 to write-enable the
EEPROM. Connect the pins on SmartBlock jumper block J3 to enable
the watchdog timer.

See Appendix D, “SmartBlock Subsystems,” for more
& information about the EEPROM.

6. The BL1300 is now ready for programming. The power supply
transformer may be plugged in and turned on.

2-4 + Getting Started BL1300

Running Dynamic C

Test the Communication Line

Double-click the Dynamic C icon to start the software. Note that the PC
attempts to communicate with the BL1300 each time Dynamic C is started.
No error messages are displayed once communication is established.

See Appendix A, Troubleshooting, if an error message such as
Target Not Responding or Communication Error appears.

Once the necessary changes have been made to establish

/ communication between the host PC and the BL1300, use the
Dynamic C shortcut Ctrl Y to reset the controller and initiate
communication.

Selecting Communications Rate, Port, and Protocol

The communication rate, port, and protocol are all selected by choosing
Serial Options from Dynamic C’s OPTIONS menu.

The BL1300’s default communication rate is 19,200 bps. However, the
Dynamic C software shipped by Z-World may be initialized for a different
rate. To begin, adjust the communications rate to 19,200 bps.

Make sure that the PC serial port used to connect the serial cable (COM1
or COM2) is the one selected in the Dynamic C OPTIONS menu. Select
the 1-stop-bit protocol.

Running a Sample Program

A sample program, PSFLASH. C, is supplied in the Dynamic C SAMPLES
subdirectory. This program flashes the LEDs on the board.

Prior to running this test, be sure to set the communications parameters in
Dynamic C so that the PC and the BL1300 are handshaking properly.

1. Compile the program by pressing F3 or by choosing Compile from the
COMPILE menu. Dynamic C compiles and downloads the program.

2. Run the program by pressing F9 or by choosing Run from the RUN
menu. The LEDs on the BL1300 will begin flashing continuously.

4. Press Ctrl Z to stop execution of the program.
5. Ifneeded, press F9 to restart execution of the program.

The Dynamic C SAMPLES subdirectory contains other sample programs
that illustrate the features of the BL1300. These programs may be used as
a basis for new applications.

BL1300 Getting Started ¢ 2-5

2-6 + Getting Started BL1300

BL 1300 OPERATION

Chapter 3 describes how to use the BL1300, with a focus on
* how to set the run and programming modes, and

* how to burn a custom program on EPROM.

BL1300 Operation ¢+ 3-1

Operating Modes

A hardware reset takes place when the BL1300 is powered up, when the
reset button is pressed, or when the watchdog timer times out.

If a valid program (created with Dynamic C) has been installed in
EPROM, the program starts running. A valid program is recognized by a
code that Dynamic C places in the file used to burn the EPROM.

The flowchart in Figure 3-1 shows the startup sequence of the BL.1300
after a hardware reset.

Begin from
hardware reset

Valid

‘ Run program.

program in
EPROM? YES
Dynamic C
Interface board
connected?

Dynamic C
Interface Board
connected?

Valid program
in RAM?

Error halt
NO

Run application in RAM.

Interface
Board J07:1-2

Valid program
in RAM?

connected? YES
Run Dynamic C at baud Flash Error Signal
rate specified by Interface LED 4
Board J07:3-4 & J07:5-6

Figure 3-1. BL1300 Activity at Startup

3-2 + Operation BL1300

Run Mode

Before running a program from battery-backed RAM, be sure pins 1 and 2
on jumper block JO7 of the Dynamic C Interface Board are connected. If a
valid user program is already in EPROM, that program will run when the
reset button is pushed.

If the Dynamic C EPROM is present on the board, the
BL1300 executes the program stored in battery-backed
/ RAM—that is, the program last run under Dynamic C. If
the Dynamic C EPROM has been replaced with a custom
EPROM, then the BL1300 executes that program.

Changing Baud Rate on the BL1300

The baud rate may be changed by connecting the appropriate pins on
jumper block JO7 of the Dynamic C Interface Board, as shown in Figure
2-2, then pushing the reset button.

i: Be sure the power to the BL1300 is disconnected before
changing any jumper connections.

EPROM

Programming EPROMs

Dynamic C can be used to create a file for programming an EPROM by
selecting the Compile to File option in the COMPILE menu. The BL1300
must be connected to the PC running Dynamic C during this step because
essential library routines must be uploaded from the Dynamic C EPROM
and linked to the resulting file. The output is a binary file (optionally an
Intel hex format file) that can be used to build an application EPROM.
The application EPROM is then programmed with an EPROM program-
mer that reads either a binary image or the Intel hex format file. The
resulting application EPROM can then replace the EPROM that came with
the BL1300.

Whenever the Dynamic C EPROM is replaced by a custom EPROM, the
BL1300 ignores the program in battery-backed RAM in favor of the
program stored in EPROM.

When doing program development with Dynamic C, it is best to use a
128K SRAM or larger. Dynamic C will work with a 32K SRAM, but the
total program space will be limited to 16K of root and 16K of extended
memory. This is enough for many programs, but it is inconvenient to run

BL1300 Operation ¢ 3-3

out of memory during development. Once a program is burned into
EPROM, there is no reason to use SRAM larger than 32K unless the data
space is larger than 32K.

Choosing EPROMs

Socket U6 can accommodate several different types of EPROMs, includ-
ing the following.

27C256 32K 28 pins
27C512 64K 28 pins
27C010 128K 32 pins
27C020 256K 32 pins

When using a 28-pin EPROM, four pin positions at one end of the socket
are left empty, as shown In Figure 3-2.

T T e T T T T T T T T]

= T T T T T T T T T T T T T T e

g e

Figure 3-2. Placement of 28-pin and 32-pin EPROMs on BL1300

The corresponding jumper settings for jumper blocks J4, J5, and J6 are
shown in Figure 3-3.

J4 J5 J6
64K or ;
I I Jarger. EPROM
32K-128K 256K-512K O EPAOM O B

SRAM SRAM

O

Figure 3-3. BL1300 Jumper Settings for Different-Sized SRAM and EPROM

Either 28-pin or 32-pin SRAM chips may be used.

3-4 + Operation BL1300

Copyrights

The Dynamic C library is copyrighted. Place a label containing the
following copyright notice on the EPROM whenever an EPROM that
contains portions of the Dynamic C library is created.

©1991-1995 Z-World, Inc.

Your own copyright notice may also be included on the label to protect
your portion of the code.

Z-World grants purchasers of the Dynamic C software and the copyrighted
SmartBlock EPROM permission to copy portions of the EPROM library as
described above, provided that:

1. The resulting EPROMs are used only with the BL1300 control-
lers manufactured by Z-World, Inc., and

2. Z-World’s copyright notice is placed on all copies of the EPROM.

BL1300 Operation ¢ 3-5

3-6 ¢+ Operation BL1300

System DEVELOPMENT

Chapter 4 provides the following information to develop the BL1300 for
specific uses.

e Dynamic C libraries

* Data communication

» Serial ports

* Serial Communication Controller ports
* Parallel communication

* Digital interfaces

BL1300 System Development ¢+ 4-1

Dynamic C Libraries

Functions specific to the BL1300 can be found in the software libraries
supplied with Dynamic C. These libraries are maintained in source code
so they can be easily modified or augmented by the user. The BL1300
functions are in the BL13XX.LIB, DRIVERS.LIB, PRPORT.LIB, and
SERIAL.LIB libraries.

Whenever unresolved calls to functions remain after an application is
compiled, Dynamic C scans all the source libraries for functions with that
name. When found, the functions are extracted from the library and are
compiled with the application. The libraries are scanned until no more
unresolved names are found, so library functions can call other library
functions and their order of appearance in the library is not important.

Dynamic C also accesses a library in the EPROM on the BL1300 board.
This library is in machine language and the library functions can be called
directly from a program. This library has the advantage that the code does
not need to be downloaded, reducing the compile time, particularly for the
standard version of Dynamic C with its slower communication rate. The
EPROM library version is used if the same function appears in both the
EPROM library and the source library.

Use the following preprocessor command to replace a function in the
EPROM library.

#KILL funcl, func2, func3 .

This causes the specified functions in the EPROM library to be ignored.
Replaceable functions in the EPROM library have a period (.) in their
name. The KILL directive will change the period to an underscore (),
causing a search for a legal C name to occur. Your own version of the
function can then be added to the program or taken from one of the
libraries.

4-2 + System Development BL1300

Data Communication

The BL1300 is capable of both parallel and serial communication. These
options are described briefly in the following sections.

Parallel Communication

Parallel communication uses four or eight data paths to transfer data. In
serial communication, a single bit at a time is transferred, and only one
data path in the direction of transmission is required (two data paths are
required if an external data clock is used). Parallel communication can be
much faster, but is more expensive because of the need for multiple com-
munication lines.

Personal computers are usually equipped with a parallel communication
port to drive a printer. It is possible to communicate between the PC and
the BL1300 using such a parallel port at a much higher data rate than can
be obtained with a serial port, that is, about 40,000 bytes per second out of
the PC and 10,000 bytes per second to the PC. The maximum rate
possible on a serial port is 115,200 bits per second.

The parallel interface capability of the BL1300 makes it suited for many
jobs that could otherwise only be accomplished by using special interface
cards plugged into the PC. Parallel communication uses an interlocked
handshake so that data are not lost if the PC or BL1300 get distracted by
higher priority tasks. This high-speed protocol is discussed in more detail
later in this chapter.

Serial Communication

The serial data communication modes available on the BL1300 are varia-
tions of asynchronous and synchronous protocols, as shown in Figure 4-1.

Asynchronous serial communication is characterized by individual data
characters prefixed by a start bit and terminated by at least one stop bit,
with optional parity bits. Asynchronous data can be sent slowly, with
arbitrary gaps between characters. At least 10 bits must be sent to transmit
eight data bits. Data are sent with the least significant bit first.

Figure 4-2 shows the format of a single character.

Besides the overhead of the start and stop bits, another disadvantage to
asynchronous communication is the chance that the communications will
get out of sync with the data stream. This can occur if the data are sent
continuously, with the next start bit immediately following the last stop bit.
Although asynchronous communications can run at high speeds, particu-
larly if a separate clock line is used, it is more commonly used at lower
speeds of 115,200 bps or less.

BL1300 System Development ¢ 4-3

Serial

— Synchronous
—— Clock External Clock
Clock Recovered from Data
—— Mode Monosync
Bisync
SDLC

—— Encoding — NRZ, NRZI, FMO0, FM1

—— Signal Unbalanced (RS-232)
Level Balanced (RS-485)
— Asynchronous
—— Clock Internal, external
—— Modes Parity, stop bits, data bits
— Signal Unbalanced (RS-232)
Level Balanced (RS-485)

Figure 4-1. Serial Communication Protocols

HOB00B66Da0E
| \ |

Start Bit Data Bits Parity Bit Stop Bits
7or8 1,1.50r2

RS-232 voltage levels are shown

Figure 4-2. Format of Single Character in Asynchronous
Serial Communication

4-4 + System Development BL1300

Synchronous communication does not use start and stop bits. It requires a
separate clock and a regular procedure for detecting the start of a message
and identifying the first bit. The clock can either be transmitted on a
completely separate line or embedded in the signal and then extracted by a
phase-locked loop.

SDLC is the most popular synchronous transmission method. SDLC is a
bit stream made up of a multiple of 8-bit bytes. It follows the rule that no
more than five 1s can appear consecutively in the data stream, and en-
forces this rule by inserting a “0” following any group of five 1s. The
receiver deletes any zeros following five 1°s, thus reversing the insertion of
the spurious zeros. A special flag character, “01111110,” with six 1s is
used to mark the start and end of a frame of data. A few other special
characters with more than five 1s are used for control.

This “bit stuffing” algorithm guarantees that there will be transitions in the
data stream when using NRZI encoding of the data. This makes it possible
to recover the clock from the data stream using a phase-locked loop. A
phase-locked loop observes transitions in the data stream and keeps inter-
nal clock transitions lined up with the transitions in the data by speeding up
or slowing down the internal clock by a small amount.

An SDLC data frame is followed by a special 2 byte cyclic redundancy
check word having a high probability of detecting errors in the data stream.
All bit stuffing and check sums are handled by hardware, allowing very
high data rates of millions of bits per second. Direct Memory Access
(DMA) transfers are necessary at baud rates above 400,000 bits per second
since data cannot be handled by programmed inputs/outputs at such
speeds. DMA transfers use special hardware to move data directly
between the microprocessor memory and the serial port.

Various errors can occur in serial communication. When a low is detected
where a stop bit should be, this is called a framing error. An overrun error
occurs if data come in faster than the microprocessor removes it, to the
point where the input queue overflows. A parity error occurs if parity is
enabled and the parity bit is not correct (it can be even or odd parity).

Serial data are often transmitted over wires using unbalanced (RS-232) or
balanced (RS-485/RS-422) voltage-level signaling. RS-232 signaling is
used by the standard IBM PC’s COM port. The voltage levels range from
—6V fora“‘1’to+6 V fora ‘0.” RS-232 is suitable only for low to moder-
ate speeds over short distances, such as 15 m (50 ft). RS-485 signaling is
over a twisted-pair transmission line using balanced signaling—a ‘1’
indicates that the + signal is higher than the — signal, while a ‘0’ indicates
the opposite. This type of signaling is suitable for longer distances and
data rates, such as 100,000 bits per second at 1000 m. Slower speeds and
thicker wire allow even greater distances. Usually the voltage swing on

BL1300 System Development ¢ 4-5

each side of a balanced pair is 0 V to 2 V, although the standard allows a
much greater range and a considerable difference in ground potential
between the two sides of the link.

RS-485 communication can be full-duplex or half-duplex. In half-duplex,
the transmitter sends a message, then stops driving the transmission line.
The receiver can then begin to drive the line and send a reply. Data are
sent in one direction at a time and only a single twisted pair plus ground is
necessary. In full-duplex, a twisted pair in each direction is needed. The
communication is multidrop if a number of stations listen to the messages
at one time and have the option of replying. The twisted-pair communica-
tion lines must be terminated by their characteristic impedance and biased
if there are times when no transmitter is driving the line.

Modems are used to transmit data over the universal telephone system or
over lines too long for RS-485. Modems are also used for broadband
systems where many data signals are multiplexed at radio frequencies over
coaxial cable, radio, or microwave. Modems convert the high and low
voltage levels to shifts in frequency or phase of the signal in such a way
that the signal is not degraded by the transmission.

4-6 + System Development BL1300

Z180 Serial Ports

Two of the BL1300’s serial ports use the asynchronous serial controller
interface (ASCI) built into the Z180 microprocessor. These ports are
available through P1 (Channel 0) and P2 (Channel 1) of the ASCI. These
ports can deliver a maximum baud rate of 57,600 bps with the standard
9.216 MHz system clock. There is a separate baud-rate generator for each
channel. The baud rate can be divided down from the microprocessor
clock for either channel. One of the internal DMA controllers can be used
with the internal serial ports. Figure 4-3 shows the signals available on
jacks P1 and P2.

MINI8
Z180_TXAO > TXAO [TXAO >(P6
Z180_RXAO [« RXAO JRXAQ <€ P8
RS-232
Z180_TXA1 > Txa1 Y6 TxA1 P1
7180 Z180_RXA1 < RXA1 /RXA1 < P1
P2
Z180_/RTS0O >{ IRTSO RTSO
Z180_/CTSO (=« /CTSO CTSO (<
RS-232 > ,Eg
SCC_/DTRA > DTRA Y7 P2
scc DTRA
SCC_/DCDA [« /DCDA DCDA |<— > p1
P2
P1 (20) P2 (z1)
1 RTSO 1 DTRA (SCC)
2 CTSO0 2 DCDA (SCC)) . P4
6 X 6 X O Q—,—> P4
8 RX 8 RX J1
L—0O) O<«——F7
Shield GND Shield GND . A
Back Side of

DIN Connector

Figure 4-3. Signals on BL1300 on P1 and P2 Jacks,
ASCI Channels 0 and 1, RS-232 Driver Chips

The serial ports have an optional multiprocessor communication feature.
When enabled, an extra bit is included in the transmitted character where
the parity bit would normally go. Receiving Z180s can be programmed to
ignore all received characters except those with the extra multiprocessing
bit set. This provides a 1 byte attention message that can wake up a
processor without the processor having to intelligently monitor all traffic
on a shared communications link.

The block diagram in Figure 4-4 shows Serial Channel 0. Serial Channel 1
is similar, but modem control lines RTS1 and CTS1 are not available
directly. DTR and DCD from the serial communication controller can be
used if handshaking lines are required for Channel 1. Five of the seven
registers are directly accessible as internal I/O registers.

BL1300 System Development ¢ 4-7

microprocessor internal bus

A A A
Y Y
RDRO TDRO
A \
RXAO0 —» RSRO TSRO [—> TXAO0
Shift Register In |—4 Shift Register Out
Y
—RTS0
<—— CNTLAO > CLKAO
_CTSO Baud Rate
— 3! CNTLBO »| Generator
-DCDO
—> STATO

Figure 4-4. Z180 Serial Channel 0

A separate interrupt vector is used by each of the two channels. The
interrupt vectors are SERO_VEC and SER1_VEC. The Channel 0 interrupt
has the higher priority.

The serial ports can be polled or interrupt-driven. A polling driver tests the
ready flags (TDRE and RDRF) until a ready condition appears (transmitter
data register empty or receiver data register full). If an error condition
occurs on receive, the routine must clear the error flags and take appropri-
ate action, if any. If the CTS line is used for flow control, transmission of
data is automatically stopped when CTS goes high because the TDRE flag
is disabled. This prevents the driver from transmitting more characters
because the driver thinks the transmitter is not ready. The transmitter will
still function with CTS high, but care should be exercised since TDRE is not
available to properly synchronize loading of the data register (TDR).

An interrupt-driven port works when the receiver interrupt is enabled as
long as the program wants to receive characters. The transmitter interrupt
is enabled only while characters are waiting in the output buffer. When an
interrupt occurs, the interrupt routine must determine the cause: receiver
data register full, transmitter data register empty, or receiver error. All of
these interrupts are level-triggered, and another interrupt will occur imme-
diately if the interrupts are re-enabled without disabling the condition
causing the interrupt.

4-8 + System Development BL1300

ASCI Status Registers

The Z180 incorporates an asynchronous serial communication interface
(ASCI) that supports two independent full-duplex channels. Appendix C
summarizes the addresses of these registers. A status register for each
channel provides information about the state of each channel and allows
interrupts to be enabled and disabled.

STATO (04H)
7 6 5 4 3 2 1 0
| RDRF | OVRN | PE | FE | RIE |/DCDO| TDRE | TIE |
R R R R R/W R R R/W
STAT1 (05H)
7 6 5 4 3 2 1 0
| RDRF | OVRN | PE | FE | RIE |CTSlE| TDRE | TIE |
R R R R R/W R/W R R/W

/DCDO0 (Data Carrier Detect)

This bit echoes the state of the /DCDO input pin for Serial Channel 0.
However, when the input to the pin switches from high to low, the data bit
switches low only after STATO has been read. The receiver is held reset as
long as the input pin is held high. This function is not generally useful
because an interrupt is requested as long as /DCDO is a 1. This forces the
programmer to disable the receiver interrupts to avoid endless interrupts.
A better design would cause an interrupt only when the state of the pin
changes. This pin is tied to ground.

TIE (Transmitter Interrupt Enable)

This bit masks the transmitter interrupt. If set to 1, an interrupt is re-
quested whenever TDRE is 1. The interrupt is not edge triggered. This bit
must be set to 0 when there is a need to stop sending. Otherwise, interrupts
will be requested continuously as soon as the transmitter data register is empty.

TDRE (Transmitter Data Register Empty)

A 1 means that the channel is ready to accept another character. A high
level on the /CTS pin forces this bit to 0 even though the transmitter is ready.

CTSI1E (CTS Enable, Channel 1)

The signals RXS and CTS1 are multiplexed on the same pin. A 1 stored in
this bit selects the pin to serve the CTS1 function. A 0 selects the RXS
function. (The pin RXS is the CSIO data receive pin.) The CTS line has
no effect when RXS is selected. It is not advisable to use the CTS1
function on the BL1300 because the RXS line is needed to control several
other devices on the board.

BL1300 System Development ¢ 4-9

RIE (Receiver Interrupt Enable)

A 1 enables receiver interrupts and 0 disables them. A receiver interrupt is
requested under any of the following conditions: /DCDO0 (Channel 0 only),
RDREF (receiver data register full), OVRN (overrun), PE (parity error), FE
(framing error). The condition causing the interrupt must be removed
before interrupts are re-enabled, or another interrupt will occur. Reading
the receiver data register (RDR) clears the RDRF flag. The EFR bit in
CNTLA is used to clear the other error flags.

FE (Framing Error)

A stop bit was missing, indicating scrambled data. This bit is cleared by
the EFR bit in CNTLA.

PE (Parity Error)

Parity is tested only if MOD1 in CNTLA is set. This bit is cleared by the
EFR bit in CNTLA.

OVRN (Overrun Error)

Overrun occurs when bytes arrive faster than they can be read from the
receiver data register. The receiver shift register (RSR) and receiver data
register (RDR) are both full.

RDREF (Receiver Data Register Full)

This bit is set when data are transferred from the receiver shift register to
the receiver data register. It is always set when one of the error flags is set,
in which case defective data are loaded to RDR. The bit is cleared when
the receiver data register is read, when the /DCDO input pin is high, and by
RESET and IOSTOP.

ASCI Control Register A

Control Register A affects various aspects of the serial channel operation.

CNTLAO (00H)
7 6 5 4 3 2 1 0
MPBR/
MPE | RE TE |/RTSO| ggr | MOD2 | MOD1 | MODO
R/W R/W R/W R/W R/W R/W R/W R/W
CNTLA1 (01H)
7 6 5 4 3 2 1 0
MPBR/
MPE | RE TE |CKAID| Efgr | MOD2 | MOD1 | MODO
R/W R/W R/W R/W R/W R/W R/W R/W

4-10 + System Development BL1300

MOD0-MOD2 (Data Format Mode Bits)

MODO controls stop bits: 0 [I 1 stop bit, 1 [2 stop bits. If 2 stop bits
are expected, then 2 stop bits must be supplied.

MODI1 controls parity: 0 [J parity disabled, 1 O parity enabled. (See
PEO in ASCI Control Register B for even/odd parity control.)

MOD2 controls data bits: 0 [7 data bits, 1 [1 8 data bits.
MPBR/EFR (Multiprocessor Bit Receive/Error Flag Reset)

Reads and writes on this bit are unrelated. Storing a byte when this bit is 0
clears all the error flags (OVRN, FE, PE). Reading this bit obtains the
value of the MPB bit for the last read operation when multiprocessor mode
is enabled.

/RTS0 (Request to Send, Channel 0)

Store a 1 in this bit to set the RTSO line from the Z180 high. This line is
further inverted by the output driver. This bit is essentially a 1-bit output
port without other side effects.

CKAI1D (CKAL1 Disable)

This bit controls the function assigned to the multiplexed pin (CKA1/—
TENDO): 1 O —TENDO (a DMA function) and 0 [CKA1 (external clock
I/0O for Channel 1 serial port).

TE (Transmitter Enable)

This bit controls the transmitter: 1 [transmitter enabled, 0 [0 transmitter
disabled. When this bit is cleared, the processor aborts the operation in
progress, but does not disturb TDR or TDRE.

RE (Receiver Enable)

This bit controls the receiver: 1 O enabled, 0 O disabled. When this bit is
cleared, the processor aborts the operation in progress, but does not disturb
RDR, RDREF, or the error flags.

MPE (Multiprocessor Enable)

This bit (1 O enabled, 0 O disabled) controls multiprocessor communica-
tion mode which uses an extra bit for selective communication when a
number of processors share a common serial bus. This bit has effect only
when MP in Control Register B is set to 1. When this bit is 1, only bytes
with the MP bit on will be detected. Others are ignored. All bytes
received are processed if this bit is 0. Ignored bytes do not affect the error
flags or RDRF.

BL1300 System Development + 4-11

ASCI Control Register B

Control Register B for each channel configures the multiprocessor mode,
parity, and baud rate selection.

CNTLBO (02H) and CNTLB1 (03H)
7 6 5 4

3 2 1 0
MPBT MP /(F:,ES PEO DR SS2 SS1 SSO
R/W R/W R/IW R/W R/W R/IW R/W R/IW

SS (Source/Speed Select)

Coupled with the prescaler (PS) and the divide ratio (DR) The SS bits
select the source (internal or external clock) and the baud rate divider, as
shown in Table 4-1.

Table 4-1. Baud Rate Divide Ratios
for Source/Speed Select Bits

SS2 SS1

(7))
0
o

Divide Ratio

+ 64
external clock

P P PP OOOOo
P B O OFPrRPFr OO
P OFr OFr o r o

The prescaler (PS), the divide ratio (DR), and the SS bits form a baud-rate
generator (see Figure 4-5).

Prescaler - Divide
> (PS) Divider Ratio
Processor] 1 (DR)

Clock 10 2 16

o External I

=30 Clock 64

64 —>
Figure 4-5. Baud-Rate Generator
DR (Divide Ratio)

This bit controls one stage of frequency division in the baud-rate generator.
If 1 then divide by 64. If 0 then divide by 16. This is the only control bit
that affects the external clock frequency.

4-12 + System Development

BL1300

PEO (Parity Even/Odd)

This bit affects parity: 0 [J even parity, 1 [J odd parity. It is effective only
if MODI is set in CNTLA (parity enabled).

—CTS/PS (Clear to Send/Prescaler)

When read, this bit gives the state of external pin /CTS: 0 O low,

1 O high. When /CTS pin is high, RDREF is inhibited so that incoming
receive characters are ignored. When written, this bit has an entirely
different function. If a 0 is written, the baud rate prescaler is set to divide
by 10. Ifa 1 is written, it is set to divide by 30.

MP (Multiprocessor Mode)

When this bit is set to 1, multiprocessor mode is enabled. The multipro-
cessor bit (MPB) is included in transmitted data.

start bit, data bits, MPB, stop bits
The MPB is 1 when MPBT is 1 and 0 when MPBT is 0.
MPBT (Multiprocessor Bit Transmit)

This bit controls the multiprocessor bit (MPB). The MPB is 1 when
MPBT is 1 and 0 when MPBT is 0. When the MPB is 1, transmitted bytes
will get the attention of other units listening only for bytes with MPB set.

Table 4-2 relates ASCI Control Register B to the baud rate in bits per
second. The baud rate at 18.432 MHz is, of course, twice that at
9.216 MHz.

Table 4-2. Baud Rates for ASCI Control Register B

ASCI Baud Rate at | Baud Rate at ASCI Baud Rate at | Baud Rate at
B Value 9.216 MHz 18.432 MHz B Value 9.216 MHz 18.432 MHz
(bps) (bps) (bps) (bps)
00 57,600 115,200 20 19,200 38,400
01 28,800 57,600 21 9600 19,200
02 or 08 14,400 28,800 22 or 28 4800 9600
03 or 09 7200 14,400 230r 29 2400 4800
04 or OA 3600 7200 24 or 2A 1200 2400
05o0r 0B 1800 3600 250r 2B 600 1200
06 or 0OC 900 1800 260r 2C 300 600
0D 450 900 2D 150 300
OE 225 450 2E 75 150

BL1300 System Development ¢ 4-13

Software Drivers for Z180 Serial Ports

A function to compute the control word for CNTLBO/CNTLBI is built
into the following function call.

int z180baud(int clock, int baud)

This functions return the byte to be stored in CNTLBO/CNTLBI, consider-
ing only the bits needed to set the baud rate. Both the clock and baud rates
are expressed in multiples of 1200. Thus a 9.216 MHz clock is expressed
as 7680 and 19,200 bits per second is expressed by 16. The return value is
—1 if the baud value cannot be derived from the given clock frequency.

The function sysclock returns the system clock frequency in multiples of
1200 Hz.

Each port is supported by four routines that control initialization, sending,
receiving, and resetting. These routines are full-duplex, buffer-oriented,
and interrupt-driven. These library functions can be used to send and
receive messages on Serial Port 1.

int ser_init zl(char mode, char baud)
int ser_send zl(char* buf, byte* count)
int ser_rec_zl (char* buf, byte* count)
int ser_kill zl()

The function ser_init_z1 initializes Serial Port 1 as specified. The
mode parameter is a set of flags, as shown below. The baud parameter is
expressed in multiples of 1200 bits per second.

bit 0 0 1 stop bit
1 2 stop bits
bit 1 0 no parity
1 parity enabled
bit 2 0 7-bit data
1 8-bit data
bit 4 0 even parity
1 odd parity

For example, the statement below would initialize Port Z1 to communicate
with 8 data bits, no parity, and 1 stop bit at 9600 baud.

ser_init z1(4,9600/1200) ; // Initialize ZIO port 1

After initialization, the functions ser_send _z1 and ser_rec_z1 are
used to transfer data between the buffer and the serial port. The count
parameter is decremented as characters are transferred. When count
reaches zero, the transfer stops and the serial port is disabled. The calling
program can monitor count to see the progress of the transfer. The
ser_kill_z1l function immediately turns off both send and receive.

4-14 + System Development BL1300

Declare count to be a shared variable if the library
/ functions are modified so that count is an int rather than
a char.

It is important to remember that the serial routines supplied with
Dynamic C are interrupt-driven. This means that the transmission will
continue in the background while the program is doing other things.
Pointers are passing to a counter and a buffer. Both the counter and the
buffer are changed by the interrupt routines. Always use static or global
variables for the counter and buffer.

A demonstration program, SER_DEMO. C, is available to demonstrate the
use of the serial driver.

The stack and the program will be corrupted if pointers to
/ function variables stored on the stack are passed to the
interrupt service routine and then that function is exited.

/ Make count a shared variable if the library functions are
modified so that count is larger than a byte.

BL1300 System Development ¢ 4-15

Serial Communication Controller Ports

The serial communication controller (SCC) ports of the BL1300 can be
configured to be either RS-232 or RS-485. They are factory-configured as
RS-232 ports with RTS/CTS handshaking for both ports. SCC Channel A
can also use the DCDA and DTRA signals when pins 1-3 and 2—4 on
header J1 are connected. These signals are hardwired into jack P2, which
is controlled by ZIO Channel 1, so care is needed when using both
channels. Figure 4-6 shows the signals and jumper connections available
to configure the SCC RS-232 ports.

See Chapter 2, “Getting Started,” for details about enabling

&

driver chips with RS-485 driver chips.

the RS-485 ports in jacks P3 and P4 by replacing the RS-232

P2

RS-232 > p1
u7 P2
SCC_/DTRA >| /[DTRA DTRA 20) 4
SCC_/DCDA |« /DCDA DCDA <—|_< , J1OS—\—> P4
SCC_/RTSA ——> 0 J14 O O<—P7
SCC_TXCA ——>0O
u2u4 P41 > P1
SCC_/CTSA |l«——0 15 RS-232 < pp P4
Oe«—u2us , P42
SCC SCC_RXCA |l«——O > ps
SCC_TXDA > TXDA [TXDA| b8
SCC_RXDA |« RXDA /RXDA
SCC_/RTSB ——>» (O V12
SCC_TXCB ——>0
3 U1U4 P31 > p1
SCC_/CTSB l«——O RS-232 _
O<«———Uu1u3 P32 [P2 p3
SCC_RXCB [«——O u1
SCC_TXDB > TXDA JTXDA > P6
SCC_RXDB |« RXDA JRXDA | P8
P4 (scc0)
P3 (scct) 1 IRTSA
1 /RTSB or
or TXCA
B 2 /CTSA
2 /CTSB or
or RXCA
RXCB 4 DTRA
& Back Side of oo
ack Side o 6 X
8 RX DIN Connector 8 RX
Shield GND
Shield GND
Figure 4-6. Signals on BL1300 on P3 and P4 Jacks,
SCC Channels A and B, RS-232 Driver Chips
4-16 + System Development BL1300

RS-485 Network

Figure 4-7 shows the signal flow and jumpers available for configuring the
SCC RS-485 ports.

MINI8
RS-232 Pe
- P8
u7 P2
> P1
/DTRA DTRA <_s)
—— IDCDA DCDA
0,0
SCC_/DTRA L
SCC_/DCDA l«——! 9
RS-485
SCC_/RTSA —>O J14 u4 P1 > P1
O—>» L2u4 P4 >| P4
SCC_TXCA —>»O
P6
SCC scc TxoA > TXDA P3 > §§
SCC_/CTSA l«——0O 15 P4
O<— u2us P2 [« P2
SCC_RXCA [«——0O RS-485 P7 [« P7
SCC_RXDA |< rRxpa U3 ol P8
P5 |« P5
4 IRTS+
P4 (scc0) or
1 JRTS- TXC+
or 5 RX-
TXC- 6 TX+
2 /CTs+ 7 ICTs-
or or
RXC+ RXC-
3 TX s Rx+
Back Side of f
DIN Connector Shield GND
(a) SCC Channel A, RS-485 Driver
RS-485
SCC_/RTSB ——>»(J12 U4 P1 > P1
O—>» u1u4 P4 > P4
SCC_TXCB [—>O
P6 > p6
SCC_TXDB >| TXDB P3 > b3
SCcC P3
scc_/CcTsB [«—O J13
O<——u1us P2 P2
SCC_RXCB [f«——0O RS-485 P7[< P7
SCC_RXDB [« rRoB U3 ol P8
P5 P5
4 IRTS+
P3 (scc1) or
1 RTS- TXC+
or 5 RX-
TXC- 6 TX+
2 ICTS+ 7 /CTS-
or or
RXC+ RXC-
3 T Back Side of 8 RX+
DIN Connector Shield GND

(b) SCC Channel B, RS-485 Driver

Figure 4-7. Signals on BL1300 on P3 and P4 Jacks,
SCC Channels A and B, RS-485 Driver Chips

BL1300 System Development ¢ 4-17

RS-485 driver, as these are connections for DCDA and
DTRA with an RS-232 interface.

j Do not install jumpers at J1 for Channel A when using the

Four resistor packs are supplied with the BL1300 accessory kit: 120 Q
(RP4, red dot, Bourne PN 4608X-102-121), 220 Q (RP3, yellow dot,
Bourne PN 4608X-102-221), and 680 Q (RP2, RP1, green dot, Bourne PN
4608X-102-681). The 120 Q resistor pack (RP4) is for terminating
RS-485 multidrop networks that have a long length. These packs should
only be installed in the first and last boards in the network; a terminating
resistor pack usually has to be installed in the last board in the network.
Resistor packs for RP1, RP2 and RP3 provide bias for the signal pairs.
These resistor packs are only needed for half-duplex multidrop networks
when there is a chance that there will be no board driving a line.

Figure 4-8 shows the locations for installing these resistor packs.

— QN M
oo
Yoo E
(o)
olofo 4
BER :
(]
st fsllil 5 s f o
ofojo <t O
120 d=2f0llol 12012 i =
BERL. 2 ;
N
G T I s J = S
-) r)
-~ N [s2] < .
o o o o
Reset
Pushbutton

Figure 4-8. Location of BL1300 Bias and Termination Resistor Packs

Figure 4-9 shows the mini DIN-8 connections on the BL1300 board. The
view is from the bottom of the board with the mini DIN-8 connectors on
the right edge of the board.

Figure 4-9. BL1300 mini-DIN Connections
(view from bottom side of board)

4-18 + System Development BL1300

SCC Baud Rate Generation

The clock used by the SCC, PCLK, operates at the same frequency,
9.216 MHz, as the SmartBlock system clock. The frequency of the
SmartBlock system clock can be changed by changing the crystal on the
SmartBlock.™

In addition to using the SmartBlock system clock as a source for clocking
data communications, the SCC can use either a separate oscillator crystal
or an externally supplied clock for each of its two channels. The clock
source is divided by internal baud-rate generators so that each channel is
able to generate its own clock at the desired frequency.

A third source of a clock is the digital phase-locked loop inside the SCC,
which can recover clock information from the incoming signal.

Figure 4-10 illustrates these clock generation schemes.

Baud Rate Generator

PCLK Baud
— aud-

Rate | BAUD
RTxC Generator

Baud rate divisor is
4 to 262144

Digital Phase-Locked Loop

RTxC
Digital Phase- | DPLL
BAUD Locked Loop

Maximum clock frequency is
MHz

Figure 4-10. Alternate SCC Clock Generation Schemes

When there is no clock supplied externally, the maximum data rate for
asynchronous communication is 1/16 the maximum baud rate, which is V4
the system PCLK. Two formulas are available to calculate the time
constant when the baud rate is known, or to calculate the baud rate when
the time constant is known.

clock frequency
2xclock ratexbaudrate

time constant =

clock frequency
2xclock ratex(time constant +2)

baud rate =

BL1300 System Development ¢ 4-19

The baud rates listed in Table 4-3 can be obtained with various baud rate
divisors and a system clock of 9.216 MHz, or with the auxiliary

7.3728 MHz crystal installed on Channel A. The auxiliary crystal in-
creases the choice of baud rates to all the baud rates that are obtainable
from the serial port on an IBM PC.

Table 4-3. SCC Baud Rates for Selected Divisors and Clock

Frequencies
Clock Frequency Asynchronous Parameters
9.216 MHz 7.3728 MHz Time Constant Divisor
144,000 115,200 0 64
96,000 76,800 1 96
72,000 57,600 2 128
57,600 46,080 3 160
48,000 38,400 4 192
36,000 28,800 6 256
32,000 25,600 7 288
28,800 23,040 8 320
24,000 19,200 10 384
19,200 — 13 480
14,400 — 18 640
12,000 9,600 22 768
9,600 — 28 960

The maximum baud rate in synchronous modes or in asynchronous mode
with an external clock is 16 times higher, or 2.304 MHz, when the
9.216 MHz PCLK is used.

The SCC has a built in digital phase-locked loop that can be used to
recover a clock from a data stream. When the internal phase-locked loop
is used to generate the clock from the data stream, the data rate is limited
to 1/16 or 1/32 the driving frequency of the phase-locked loop, which in
turn is limited to 10 MHz, the maximum auxiliary crystal frequency that is
allowed. The 1/16 factor applies in FMO0 and FM1 modes. The 1/32 factor
applies in NRZ, NRZI and Manchester modes. This limits the maximum
data rate to 625,000 bps in the FM mode, and to 312,500 bps in the other
modes.

4-20 + System Development BL1300

The various methods of encoding and decoding the data stream are shown
in Figure 4-11. The SCC can decode Manchester data, but it cannot
encode it. The NRZ mode can be used in an asynchronous mode or with
an external clock. The NRZI mode provides sufficient transitions to
recover the clock if SDLC is used. SDLC never has more than five 1’s in
sequence because of the “bit stuffing” used. The clock can always be
recovered in the FM modes.

Data | 1 110]0]1]0

NRZ ! i i Direct representation
NRZI ; ; | Transition on zero
FM1 Extra transition on 1

Manchester Transition in center,

FMO | Extra transition on 0
| up zero, down 1

Figure 4-11. Methods for Encoding and Decoding
Data Stream in SCC

SCC Software Drivers

The BL1300 lacks both a hardware reset for initializing the SCC ports and
an interrupt line for the SCC. Always perform a software reset upon entry
into the program. The SCC uses INT1 to generate an interrupt to the
processor. This interrupt must be enabled before the SCC functions
supplied in BL13XX.LIB can be used. The following program lines
perform a software reset for both channels and enables INT1.

scc_rst(2);
outport(ITC, inport(ITC) | 0x02);

The function scc_rst (channel) accepts a channel number to specify an
individual channel or a 2 to reset both channels. After resetting the SCC
ports and enabling INT1, use the following library functions to send and
receive messages on SCC Serial Ports 0 and 1.

int asyn_init sccO0 (char mode, char baud)
int asyn_send_sccO (char* buf, char* count)
int asyn_rec_sccO0 (char* buf, char* count)
int asyn kill _sccO ()

int asyn_init sccl (char mode, char baud)
int asyn_send_sccl (char* buf, char* count)
int asyn_rec_sccl (char* buf, char* count)
int asyn kill sccl ();

BL1300 System Development ¢ 4-21

The function asyn_init_scex initializes the specified SCC port. The
mode parameter controls the data format as follows.

bit 0 0 1 stop bit
1 2 stop bits
bit 1 0 no parity
1 parity enabled
bit 2 0 7-bit data
1 8-bit data
bit 3 0 even parity
1 odd parity
bits 5 & 4 clock rate
00 data rate
01 16 times data rate
10 32 times data rate
11 64 times data rate
bit 6 0 use system clock (9.216 MHz)
1 user-installed crystal

For example, if mode is 0x14, the port is set for 8-bit data, no parity, 1
stop bit and 16 times data rate. If mode is 12, the port is set for 7-bit data,
even parity, one stop bit and 16 times data rate. Always use at least 16
times data rate for asynchronous communications. Using 1 times data rate
will result in framing errors.

The baud parameter must be expressed in multiples of 1200 bps. For
example, a value of 8 specifies 9600 bps. If a user-installed crystal is used,
set the external integer variable CLOCKSPEED to 1/1200 the speed of the
crystal. For example, a 7.3728 Hz crystal (crystal for Port 0 installed in
factory) would require a value of 6,144. Save the actual value of
CLOCKSPEED and restore it after initializing the SCC port.

After initialization, the functions asyn_send_scex and asyn_rec_scex
are used to transfer data between the buffer and the serial port. The count
parameter is a pointer to a type char that is decremented as characters are
transferred. When count reaches zero, the transfer stops and the serial
port is disabled. The count parameter can be monitored to see the
progress of the transfer. The asyn_kill_ scex function immediately
turns both send and receive off.

If the library functions are modified so that count is type
/ int rather than char, then count should be declared to be
a shared variable.

4-22 + System Development BL1300

It is important to remember that the SCC routines supplied with

Dynamic C are interrupt-driven. This means that they will continue to
execute in the background while the main program continues running.

This is a problem only if the send or receive routines are called from
functions other than main. Remember that pointers are being passed to a
counter and a buffer, and these items will be changed by the interrupt
routines. The stack will become corrupted if the interrupt routine pointers
are passed to variables stored on a function’s stack and then that function is
exited. Always use static or global variables for count and buf.

Because of the high baud rates available to the SCC, data can be input
faster than even a polled driver can handle. DMA transfers, which support
these high data rates, are supported with the following functions.

int dma mem sccO (long mem, int size);

int dma sccO_mem (long mem, int size);

int dma mem sccl (long mem, int size);

int dma sccl mem (long mem, int size);
These functions use the Z180’s DMA channels to transfer data between a
memory location and an SCC port. The memory location can be within the
780’s 64K code space, or the memory location can be at any physical
SRAM location that is not mapped into code space. The long mem
argument is the physical address of the buffer. The function phy_adr (
char* buf) returns the long address of a Dynamic C variable. This
variable should be global or static to avoid problems with overwriting the
stack.

The function dma_mem_sccx outputs characters to the SCC port, while
dma_sccx_mem inputs characters. The demonstration programs

DMA OUTx.C,DMA_INx.C and DMALPBK.C provide examples of the use
of the DMA transfer functions.

For a complete description of the Z85C30 SCC, consult the
Qoﬂ Serial Communication Controllers manual, available from
Zilog or from Z-World.

BL1300 System Development ¢ 4-23

Parallel Communication

The “standard” IBM PC printer port originated with the original IBM PC
and is probably a variation of a printer port designed by the Centronics
Company. The BL1300 is able to communicate with such a port.

These three methods for using the printer port are available.

1. The BL1300 looks to the PC like a printer. Thus, unmodified PC
software can send print output to the BL1300

2. The BL1300 drives an IBM-style printer.

3. The printer ports are used for bidirectional communications at much
higher speeds than can be obtained using serial ports. Data rates of
60,000 bytes per second are possible.

Parallel Connections

Figure 4-12 shows the standard cables and connectors for interfacing the
BL1300 to a Centronics parallel port.

1 Communication bits:
2 DO0-D7 outbound bits
B0-B3 inbound bits

—

——————

——— Standard
\

—_———— IBM PC

printer cable

25

26

EIA DB25 Centronix style

connector 36-pin

N.C. (female, front connector
view, interface (printer cable
end) end, male)

Figure 4-12. Interfacing BL1300 with Centronics Parallel Port

The BL1300 has two parallel ports. Both ports are available on 26-pin
headers that cable directly to a DB25 connector with the correct assign-
ments for a printer port. One of the ports is also available on a female
DB25 connector.

4-24 + System Development BL1300

Table 4-4 lists the signals on the corresponding PIO parallel ports and the
printer interface lines. Lines PAO—PA7 belong to PIO Port A and lines
PB0O-PB7 belong to PIO Port B.

Table 4-4. BL1300 PIO Pin Assignments

PISOP.in P[i)nBﬁi. Description PISOF.’in P?r?l%li Description
1 1 PBO / —Strobe 14 20 GND
2 14 AF2=+5 | —Autofeed 15 8 PAG6 / Data Bit 6
3 2 PAO / Data Bit 0 16 21 GND
4 15 PB7-B3 / -Error 17 9 PA7 | Data Bit 7
5 3 PA1 / Data Bit 1 18 22 GND
6 16 PB2=INIT1 / —Int 19 10 PB1 /-Ack
7 4 PA2 / Data Bit 2 20 23 GND
8 17 PB3 /-Select Input 21 11 PB4-BO0 / +Busy
9 5 PA3 / Data Bit 3 22 24 GND
10 18 GND 23 12 PB5-B1/+P. End
11 6 PA4 | Data Bit 4 24 25 GND
12 19 GND 25 13 PB6-B2 / +Select
13 7 PA5 / Data Bit 5 26 — not connected

A standard PC printer cable has a 36-pin male Centronics connector on the
printer end and a 25-pin male DB25 connector on the other end. The PC
printer interface and the BL1300 both have a DB25 female connector. A
straight through male-male DB25 cable can be used to connect the
BL1300 parallel port to a PC parallel port, allowing high-speed communi-
cation with the proper software.

BL1300 System Development ¢ 4-25

Table 4-5 maps the pins on the DB25 connector to the pins on the

Centronics connector.

Table 4-5. DB25 and Centronics Pin Mapping

=

BL1300 DB25 Pin Centronix .
Signal No. Pin No. hCiuls et

PAO 2 2 Data0 | Parald datalineto printer

PA1 3 3 Datal | Parald datalineto printer

PA2 4 4 Data2 | Parald datalineto printer

PA3 5 5 Data3 | Parald datalineto printer

PA4 6 6 Data4 | Parald datalineto printer

PA5 7 7 Data5 | Parald datalineto printer

PA6 8 8 Data6 | Parald datalineto printer

PA7 9 9 Data7 | Parald datalineto printer
Negative-going 1 us pulse to

PBO 1 1 —Strobe | indicate data ready on data
lines
Negative-going 5 us pulse to

PB1 10 10 —Ack | indicate data received by
printer

PB2 31 16 —Int 50 s pulse to initialize print

—Select| Set negative to indicate printd

PB3 36 1 Input | is selected (do not drive high

PB4 11 11 +Busy Indlqates printer cannot
receive data

PB5 12 12 +P. Indicates printer is out of

End paper

PB6 13 13 +Select Indicates printer is selected

PB7 32 15 —Error| lindicates error, off line, etc.
Causes printer to automati-

—Auto | cally add a line feed in certai

SV 14 14 Feed | circumstances; pull high with
resistor if needed

GND All others Signal ground

4-26 + System Development

BL1300

Figure 4-13 shows the standard communication protocol between a PC and
a printer.

Data X
Strobe
|_| Interrupt on
tf us falling edge
if enabled
Busy
Ack

~5 s
Standard IBM Protocol

Figure 4-13. Standard PC—Printer Communication Protocol

The standard protocol can be captured with the BL1300’s PIO Port 0
mimicking a printer.

Using Protocol Switch PIOs

The functions in this section are in the Dynamic C PRPORT . LIB library.
The PIO port addresses in the function descriptions depend on which
device is being run with the BL1300. The BL1300 preprocessor needs the
port addresses. Use one of the following commands for functions that do
not specify the PIO port directly.

#ifdef USEPS1 1 // use PIO Port B on the
// BL1300
#define PIODA 1 0x90
#define PIOCA 1 0x92
#define PIODB 1 0x91
#define PIOCB 1 0x93

#else // use PIO Port A on the
// BL1300 (default)
#define PIODA 1 0x80
#define PIOCA 1 0x82
#define PIODB_1 0x81
#define PIOCB_1 0x83

Use BL1300 to Drive a Printer
* int prsend0O_init()

Initializes the PIO Port 0 to output characters to an IBM-style printer.
e int prsendO(char data)

Sends one character to the printer connected to PIO Port 0.

BL1300 System Development ¢ 4-27

Use the functions prsendl_init and prsendl for PIO Port 1.
The functions prsend0 and prsend1l return the following codes.
0 character sent correctly
1 printer is off line
2 printer is out of paper
These functions are not interrupt-driven.
BL1300 Printer Emulation
Several functions enable the BL1300 to receive data like a printer.

* int plink initO(struct circ_buf *ptr,
char* buf, int amask)

Initializes first PIO port to receive characters sent to a printer.
PARAMETERS: circ_buf has several indices and a mask.

ptr points to one structure in static memory used to keep track of data
in the buffer.

buf points to an array that must be a power of 2 in size.

amask reflects the size of *buf, and is 7, 15, 31, 63, 127, etc., depend-
ing on the buffer size. If the buffer size is 128 bytes, then the mask
must be 127.

* int plink rdyO()

Returns 1 if a printer character is waiting in the buffer. Returns zero if
the buffer is empty.

¢ int plink_getcO(int no_purge)

Retrieves the next character from the circular buffer. If no_purge is 1,
the character is not removed from the buffer. If no_purge is 0, the
character is removed from the buffer.

Interrupts must be enabled when this function is called.

These BL1300 printer emulation functions are interrupt-driven. Each
character received causes an interrupt that adds the character to the buffer.

4-28 + System Development BL1300

BL1300 Digital Interfaces

PIO LSI Interface Chip

The Zilog PIO interface chip at U9 and U10 is a 44-pin chip that provides
16 parallel input/output lines, each of which can be set up individually as
an input or an output. The lines can also be used to detect transitions and
interrupt the microprocessor in various ways. Figure 4-14 illustrates the
interface signals.

J6
J5 IASTBL 1 [g]2 ARDY1
PIO Port A = P5/P05 Pez1[g /BSTBL 3 4 BRDY1
PIO Port B = P6 N2 IASTB2 5 o 6 ARDY?2
IRESET 3 | OO
+5V] /BSTB2 7| |8 BRDY?
GND 9 10__GND
% % % % 10 kQ 00
P5/P6
PBO 1[5 -2 AF
PAO 31h ol4 PB7
PA1 5 15] PB2 or INIT
PA2 715)-8 PB3
PA3 ° lh o
PA4 1 1o
PAS 13 15
PAG 15 |5
PA7 17 15
PB1 19 |~
PB4 21 |~
PB5 23 |~
PB6 2 |5

v
10 kQ % % % %1OKQ
5V

Figure 4-14. PIO Header Connections

The PIO lines are available on headers P5, P05 (PIO Port A) and P6 (PIO
Port B). Each of the port lines PAO—PA7 and PBO-PB7 can serve as inputs
or outputs, depending upon the mode. The eight lines on header J6 are
handshaking lines consisting of a ready line and a strobe line for each of
the ports.

The signals on header J5 are used to reset the BL1300 through a parallel
connection to PIO Port A. With a jumper across pins 1-2 (factory default),
the signal from pin 6 (INIT) on header P5 goes to PB2. Jumpering pins
2-3 on header J5 ties pin 6 on header P5 to /RESET so that bringing this
line low will reset the BL1300.

BL1300 System Development ¢ 4-29

The connections on these ports are designed for interfacing to a Centron-
ics-compatible port. Connector P05 provides a pin-compatible DB25
connector that can be connected directly to either a printer or to a PC print-
er port with a standard Centronics printer cable or a straight-through cable.

Dynamic C functions are provided in the PRPORT . LIB li-
AN brary to drive these ports for printer control with a PC. See

the section on “Parallel Communication” in Chapter 4 for

more information on the use of these ports as a printer driver.

The parallel port can also be used to read a cross-wire keyboard by setting
each row to zero volts and monitoring the columns, which are held up by
the pull-up resistors. The microprocessor can use the parallel port to
detect closures of any of the keys in the keypad.

The output impedance of the PIO ports is approximately 80 Q for sinking
current and 160 Q for sourcing current.

/ Do not apply voltages below ground or above VCC to the
PIO ports.

The PIO ports are flexible, and have a number of operating modes. The
four ports are controlled by the following eight registers.

0x80 PIO Port A1 data (PIODA 1)
0x82 PIO Port A1 command (PIOCA_ 1)
0x81 PIO Port B 1 data (PIODB_1)
0x83 PIO Port B 1 command (PIOCB_1)
0x90 PIO Port A 2 data (PIODA 2)
0x92 PIO Port A2 command (PIOCA_2)
0x91 PIO Port B 2 data (PIODB_2)

0x93 PIO Port B 2 command (PIOCB_2)

These addresses are not defined in EPROM as most of the device ad-
dresses for the SmartBlock are. So for convenience you may want to use
the #define statement to assign these values to easily remembered names.
The names in parenthesizes are recommended for compatibility with the
sample programs.

Each pair of registers controls one of the 8-bit ports and the two handshak-
ing lines associated with each port. The bits associated with each port are
shown in the PIO header connection diagram in Figure 4-14. For example,
PBO is bit 0 in Port B.

4-30 + System Development BL1300

The ports have these four modes of operation.
1. Mode 0—strobed byte output.

When a byte is stored in the data register by the microprocessor, the eight
associated output lines change their level, to high for a “1” and to low for a
“0”. The ready handshake line is also set high. If an external device
pulses the /Strobe signal, the ready line will be reset. If interrupts are
enabled for the port, a PIO interrupt will be requested. This allows for
interrupt-driven parallel output to an external device.

2. Mode 1—strobed byte input.

Mode 1 latches eight bits into the PIO registers on the /Strobe signal from
an external device. The /Strobe signal also causes the ready line to go low.
An interrupt is then requested. After the microprocessor reads the data
register, the Ready line is raised to indicate to the external device that the
port is ready for another data character.

3. Mode 2—bidirectional strobed communication (Port A only).

Mode 2 uses Port A and all four handshake lines. It allows data to be
transferred in both directions under control of the four handshake lines.

4. Mode 3—static input or output , input/output selectable by bit.

Mode 3 is a general-purpose input/output mode, and each bit can be
individually specified as input or output. In Mode 3 the input lines can
also serve as interrupt request lines. Either transition to high or low can be
specified for the interrupt request. Interrupts for specific input lines are
controlled with a mask and specifying an AND or an OR function of the
masked lines. Interrupts on PIO ports are edge triggered.

Using PIO Ports

In order to set up a port, a sequence of bytes is first written to the com-
mand register. The data register is then subsequently read or written to
transfer data. Figure 4-15 shows the control register bytes.

D7 | D6 | X | X 1 1 1 1

Identifies this as
mode control word

Figure 4-15. BL1300 PIO Port Control Register Bytes

The mode control word specifies the mode for the port.

BL1300 System Development ¢ 4-31

The input/output register control word must immediately follow the mode
control word only when the mode is Mode 3. This specifies which bits are
inputs and which bits are outputs. See Figure 4-16.

D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

0 — bit is output
1 —bit is input

Figure 4-16. BL1300 PIO Port I/O Register Control Word

The interrupt vector word specifies the interrupt vector for the relevant
PIO channel. See Figure 4-17.

D7 | D6 | D5 | D4 (D3 | D2 | D1 | O

Identifies this as

Interrupt vector interrupt vector word

Figure 4-17. BL1300 PIO Port Interrupt Vector Word

The vectors for the PIO ports are as follows.

0x12
0x14
0x32
0x34

PIO Port A 1 (PIOA_1_VEC)
PIO Port B 1 (PIOB_1_VEC)
PIO Port A 2 (PIOA_ 2 _VEC)
PIO Port B 2 (PIOB_2_VEC)

The interrupt control word specifies the conditions under which an
interrupt is generated. See Figure 4-18.

D7 | D6 | D5 | D4 | O 1 1 1

Identifies this as

interrupt control word

0 No mask world follows
1 Mask word follows

0 Active level for interrupt is low
1 Active level is high

0 Interrupt on OR function
1 Interrupt on AND function

L O Interrupt disabled
1 Interrupt enabled (after M1)

Figure 4-18. BL1300 PIO Port Interrupt Control Word

4-32 + System Development

BL1300

The mask control word must immediately follow the interrupt control word
if bit D4 is set. Always mask output bits of the port, as unpredictable
behavior will result from these bits being specified as interrupt bits. See
Figure 4-19.

D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

Mask bits: A bit is monitored and an interrupt
is generated if the bit is set as input and the
mask bit is set to 0. Do not set a bit specified
as output as a mask bit.

Figure 4-19. BL1300 PIO Port Mask Control Word

The interrupt disable word allows you enable and disable an interrupt for a
port that is already defined by an interrupt control word. The interrupt
disable word can also be used to disable interrupts on an unconfigured
port. See Figure 4-20.

D7 | X | X | X 0 1 1 1

Identifies this as

interrupt disable word

0 Interrupt disable
1 Interrupt enable

Figure 4-20. BL1300 PIO Port Interrupt Disable Word

The sample Dynamic C program PIODEMO. C in the SAMPLES directory
illustrates how to configure a PIO port for interrupts.

BL1300 System Development ¢ 4-33

4-34 + System Development BL1300

REFERENCES

BL1300 References ¢ 5-1

Z-World Technical Manuals

Dynamic C Technical Reference Manual.

* A detailed manual on the use of Dynamic C.

Zilog Technical Manuals

Not all of these manuals are available from Z-World. Check with your
local Zilog office (Campbell, CA, Tel. 408-370-8120) before contacting
Z-World.

Z80 PIO Parallel Input/Output Technical Manual (DC-0008-03).
* Covers the parallel ports on the BL1300 in more detail.

Z80 Assembly Language Programming (03-0002-02).

* A good reference on assembly language.

Serial Communications Controllers (DC-8316-00).

* Data on SCC serial port. A necessity for most SCC programming,
especially for synchronous modes.

Z180 MPU User’s Manual. (DC-8276-04)

* Description of the Z180 processor and internal “peripherals.” Some
material relating to interface with Z80 style peripherals may be covered
better in the Z80 User’s Manual.

Z80 User’s Manual (DC-8309-01)

Hitachi Technical Manuals

Available from Z-World or from Hitachi America (San Jose, CA,
Tel. 408-435-8300).

HD64180 8-Bit Microprocessor Hardware Manual (U77).

* Covers the HD64180Z, which is functionally identical to the Z180 used
in the SmartBlock.

HD64180 8-Bit Microprocessor Programming Manual (U92).

* Gives a very detailed description of each operation code.

Specifications on Integrated Circuits

Please contact the following companies directly for data on these compo-
nents.

24C04 EEPROM
e Microchip, Chandler, AZ (602) 963-7373.

* Xicor, Milpitas, CA (408) 432-8888, has similar parts and parts of
larger capacity.

5-2 + References BL1300

Epson 72421 Real-Time Clock

* Integrated Electronics Corp. (IEC) Sacramento, CA (916) 363-6030.
Maxim MAX691 Watchdog Timer

» Bell Industries, Rocklin, CA (916) 652-0414.

BL1300 References ¢ 5-3

5-4 + References BL1300

A

Aprenpix A: - TROUBLESHOOTING

Appendix A provides procedures for troubleshooting system hardware and
software.

BL1300 Appendix A: Troubleshooting ¢+ A-1

Out of the Box

Check the items listed below before starting development. Rechecking
may help to solve problems found during development.

Verify that the entire system has good, low-impedance, separate
grounds for analog and digital signals. The BL1300 is often connected
between the host PC and another device. Any differences in ground
potential can cause serious problems that are hard to diagnose.

Do not connect analog ground to digital ground anywhere.

Verify that the host PC’s COM port works by connecting a known-good
serial device to the COM port. Remember that a PC’s COM1/COM3
and COM2/COM4 share interrupts. User shells and mouse software, in
particular, often interfere with proper COM-port operation. For
example, a mouse running on COM1 can preclude running Dynamic C
on COM3.

Use the Z-World power supply supplied with the developer’s kit. If
another power supply must be used, verify that it has enough capacity
and filtering to support the BL1300.

Use the Z-World cables supplied.

Dynamic C Will Not Start

If Dynamic C will not start, an error message on the Dynamic C screen (for
example, Target Not Responding or Communication Error), announces
a communication failure:

Wrong Baud Rate — Either Dynamic C’s baud rate is not set correctly
or the Interface Board baud rate is not set correctly. Both baud rates
must be identical. The baud rate is stored in the EEPROM. Chapter 2
described how to change this rate using JO7 in the Interface Board.
Dynamic C’s baud rate is set by the Serial Options command in the
OPTIONS menu.

Wrong System Clock Speed in EEPROM —The EEPROM stores the
system clock speed as a word at location 0x108 in multiples of

1200 Hz. If the EEPROM is corrupted, then only the 9600 bps setting
will work until the correct clock speed is entered into the EEPROM. A
9.216 MHz clock is assumed if there is no EEPROM.

A-2 + Appendix A: Troubleshooting BL1300

* Wrong Communication Mode — Both the PC and the BL1300 must be
using the same protocol: RS-232 (EIA) or RS-485. Check the jumper
settings on the Interface Board’s J04. Make sure JO1 is used for
RS-232, J02 for RS-485. Use Dynamic C’s Serial Options command
in the OPTIONS menu to check and alter the protocol for the PC.

e Wrong COM Port — A PC generally has two serial ports, COM1 and
COM2. Specify the one used in the Dynamic C Serial Options
command in the OPTIONS menu. Use trial and error, if necessary.

* Wrong Operating Mode — Check jumper J4 and the connections on
header J9, as described in Chapter 2.

Dynamic C Loses Serial Link

Dynamic C will lose its link if the program disables interrupts for more
than 50 ms. If a communication method is used that is not driven by the
nonmaskable interrupt (NMI), make sure that interrupts are not disabled
for more than 50 ms. This is not a concern if a communication method
driven by NMI is used.

BL1300 Resets Repeatedly

If the watchdog timer is enabled by installing J3 on the SmartBlock, a
system reset will occur every 1.6 s if the watchdog timer is not “hit.”
Dynamic C “hits” the timer automatically in edit mode or in debug mode,
but a user program must include a call to uplec_init at the start of the
program to make sure the watchdog timer is hit periodically.

Interrupts Off for Long Periods

If communications not driven by the nonmaskable interrupt do not turn off
interrupts for long periods of time in a program, the communication link
with the PC will drop. This is not a problem with the NMI mode on.

Input/Output Problems

A strobe is needed to move data in PIO Modes 0 and 1. The strobe lines
are connected to H5 and H6. Use Mode 3 for static input. Mode 1 may
appear to work, but will be erratic because the strobe line floats.

Power-Supply Problems

If the external power supply does not have sufficient capacity, an addi-
tional load such as an LED can trigger a power-fail interrupt that initiates a
hardware reset. The reset triggers the load to be turned off, but then the
computer restarts and turns the load back on. This oscillation can be
corrected by increasing the size of the power supply.

BL1300 Appendix A: Troubleshooting ¢+ A-3

Common Programming Errors

* Values for constants or variables are out of range.

Type Range
i nt —32,768 (-215) to
+32,767 (215-1)
long int -2,147,483,648+231) to
+2147483647 (2311)

fl oat —6.805646 x 1038 to
+6.805646 x 1038

* Counting up from, or down to, one instead of zero. In the
software world, ordinal series often begin or terminate with zero,
not one.

* Confusing a function’s definition with an instance of its use in a
listing.

* Not ending statements with semicolons.
* Not inserting commas as required in functions’ parameter lists.

* Leaving out an ASCII space character between characters forming
a different legal—but unwanted—operator.

» Confusing similar-looking operators such as && with &, == with
=, // with /, etc.

 Inadvertently inserting ASCII nonprinting characters into a
source-code file.

A-4 + Appendix A: Troubleshooting BL1300

ArPENDIX B: SPECIFICATIONS

Appendix B provides the dimensions and specifications for the BL1300
controller.

BL1300 Appendix B: Specifications ¢ B-1

Hardware Dimensions
Figure B-1 illustrates the BL1300’s dimensions.

-0
o o)
@]
X
o
Se
o 22
b N~
Qo '~ S
() gr_
N
SeR2)
o
)
-~
I o8
9o o S
TR } 1
| I
I L/ 0.43
s (11)
418

Figure B-1. BL1300 Dimensions

BL1300

B-2 ¢+ Appendix B: Specifications

Table B-1 presents the specifications for the BL1300 controllers.

Table B-1. BL1300 Specifications

Parameter

Specification

Board Size

52" x 3.9" x 1.0"
(132 mm x 99.1 mm x 25 mm)

Enclosure Size

5.45" x 4.15" x 1.6"
(138 mm x 105 mm x 41 mm)

Operating Temperature

-40°C to +70C

Humidity

5% to 95%, noncondensing

Input Voltage and Current

9Vto 36V (DC), 100 mA at 24 V,
switching regulator option

User-Configurable 1/O

32 software-selectable as inputs or outputs, T|TL
and CMOS compatible

Digital Inputs See User-Configurable 1/10
Digital Outputs See User-Configurable 1/0
Analog Inputs No
Analog Outputs No
Resistance Measurement
Input No
Processor Z180
Clock Speed 9.216 MHz
SRAM 32K (supports up to 512K
EPROM 32K (supports up to 512K)
Flash EPROM No
EEPROM 512 bytes
Counters Software implementable
Serial Ports Two RS-232 (with RTS/CTS handshake) and
two RS-232 or RS-422/RS-485
¢ Two ports (selectable RS-232 or RS-422/
Serial Rate RS-485) up to 115,200 bps
¢ Two ports (fixed RS-232) up to 57,600 bps
Watchdog/Supervisor Yes

Time/Date Clock

Yes

Memory-Backup Battery

Yes, Panasonic BR2325-1HG 3-V lithium,
165 mAR, 3-year shelf life, 10-year life in use

Keypad and LCD Display

No

PLCBus Port

No, limited expansion capability through PIO
Port B (header P6)

BL1300

Appendix B: Specifications ¢ B-3

Jumper and Header Specifications

Figure B-2 shows the locations of the BL1000 headers and jumper blocks.

O0000000000O [7
P05 (g boo00000000] J4| Jack
I
—]
O0000000O0000O0O =1
P5-oooooooooooo‘ 5 = O
0000000000000
P6 loooooooooooo‘ 88885
J2 J3
[o] J6
o Je |29
O
o OO0
o [@X6]
o PI1O P10 88
O
IS U9 u10 00
o OO0
3 00
pas oo
o oo
3 00
3 00
2 00
ps oo
o oo
o OO0
o Jow, |99
. oo
J15[m 00) Ja iz
J13
Main Board scc
us
J7
J'] J11 J10
P1 P2 P3 P4 .
Reset
Pushbutton
J8 J7 J3 2 J1
[al (W00000000000]
ojs() MooooooEEEED Qs
o oo
o oo
o oo
o oo
o oo
a
ol | [u1 ot
= ™ oo
0 7180 o SmartBlock oo
o oo
o oo
o oo
o oo
= oo
o J5 oo
B oo
o oo
W r oo
CRYSTAL % J10

Figure B-2. Locations of BL1300 Headers and Jumper Blocks

B-4 + Appendix B: Specifications

BL1300

Table B-2 shows the jumper connections.

p=n

Table B-2. BL1300 Jumper Settings
Header Description Factory Setting
Main Board

Connect pins 1-3 and pins 2—4 to bring SC(

I signals DTRA and DCDA to jack P4 pins47 Not connected
Connect pins 1-2 to connect INIT signal to Rl _

J5 Port A, connect pins 2—-3 to reset BL1300 &ns 1-2 connecte

J8,J9 | Pins permanently connected Permanently
connected

Connect pins 1-2 for RS-232 /RTSB or RS-485

J12 | /RTS4, connect pins 2—3 for RS-232 TXCB o0Pins 1-2 connecte
RS-485 TXC+t
Connect pins 1-2 for RS-232 /CTSB or RS-485

J13 |/CTS4, connect pins 2-3 for RS-232 RXCB oPins 1-2 connecte
RS-485 RXC+
Connect pins 1-2 for RS-232 /RTSA or RS-485

J14 | /RTS4, connect pins 2-3 for RS-232 TXCA orPins 1-2 connecte
RS-485 TXCt
Connect pins 1-2 for RS-232 /CTSA or RS-485

J15 |/CTS4, connect pins 2-3 for RS-232 DTRA 0Pins 1-2 connecte
RS-485 RXC+t

SmartBlock™

Connect pins 1-2 to write-protect EEPROM,| _. _

J2 connect pins 2-3 to write-enable EEPROM Pins 1-2 connecte

J3 Connect to enable watchdog timer Not connected
Connect pins 1-2 for 32K-128K SRAM, .

J4 | connect pins 23 for 256K-512K SRAM | 7S 1=2 connecte
Connect pins 1-2 for 64K or larger EPROM,| _.

95 connect pins 2—3 for 32K EPROM Pins 2-3 connecte
Connect pins 1-2 for 32-pin EPROM, connect,.

5| pins 2-3 for 28-pin EPROM Pins 2-3 connecte

p=n

SCC signals DCDA and DTRA are hardwired into RS-232

port P2. These signals may also be use
using RS-232 drivers in U1l and U2.

d on jack P4 when

Do not jumper pins 1-3 and 2—4 on header J1 when using
RS-485 drivers in U3 and U4 to avoid conflicts with the

RS-485 signals.

BL1300

Appendix B: Specifications ¢ B-5

B-6 ¢+ Appendix B: Specifications BL1300

LA
5
.(
Aepenpix C: IMIEMORY,
I/O Map, AND INTERRUPT VECTORS

Appendix C provides detailed information on memory, provides an I/O
map, and lists the interrupt vectors.

BL1300 Appendix C: Memory, I/0 Map, and Interrupt Vectors ¢ C-1

BL1300 Memory

The SmartBlock has two chip sockets, one for ROM and one for RAM.
Sockets U5 and U6 will accept either 28-pin or 32-pin memory chips.

Physical Memory
Figure C-1 shows the memory map of the 1M address space.

1024K
Reserved
for
expansion
board

C0000 768K

Socket U5
RAM

40000 256K

Socket U6
EPROM

00000

Figure C-1. Memory Map of 1M Address Space

Figure C-2 shows the memory map within the 64K virtual space.

64K XMEM XMEM
UNITIALIZED UNITIALIZED
DATA DATA
STACK STACK RAM
UNUSED UNUSED
USER CODE | RAM USER CODE
ROM
LIBRARY ROM LIBRARY
0
RAM-Based ROM-Based

Figure C-2. Memory Map of 64K Virtual Space

The various registers in the input/output (I/O) space can be accessed in
Dynamic C by the symbolic names listed below. These names are treated
as unsigned integer constants. The Dynamic C library functions inport
and outport access the I/O registers directly.

data value = inport(CNTLAO) ;

outport(CNTLAO, data_value);

C-2 ¢+ Appendix C: Memory, I/O Map, and Interrupt Vectors BL1300

Memory and Input/Output Cycle Timing

There are two types of memory cycles that need to be considered: standard
memory cycles and Load Instruction Register (LIR) cycles. LIR cycles,
which fetch the op code, have the most critical timing requirement. The
memory access time, ¢, in nanoseconds, can be calculated for these cycles
using

t=2T-95 , (C-1)

where T is the period of a clock cycle. Figure C-3 shows these cycles with
and without a wait state.

0 wait states | 1 wait state
T1 T2 T3 : T1 T2 Tw T3
N oL L
| | | | | | | : :
_W'-I | | ‘!—|—|
/ E | | | |_ | | | | | r
| | | | | | | | |
/RD | B —
| | | |
WRT L [T I
| | | | | | | | |
| | | | | | | | |
X address | | | | X address T
| | | | | | | | |
A | | K
le—> le—>] | le—> le—>]
Tap=70ns Tprs=25ns | Typ=70ns Tors = 25 ns
0 wait accesstime = 2T - 95 ns 1 wait accesstime= 3T - 95 ns
=105 nsfor 10.00 MHz clock = 205 nsfor 10.00 MHz clock
=122 nsfor 9.216 MHz clock =230 nsfor 9.216 MHz clock
=229 MHz for 6.144 MHz clock || = 391 nsfor 6.144 MHz clock

Figure C-3. Memory Cycles for 9.216 MHz Processor
With and Without a Wait State

The standard version of the PAL generates a wait state only during the LIR
cycles. Therefore it is called a “Y% wait state” PAL.

BL1300 Appendix C: Memory, I/0 Map, and Interrupt Vectors ¢+ C-3

The standard memory cycles require an access time of 2.5T - 95 nanosec-
onds. Table C-1 lists the memory access times required for various clock

frequencies and wait states.

Table C-1. Memory Access Times

(ns)
Clock Frequency EPROM SRAM
9.3 MHz, O wait states 122 176
9.3 MHz, 1 wait state 230 283
10 MHz, 0 wait states 105 155
10 MHz, 1 wait state 205 255
11.059 MHz, O wait states 85 130
11.059 MHz, 1 wait state 175 220
12.488 MHz, O wait states 65 105
12.488 MHz, 1 wait state 145 185

The memory access times in Table C-1 were calculated assuming that LIR
cycles only take place in EPROM. These access times are conservative,
and no problem should be encountered, for example, by using an EPROM
with a memory access time of 150 ns instead of an EPROM with a memory

access time of 120 ns.

The user who consults the schematic will note that chip select is always
enabled in the EPROM and SRAM, allowing access to begin earlier in the
cycle at the expense of increased power consumption. This makes clock
speeds in excess of 10 MHz possible with low-cost memory.

C-4 ¢+ Appendix C: Memory, I/O Map, and Interrupt Vectors

BL1300

Input/Output Cycle Timing

Customer peripheral devices are usually interfaced as I/O devices. This is
convenient because only eight address lines need to be decoded in most
cases. Figure C-4 shows how wait cycles are inserted in I/O cycles. At
least one wait cycle (T,) is always inserted. Up to four additional wait
states can be inserted, depending on the setup of the wait-state generator.
One additional wait state, the default number (T,,), is shown in Figure C-4.

T1 T2 Tw Tw1 T3

A0-A15 4

X

D0-D7 read

|
|
|
l
X | DO-D7 write
|
|
|
| |

Figure C-4. Inserting Wait Cycles in I/O Cycles

BL1300 Appendix C: Memory, I/0 Map, and Interrupt Vectors ¢ C-5

Execution Timing

The times reported in Table C-2 were measured using Dynamic C and they
reflect the use of Dynamic C libraries. The time required to fetch the
arguments from memory, but not to store the result, is included in the

timings. The times are for a 9.216 MHz clock with 0 wait states.

Table C-2. BL1300 Execution Times for Dynamic C

Execution Time

Operation (us)
DMA copy (per byte) 0.73
Integer assignment (i =j ;) 34
Integer add (j +k;) 4.4
Integer multiply (j *k;) 18
Integer divide (j / k;) 90
Floating add (p+q;) (typical) 85
Floating multiply (p*q;) 113
Floating divide (p/ q;) 320
Longadd (I +m) 28
Long multiply (I *m) 97
Long divide (I / m) 415
Floating square root (sqrt (q) ;) 849
Floating exponent (exp(q);) 2503
Floating cosine (cos(q) ;) 3049

The execution times can be adjusted proportionally for clock speeds other

than 9.216 MHz. Operations involving one wait state will slow the

execution speed about 25%.

C-6 ¢ Appendix C: Memory, I/O Map, and Interrupt Vectors

BL1300

Memory Map
Input/Output Select Map

The Dynamic C library functions IBIT, ISET and IRES in the BIOS.LIB
library allow bits in the I/O registers to be tested, set, and cleared.

Both 16-bit and 8-bit I/O addresses can be used. The I/O select map
shown in Table C-3 indicates the addresses in use.

Table C-3. 1/O Select Map

Address (Range) Description
0000-003F Z180 internal control registers (16-bit)
0040-005F Dynamic C Interface Board (8-bit)
0060-007F Available 1/0 space 8-bit address
0080-00DF BL1300 control and data registers
00EO-O0FF Available 1/0 space 8-bit address
0100-013F Available 16-bit address
2000 Available 16-bit address
4000 Battery-backed clock control
6000 EEPROM clock control register
8000 EEPROM data register
A000 Power fail test register
C000 Watchdog control register
D000-DO3F Available 16-bit address
EO00-EO3F Available 16-bit address
FOO0-FO3F Available 16-bit address

The Dynamic C Interface Board decodes only the low 8 bits of the address.
The registers at 2000, 4000, 6000, 8000 and A000 decode only the upper
4-bits of the 1/O address.

BL1300 Appendix C: Memory, I/0 Map, and Interrupt Vectors ¢+ C-7

Z180 Internal Input/Output Registers Addresses 00-3F

The internal registers for the I/O devices built into to the Z180 processor
occupy the first 40 (hex) addresses of the I/O space. These addresses are
listed in Table C-4.

Table C-4. Z180 Internal I/O Registers Addresses 00-3F

Address Name Description
00 CNTLAO Serial Channel 0, Control Register A
01 CNTLA1 Serial Channel 1, Control Register A
02 CNTLBO Serial Channel 0, Control Register B
03 CNTLB1 Serial Channel 1, Control Register B
04 STATO Serial Channel 0, status register
05 STAT1 Serial Channel 1, status register
06 TDRO Serial Channel 0, transmit data register
07 TDR1 Serial Channel 1, transmit data register
08 RDRO Serial Channel 0, receive data register
09 RDR1 Serial Channel 1, receive data register
O0A CNTR Clocked seria control register
0B TRDR Clocked seria dataregister
oC TMDROL Timer dataregister Channel 0, least
oD TMDROH Timer dataregister Channel 0, most
OE RLDROL Timer reload register Channel 0, least
OF RLDROH Timer reload register Channel 0, most
10 TCR Timer control register
11-13 — Reserved
14 TMDRI1L Timer data register Channel 1, least
15 TMDR1H Timer data register Channel 1, most
16 RLDRI1L Timer reload register Channel 1, least
17 RLDR1H Timer reload register Channel 1, most
18 FRC Free-running counter
19-1E — Reserved registers
CPU control register for the 18 MHz chip;
1F CCR write 0x80 to get 18.432 MHz, write O to gg
9.216 MHz.

3

continued...

C-8 ¢+ Appendix C: Memory, I/O Map, and Interrupt Vectors BL1300

Table C-4. Z180 Internal I/O Registers Addresses 00-3F (concluded)

Address Name Description
20 SAROL DMA source address Channel 0, least
21 SAROH DMA source address Channel 0, most
22 SAROB DMA source address Channel 0, extra bits
23 DAROL DMA destination address Channel 0, least
24 DAROH DMA destination address Channel 0, most
o5 DAROB le\:lr/; Sztl nation address Channel 0,
26 BCROL DMA byte count register Channel 0, least
27 BCROH DMA byte count register Channel 0, most
28 MARI1L DMA memory address register Channel 1, least
29 MAR1H DMA memory address register Channel 1, most
oA MARILB EillllsA memory address register Channel 1, extra
2B IARIL DMA 1/0 address register Channel 1, least
2C IARIH DMA 1/O address register Channel 1, most
2D — Reserved
2E BCRI1L DMA byte count register Channel 1, least
2F BCR1H DMA byte count register Channel 1, most
30 DSTAT DMA status register
31 DMODE DMA mode register
32 DCNTL DMA/WAIT control register
33 IL Interrupt vector low register
34 ITC Interrupt/trap control register
35 — Reserved
36 RCR Refresh control register
37 — Reserved
38 CBR MMU common base register
39 BBR MMU bank base register
3A CBAR MMU common/ bank area register
3B-3D — Reserved
3E OMCR Operation mode control register
3F ICR I/0 control register

BL1300 Appendix C: Memory, I/0 Map, and Interrupt Vectors ¢ C-9

KIO Registers 0040-004F on Dynamic Interface Board
(8-bit decode)

Table C-5 lists KIO registers 0040-004F on the Dynamic C Interface
Board.

Table C-5. KIO Registers 0040-004F on the
Dynamic C Interface Board

Address Name Description
40 PIODA PIO Port A data
41 PIODB PIO Port B data
42 PIOCA PIO Port A command
43 PIOCB PIO Port B command
44 CTCO CTC Channel 0
45 CTC1 CTC Channel 1
46 CTC2 CTC Channel 2
47 CTC3 CTC Channel 3
48 SIODA SIO Channel A data
49 SIOCA SIO Channel A command/ status
4A SIoDB SIO Channel B data
4B SIoCB SIO Channel B command/status
4C PIAD PIA Port C data
4D PIAC PIA Port C command
4E KIOoC K10 command
4F — Reserved

C-10 ¢+ Appendix C: Memory, /0 Map, and Interrupt Vectors BL1300

BL1300 Registers 0080-00D0 (8-bit decode)

The names and associated values of the BL1300 registers, listed in
Table C-6, are not defined in the EPROM, and must be defined within the

user program.

Table C-6. BL1300 Registers 0080-00D0

Address Name Description
80 PIODA_1 PIO Port A 1 data
81 PIODB_1 PIO Port B 1 data
82 PIOCA_1 PIO Port A 1 command
83 PIOCB_1 PIO Port B 1 command
90 PIODA_2 PIO Port A 2 data
91 PIODB_2 PIO Port B 2 data
92 PIOCA_2 PIO Port A 2 command
93 PIOCB_2 PIO Port B 2 command
AO SCCCB SCC Channel B command
Al SCCCA SCC Channel A command
A2 SCCDB SCC Channel B data
A3 SCCDA SCC Channel A data
BO EN12 Enable Channel A transmitter (RS-485)
(o] EN34 Enable Channel B transmitter (RS-485)
DO LD1 LED 1 control

Addresses 0100-3FFF, except addresses

xx40-xx5F (8-bit decodes)
xx80-xxDF (8-bit decodes)

are available for customer use.

BL1300 Appendix C: Memory, /O Map, and Interrupt Vectors ¢+ C-11

Epson 72421 Timer Registers 4000-400F

Table C-7 lists the Epson 72421 timer registers.

Table C-7. Epson 72421 Timer Registers 4000-400F

Address Name Bit 3 Bit 2 Bit 1 Bit O Meaning | Range
4000 SEC1 S8 A 2 S1 seconds 09
4001 SEC10 S40 S20 S10 10 seconds 0-5
4002 MIN1 M8 M4 M2 M1 minutes 0-9
4003 MIN10 M40 M20 | M10 10 minutes| 0-5
4004 HOUR1 H8 H4 H2 H1 hours 0-9
4005 HOUR10 AM/PM | H20 H10 10 hours 0-2
4006 DAY1 D8 D4 D2 D1 days 0-9
4007 DAY10 D20 D10 10 days 0-3
4008 MONTH1 | M8 M4 M2 M1 months 0-9
4009 MONTH10 M10 10 months | 0-1
400A YEAR1 Y8 Y4 Y2 Y1 years 0-9
400B YEAR10 Y80 | Y40 Y20 Y10 10 years 0-9
400C WEEK w4 W2 w1 week days| 0-6
30 IRQ .
400D TREGD ADJ | ELG BUSY | HOLD | RegisterD| —
400E TREGE T1 TO INTR/| MASK Reqister E | —
STND 9
400F TREGF TEST| 12/24 STOP RSET RegisterlF —
Other Addresses
Table C-8 lists the other registers.
Table C-8. Other Register Addresses
Address Name Description
6000 SCL EEPROM clock control register
8000 SDA_RW EEPROM data register
A000 PFO Power fail test register
C000 HWD Write (hit watchdog)
WDO Read watch dog state
DO0O-FFFF | — Reserved address space
C-12 + Appendix C: Memory, /0 Map, and Interrupt Vectors BL1300

Interrupt Vectors

Table C-9 presents a suggested interrupt vector map. Most of these
interrupt vectors can be altered under program control. The addresses are
given here in hex, relative to the start of the interrupt vector page, as
determined by the contents of the I-register. These are the default interrupt
vectors set by the boot code in the Dynamic C EPROM.

Table C-9. Interrupt Vectors for Z180 Internal Devices

Address Name Description
0x00 I NT1_VEC Expansion bus attention INT1 vector.
0x02 I NT2_VEC Expansion bus attention INT2 vector.
0x04 PRTO_VEC PRT Timer Channel 0
0x06 PRT1_VEC PRT Timer Channel 1
0x08 DMAO_VEC | DMA Channel O
Ox0A DVAl_VEC DMA Channel 1
ox0C CSI O_VEC Clocked seria 1/0
OX0E SERO_VEC Asynchronous Serial Port Channel 0
0x10 SER1_VEC Asynchronous Serial Port Channel 1

To “vector” an interrupt to a user function in Dynamic C, use a directive
such as the following.

#INT VEC 0x10 myfunction

The above example causes the interrupt at offset 10H (Serial Port 1 of the
7,180) to invoke the function myfunction (). The function must be
declared with the interrupt keyword, as shown below.

interrupt [reti] myfunction() {

}

The optional reti keyword indicates that the return is by a reti instruc-
tion, which is necessary for the KIO peripherals, but not for Z180 periph-
erals.

Refer to the Dynamic C manuals for further details on
d interrupt functions.

BL1300 Appendix C: Memory, I/0 Map, and Interrupt Vectors ¢+ C-13

Nonmaskable Interrupts
Power Failure Interrupts
The following sequence of events takes place when power fails.

1. The power-failure nonmaskable interrupt (NMI) is triggered when the
unregulated DC input voltage falls below approximately 1.3 V.

2. The system reset is triggered when the regulated +5 V supply falls
below 4.5 V. The reset remains enabled as the voltage falls further. At
this point, the chip select for the SRAM is forced high (standby mode).
The time/date clock and SRAM are switched to the lithium backup
battery as the regulated voltage falls below the battery voltage of
approximately 3 V.

The following function shows how to handle a power-failure interrupt.
#JUMP_VEC NMI_VEC myint

interrupt retn myint() {
body of interrupt routine
while (!IBIT (WDO,0)) {}
// input voltage is still below the threshold
// that triggered the NMI
return; // if just a power glitch, return

}

Normally, a power-failure interrupt routine will not return, but will execute
the shutdown code and then enter a loop until the +5 V voltage falls low
enough to trigger a reset. However, the voltage might fall low enough in a
“brownout” situation to trigger a power failure interrupt, but not low
enough to reset, resulting in an endless hangup. Bit 0 of WDO is 0 when
the voltage level is below the NMI threshold, and 1 otherwise. If this bit
indicates that the low-voltage condition has reversed itself, then the power-
fail routine can restart execution. If a low—but not fatally low—voltage
persists, then you will have to decide what action to take, if any.

A situation similar to a brownout will occur if the power supply is over-
loaded. For example, when an LED is turned on, the voltage supplied to
the Z180 may dip below 7.9 V. The interrupt routine does a shutdown.
This turns the LED off, clearing the problem. However, the cause of the
overload may persist, and the system will oscillate, alternately experienc-
ing an overload and then resetting. To correct this situation, you need to
get a larger power supply.

Do not forget the interaction between the watchdog timer and the power-
failure interrupt. If a brownout causes an extended stay in the power-
failure interrupt routine, the watchdog can time out and cause a system
restart.

C-14 + Appendix C: Memory, /0 Map, and Interrupt Vectors BL1300

A few milliseconds of computing time remain when the +5 V supply falls
below 4.5 V, even if power is abruptly cut off from the board. The amount
of time depends on the size of the capacitors in the power supply. The
standard wall transformer provides about 10 ms. If the power cable is
abruptly removed from the BL1300 side, only the capacitors on the board
are available and the computing time is reduced to a few hundred micro-
seconds. These times can vary considerably depending on the system
configuration and loads on the 5 V or 9 V power supplies.

The interval between the power-failure detection and entry to the power-
failure interrupt routine is approximately 100 ps, or less if Dynamic C
NMI communications is not in use.

Testing power-failure interrupt routines presents some problems. Normally,
a power-failure interrupt routine disables interrupts. Probably the best test
method is to leave messages in battery-backed memory to track the
execution of the power-failure routines. Use a variable transformer to
simulate brownouts and other types of power-failure conditions.

The power-failure interrupt must be disabled if an external +5 V power
supply is used.

Jump Vectors

These special interrupts occur in a different manner. Instead of loading the
address of the interrupt routine from the interrupt vector, these interrupts
cause a jump directly to the address of the vector, which will contain a
jump instruction to the interrupt routine. This example illustrates a jump
vector.

0x66 nonmaskable power-failure interrupt

Since nonmaskable interrupts (NMI) can be used for Dynamic C communi-
cations, an interrupt vector for power failure is normally stored just in front
of the Dynamic C program. Use the command

#JUMP_VEC NMI_VEC name
to store the vector here.

The Dynamic C communication routines relay to this vector when the NMI
is caused by a power failure rather than by a serial interrupt.

BL1300 Appendix C: Memory, I/0 Map, and Interrupt Vectors ¢+ C-15

Interrupt Priorities
Table C-10 lists the interrupt priorities.
Table C-10. Interrupt Priorities

Interrupt Priorities

(Highest Priority) Trap (illegal instruction)
NMI (nonmaskable interrupt)
INT O (maskable interrupts, Level 0; three modes)

INT 1 (maskableinterrupts, Level 1; PLCBus
attention line interrupt)

INT 2 (maskableinterrupts, Level 2)
PRT Timer Channel 0

PRT Timer Channel 1

DMA Channel 0

DMA Channd 1

Clocked seria 1/0

7180 Serial Port 0

(Lowest Priority) 2180 Serid Port 1

Initialized RAM Locations

The following symbols are defined as unsigned integer constants that are
initialized at startup.

CLOCKSPEED—the clock speed as read from the EEPROM at startup (in
multiples of 1200 Hz).

BAUDCODE—the baud rate as read from the EEPROM at startup (in
multiples of 1200 bps).

JUMPERS—Dbyte read from the PIA port of the KIO at startup time.

C-16 ¢+ Appendix C: Memory, /0 Map, and Interrupt Vectors BL1300

ApPPENDIX D:
SmARTBLOCK SuBSYSTEMS

Appendix D describes the basic functional units of the SmartBlock and the
library functions to access and control these subsystems.

BL1300 Appendix D: SmartBlock Subsystems ¢+ D-1

EEPROM Parameters

The onboard EEPROM (electrically erasable, programmable, read-only
memory) is used to store the constants and parameters listed in Table D-1.

Table D-1. BL1300 EEPROM Assignments

1)

Address Bytes Function
0 1 Startup Mode. If 1, enter Program Mode. If 8,
execute program loaded at startup.
1 1 Baud rate code (in multiples of 1200 bps).
0x100 6 Unit serial number—binary-coded decimal tin
and date in the format seconds, minutes, houf,
day, month, year
0x108 2 Microprocessor clock speed (in multiples of
1200 Hz)
O0x10A Network node address.
0x10C Wait states, value to be inserted in DCNTL fdr
1/0 and memory wait states. Default = 0x70 fpr
4 1/O wait states and 1 memory wait states.
Always initialize this value because it is read ly
the startup code and inserted in the DCNTL
register.

The EEPROM has 512 bytes. Bytes 0-255 can be written to at any time,
but the upper 256 bytes can be written to only when jumper J2 on the
SmartBlock is enabled (pins 2 and 3 are connected). Connect pins 1 and 2
on J2 to write-protect the EEPROM.

Figure D-1 shows the EEPROM memory and jumper block J16 settings.

200

256 x 8
protectable

100

00

256 x 8

J2 J2
B ol oA
1 2 3 1 2 3
EEPROM EEPROM
write-protected unprotected

Figure D-1. BL1300 EEPROM Memory and Jumper Block Settings

D-2 ¢+ Appendix D: SmartBlock Subsystems

BL1300

Library Routines
The following library routines can be used to read and write the EEPROM:

int ee_rd(int address);
int ee_wr(int address, byte data);

The function ee_rd returns a data value or, if a hardware failure occurred,
—1. The function ee_wr returns —1 if a hardware failure occurred, -2 if an
attempt was made to write to the upper 256 bytes with the protection
jumper (J2) installed, or 0 to indicate a successful write. A write-protec-
tion violation does not wear out the EEPROM. These routines each
require about 2 ms to execute. They are not re-entrant, that is, only one
routine at a time will run.

These functions each require about 2.5 ms to execute, and are not reen-
trant.

The EEPROM has a rated lifetime of only 10,000 writes
(unlimited reads). Do not write the EEPROM from within a
loop. The EEPROM should be written to only in response to a
human request for each write.

Time/Date Clock

The battery-backed real-time clock is based on the Epson 72421 chip,
which is accurate to approximately one second per day. Time is kept to
one second least count and up to 80 years in the future. A Dynamic C
library program is available to read and write the clock chip. The lithium
battery should keep the clock going for about 10 years, except if the board
is run at high temperature for long periods.

An Epson RTC-72421 battery-backed clock appears as 16 registers from
the addresses 4000H—400FH. The registers are four bits wide and appear
as the lower four bits of the data byte, with the upper four bits undefined.

Table C-7 in Appendix C, “Memory, I/O Map and Interrupt
& Vectors,” lists the Epson 72421 registers

The clock appears as 16 input/output registers with addresses of 4000H to
400FH. The 16 registers are each 4 bits, with the upper 4 bits of the
register undefined. The 4-bit registers are mostly binary-coded decimal
numbers making up the date and time. The following steps refer to these
registers.

1. Set the 12/24 bit to 1 for 24-hour mode and O for 12-hour mode. The
AM/PM bit will then be set to 1 for PM. Mask out the AM/PM bit in
24-hour mode.

BL1300 Appendix D: SmartBlock Subsystems ¢+ D-3

3.
4.

The days of the week are represented by 0 for Sunday through 6 for
Saturday.

Leap year is automatically taken into account.
Set the year to 90 for 1990, to 91 for 1991, and so on.

Time/Date Functions

Time/date functions can be found in the Dynamic C DRIVERS.LIB library.
The sample program SETCLOCK . C provides a keyboard interface to
display and set the time/date clock.

The following structure is defined to hold the time and date.

struct tm{
char tm_sec; // seconds 0-59
char tm min; // minutes 0-59
char tm hour; // 24 hour time 0-23
char tm mday; // day of month 1-31
char tm mon; // month 1-12
char tm year // e.g., 90 - 1990, 101 -
2001
char tm wday; // day of week 0-6/

// Sunday == 0
} tm val;

Time can also be expressed as “seconds since January 1, 1980 (that is,
midnight, December 31, 1979). The following functions are provided to
read the time/date clock. Note that this takes about 600 ps.

int tm rd(struct tm *t)

Sets the real-time clock and returns zero, or returns —1 if the clock is
not working or is not installed.

ulong clock()

Reads the 72421 timer and returns time as seconds since January 1,
1980.

int tm wr(struct tm *t)

Writes the contents of the structure to the clock and returns 0. If the
clock is failing or not installed —1 is returned.

ulong mktime(struct tm *t)

Converts time expressed as the structure tm into time expressed as
seconds since January 1, 1980 (midnight December 31, 1979). Does
not access the timer chip.

int mktm(struct *tm, long time)

Converts time expressed as seconds into the structure *tm. Does not
access the timer chip.

D-4 ¢+ Appendix D: SmartBlock Subsystems

BL1300

The sample program SETCLOCK. C allows you to change the time and date.
The sample program LCDCLK . C shows how to access the time/date clock.

/ LCDCLK. C cannot be run using the BL1300 as there is no
onboard LCD interface.

Watchdog Timer

The watchdog timer is a reliability feature. If the watchdog timer is
enabled by connecting a jumper across header J3, a timer starts running
that can be reset by calling the library function hitwd. The watchdog
times out if it is allowed to run for 1.6 seconds without being reset by
hitwd. The SmartBlock is then forced into a hardware reset condition for
50 ms, after which the board resumes operation as if the power has just
been turned on. It is possible to distinguish between a power-on reset and
a watchdog reset when the program starts execution by using the function
wderror. The watchdog is hit frequently while debugging is being done
with Dynamic C. However if you start an application that does not hit the
watchdog, and a jumper is connected across header J3, a reset will take
place after 1.6 seconds and Dynamic C will report a loss of communica-
tions.

The watchdog timer is interfaced with an 1/O register at address 0C000,,,, .

0C000 HWD—Write to “hit” the watchdog and reset its timer. Use the
library function hitwd to hit the watchdog.

0C000 WDO—Read the state of WDO bit from 72421. This must be read
after startup but before hitting the watchdog. Use the library function
wderror to do this.

e void hitwd (void)

Hits the watchdog timer, postponing an automatic hardware reset for
another 1.6 seconds.

e int wderror (void)

Returns non-zero if the previous reset was caused by the watchdog
timer timing out. This function returns zero if the previous reset was
caused by power-on, or by the reset pushbutton.

Use of Watchdog Timer

The watchdog timer’s purpose is to cause a recovery from a fault condi-
tion, such as an endless loop or an illegal microprocessor state. Such a
fault condition can be caused by an electrical transient or by a software
bug. An electrical transient can generate a state internal to the micropro-
cessor that would be impossible during normal operation. A transient
strong enough to upset the state of the microprocessor or erase part of the

BL1300 Appendix D: SmartBlock Subsystems ¢+ D-5

memory can be much weaker than that needed to cause permanent damage,
so it is useful to have the ability to recover from such faults and improve
the system reliability under stressful environmental conditions.

Software bugs that only occur once a week or once a year and cause the
program to enter an endless loop are not unusual, and are difficult to
correct. The following are examples of such bugs.

1.

The stack overflows only when a coincidence of events takes place,
such as an interrupt when a seldom-executed, but deeply nested piece
of code is executing. If the seldom-executed code is executed only for
10 ps every 5 min, and the interrupts take place only on the average
once every hour, then it can be computed that the program will crash
about once per year of continuous operation.

A multibyte variable is shared between a high-level and an interrupt
routine, and proper precautions are not taken to prevent interrupts
while the high-level function modifies the multibyte variable. In this
case, if the storage to the multibyte variable is interrupted after one or
two bytes have been stored, then the interrupt routine will see a mixture
of two numbers, the old and new, or garbage. If the variable is an
address to jump to, then the program can crash. The shared keyword
is provided in Dynamic C to prevent this type of situation.

. Hardware and software can interact. For example, a function processes

an analog-to-digital (A/D) conversion value that should always be
positive. If an electrical transient occurs when a nearby motor starts
(which only happens once a day) and makes the value of the A/D
conversion negative, the program will enter an endless loop. The
programmer has made an error since the negative value was not
anticipated, but is unlikely to ever find the error through testing.

Take care to prevent a state that includes hitwd in an
/ endless loop. If this is not done, the watchdog will be
unable to time out and reset the system.

D-6 ¢+ Appendix D: SmartBlock Subsystems BL1300

Arrenoix E: PLCBuUS

Appendix E provides the pin assignments for the PLCBus, describes the
registers, and lists the software drivers.

BL1300 Appendix E: PLCBus ¢ E-1

PLCBus Overview

The PLCBus is a general-purpose expansion bus for Z-World controllers.
The PLCBus is available on the BL1200, BL1600, BL1700, PK2100, and
PK2200 controllers. The BL1000, BL1100, BL1300, BL1400, and
BL1500 controllers support the XP8300, XP8400, XP8600, and XP8900
expansion boards using the controller’s parallel input/output port. The
BL1400 and BL1500 also support the XP8200 and XP8500 expansion
boards. The ZB4100’s PLCBus supports most expansion boards, except
for the XP8700 and the XP8800. The SE1100 adds expansion capability
to boards with or without a PLCBus interface.

Table E-1 lists Z-World’s expansion devices that are supported on the

PLCBus.
Table E-1. Z-World PLCBus Expansion Devices
Device Description
EXP-A/D12 Eight channels of 12-bit A/D converters
SE1100 Four SPDT relays for use with al Z-World controllers
XP8100 Series 32 digital inputs/outputs
XP8200 “Universal Input/Output Board”
—16 universal inputs, 6 high-current digital outputs
XP8300 Two high-power SPDT and four high-power SPST reldys
XP8400 Eight low-power SPST DIP relays
XP8500 11 channels of 12-bit A/D converters
XP8600 Two channels of 12-bit D/A converters
XP8700 One full-duplex asynchronous RS-232 port
XP8800 One-axis stepper motor control
XP8900 Eight channels of 12-bit D/A converters
Multiple expansion boards may GND 26| 0 O |25 VCC (+5 V)

be linked together and con-

AOX 24| 0 0|23 /RDX
LCDX 22| 0 O |21 /WRX

nected to a Z-World controller D1X 20| o o |19 DOX
to form an extended system. D3X 18| 0 O |17 D2X

D5X 16| 0 0 |15 D4X

Figure E-1 shows the pin layout D7X 14| 0 O |13 D6X

GND 12| 0 o |11 A1X

for the PLCBus connector. GND 10| 0 0|9 A2X

GND 8|0 0O
GND 6|0 0
+24V 4|10 0O
(+5V)VCC 2({Om

A3X
strobe /STBX
attention /AT
GND

- w o N

Figure E-1. PLCBus Pin Diagram

E-2 + Appendix E: PLCBus BL1300

Two independent buses, the LCD bus and the PLCBus, exist on the single
connector.

The LCD bus consists of the following lines.

* LCDX—positive-going strobe.

* /RDX—negative-going strobe for read.

* /WRX—negative-going strobe for write.

e AO0X—address line for LCD register selection.

* DO0X-D7X—bidirectional data lines (shared with expansion bus).

The LCD bus is used to connect Z-World’s OP6000 series interfaces or to
drive certain small liquid crystal displays directly. Figure A-2 illustrates
the connection of an OP6000 interface to a BL1200 controller.

OP6000

14-conductor
ribbon cable.
Note position of
arrows.

BL1200 connection
at the PLCBus port.
Note position of
connector relative to
pin 1.

40000000000} ¢ el

Figure E-2. OP6000 Connection to BL1200 PLCBus Port

The PLCBus consists of the following lines.

* /STBX—negative-going strobe.

¢ A1X-A3X—three control lines for selecting bus operation.

* DO0X-D3X—four bidirectional data lines used for 4-bit operations.
¢ D4X-D7X—four additional data lines for 8-bit operations.

e /AT—attention line (open drain) that may be pulled low by any device,
causing an interrupt.

BL1300 Appendix E: PLCBus ¢ E-3

The PLCBus may be used as a 4-bit bus (D0X-D3X) or as an 8-bit bus
(DOX-D7X). Whether it is used as a 4-bit bus or an 8-bit bus depends on
the encoding of the address placed on the bus. Some PLCBus expansion
cards require 4-bit addressing and others (such as the XP8700) require
8-bit addressing. These devices may be mixed on a single bus.

There are eight registers corresponding to the modes determined by bus
lines A1X, A2X, and A3X. The registers are listed in Table E-2.

Table E-2. PLCBus Registers

Register Address A3 A2 Al Meaning
BUSRDO Cco 0 0 0 Read data, one way
BUSRD1 c2 0| o 1 | Resddata another

way
BUSRD2 c4 0 1 0 Spare, or read data
Read thisregister to
BUSRESET C6 0 1 1 reset the PLCBUS
BUSADRO cs 1 0 0 First address nibble
or byte
Second address
BUSADR1 CA 1 0 1 nibble or byte
BUSADR? cC 1 1 0 Third address nibble
or byte
BUSWR CE 1 1 1 Write data

Writing or reading one of these registers takes care of all the bus details.
Functions are available in Z-World’s software libraries to read from or
write to expansion bus devices.

To communicate with a device on the expansion bus, first select a register
associated with the device. Then read or write from/to the register. The
register is selected by placing its address on the bus. Each device recog-
nizes its own address and latches itself internally.

A typical device has three internal latches corresponding to the three
address bytes. The first is latched when a matching BUSADRO is de-
tected. The second is latched when the first is latched and a matching
BUSADRUI is detected. The third is latched if the first two are latched and
a matching BUSADR?2 is detected. If 4-bit addressing is used, then there
are three 4-bit address nibbles, giving 12-bit addresses. In addition, a
special register address is reserved for address expansion. This address, if
ever used, would provide an additional four bits of addressing when using
the 4-bit convention.

E-4 + Appendix E: PLCBus BL1300

If eight data lines are used, then the addressing possibilities of the bus
become much greater—more than 256 million addresses according to the
conventions established for the bus.

Place an address on the bus by writing (bytes) to BUSADRO, BUSADRI1
and BUSADR?2 in succession. Since 4-bit and 8-bit addressing modes
must coexist, the lower four bits of the first address byte (written to
BUSADRO) identify addressing categories, and distinguish 4-bit and 8-bit
modes from each other.

There are 16 address categories, as listed in Table E-3. An “x” indicates
that the address bit may be a “1” or a “0.”

Table E-3. First-Level PLCBus Address Coding

First Byte Mode Addresses Full Address Encoding
————-—0000 4bitsx3 256 0000 XXXX XXXX
----0001 256 0001 XXXX XXXX
--=--0010 256 0010 XXXX XXXX
- —-=--0011 256 0011 XXXX XXXX
———-—x0100 5hbitsx3 2,048 X0100 XXXXX XXXXX
-—-=-x0101 2,048 X0101 XXXXX XXXXX
-—-=-x0110 2,048 X0110 XXXXX XXXXX
- —-—=-x0111 2,048 X0111 XXXXX XXXXX
— —Xxx100 0| 6bitsx3 16,384 XX1000 XXXXXX XXXXXX
-—-xx1001 16,384 XX1001 XXXXXX XXXXXX
——-—xx1010| 6hitsx1 4 xx1010
- —-——--=-1011 4bitsx1 1 1011 (expansion register)
X XX x110O0| 8bitsx2 4,096 XXXX1100 XXXXXX
XX Xx1101| 8bhitsx3 1M XXXXLL0L XRXXXXX XXXXXXXX
X X Xxx111O0| 8bitsx1 16 xxxx1110
XX Xxx1111| 8hitsx1 16 xxxx1111

This scheme uses less than the full addressing space. The mode notation
indicates how many bus address cycles must take place and how many bits
are placed on the bus during each cycle. For example, the 5 x 3 mode
means three bus cycles with five address bits each time to yield 15-bit
addresses, not 24-bit addresses, since the bus uses only the lower five bits
of the three address bytes.

BL1300 Appendix E: PLCBus ¢ E-5

Z-World provides software drivers that access the PLCBus. To allow
access to bus devices in a multiprocessing environment, the expansion
register and the address registers are shadowed with memory locations
known as shadow registers. The 4-byte shadow registers, which are saved
at predefined memory addresses, are as follows.

SHBUSL SHBUSI1+1
SHBUSD SHBUSO+1 SHBUSO+2 SHBUSO+3
| Busexpansion | BUSADRO | BUSADRL | BUSADR2 |

Before the new addresses or expansion register values are output to the
bus, their values are stored in the shadow registers. All interrupts that use
the bus save the four shadow registers on the stack. Then, when exiting the
interrupt routine, they restore the shadow registers and output the three
address registers and the expansion registers to the bus. This allows an
interrupt routine to access the bus without disturbing the activity of a
background routine that also accesses the bus.

To work reliably, bus devices must be designed according to the following
rules.

1. The device must not rely on critical timing such as a minimum delay
between two successive register accesses.

2. The device must be capable of being selected and deselected without
adversely affecting the internal operation of the controller.

Allocation of Devices on the Bus

4-Bit Devices

Table E-4 provides the address allocations for the registers of 4-bit
devices.

Table E-4. Allocation of Registers

Al A2 A3 Meaning

digital output registers, 64 registers

000 000 X 64 x 8 =512 1-bit registers

000j 001 xxXj | analog output modules, 64 registers

digital input registers, 128 registers
128 x 4 =512 input bits

000j 10x] xxxj | analog input modules, 128 registers

000j 01xj XXX]

000j 11xj xxxj | 128 spare registers (customer)

001j XXX] xxXj | 512 spare registers (Z-World)

j controlled by board jumper
X controlled by PAL

E-6 ¢+ Appendix E: PLCBus BL1300

Digital output devices, such as relay drivers, should be addressed with
three 4-bit addresses followed by a 4-bit data write to the control register.
The control registers are configured as follows

bit 3 bit2 bitl bit 0
A2 Al A0 D

The three address lines determine which output bit is to be written. The
output is set as either 1 or 0, according to D. If the device exists on the
bus, reading the register drives bit 0 low. Otherwise bit O is a 1.

For digital input, each register (BUSRDO) returns four bits. The read
register, BUSRDI, drives bit 0 low if the device exists on the bus.
8-Bit Devices

Z-World’s XP8700 and XP8800 expansion boards use 8-bit addressing.
Refer to the XP8700 and XP8800 manual.

Expansion Bus Software

The expansion bus provides a convenient way to interface Z-World’s
controllers with expansion boards or other specially designed boards. The
expansion bus may be accessed by using input functions. Follow the
suggested protocol. The software drivers are easier to use, but are less
efficient in some cases. Table E-5 lists the libraries.

Table E-5. Dynamic C PLCBus Libraries

Library Needed Controller
DRI VERS. LI B All controllers
EZI OTGPL. LI B BL1000
EZI OLGPL. LI B BL1100
EZI OMGPL. LI B BL 1400, BL1500
EZI OPLC. LI B BL1200, BL1600, PK2100, PK2200, ZB4100
EZI OPLC2. LI B BL1700
EZI OBL17. LI B BL1700
PBUS_TG LI B BL1000
PBUS_LG LI B BL1100, BL1300
PLC_EXP. LIB BL 1200, BL1600, PK2100, PK2200

BL1300 Appendix E: PLCBus ¢ E-7

There are 4-bit and 8-bit drivers. The 4-bit drivers employ the following
calls.

void eioResetPlcBus ()

Resets all expansion boards on the PLCBus. When using this call,
make sure there is sufficient delay between this call and the first access
to an expansion board.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
void eioPlcAdrl2(unsigned addr)

Specifies the address to be written to the PLCBus using cycles
BUSADRO, BUSADR1, and BUSADR2.

PARAMETER: addr is broken into three nibbles, and one nibble is
written in each BUSADRYx cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
void setl6adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 16-bit physical address. The high-order
nibble contains the value for the expansion register, and the remaining
three 4-bit nibbles form a 12-bit address (the first and last nibbles must
be swapped).

LIBRARY: DRIVERS.LIB.
void setl2adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 12-bit physical address (three 4-bit nibbles)
with the first and third nibbles swapped.

LIBRARY: DRIVERS.LIB.
void eioPlcAdr4(unsigned addr)

Specifies the address to be written to the PLCBus using only cycle
BUSADR2.

PARAMETER: addr is the nibble corresponding to BUSADR?2.
LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

E-8 ¢+ Appendix E: PLCBus BL1300

e void setdadr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

A 12-bit address may be passed to this function, but only the last four
bits will be set. Call this function only if the first eight bits of the
address are the same as the address in the previous call to setl2adr.

PARAMETER: adr contains the last four bits (bits 8—11) of the
physical address.

LIBRARY: DRIVERS.LIB.
* char _eioReadDO()
Reads the data on the PLCBus in the BUSADRO cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADRO
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
¢ char eioReadDl1()
Reads the data on the PLCBus in the BUSADRI cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADRI1
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
* char _eioReadD2()
Reads the data on the PLCBus in the BUSADR?2 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR2
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
¢ char readl2data(int adr)

Sets the current PLCBus address using the 12-bit adr, then reads four
bits of data from the PLCBus with BUSADRO cycle.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.

BL1300 Appendix E: PLCBus ¢ E-9

¢ char read4data(int adr)

Sets the last four bits of the current PLCBus address using adr bits 8—
11, then reads four bits of data from the bus with BUSADRO cycle.

PARAMETER: adr bits 811 specifies the address to read.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.
¢ void _eioWriteWR(char ch)
Writes information to the PLCBus during the BUSWR cycle.
PARAMETER: ch is the character to be written to the PLCBus.
LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
e void writel2data(int adr, char dat)

Sets the current PLCBus address, then writes four bits of data to the
PLCBus.

PARAMETER: adr is the 12-bit address to which the PLCBus is set.
dat (bits 0-3) specifies the data to write to the PLCBus.
LIBRARY: DRIVERS.LIB.

e void writeddata(int address, char data)

Sets the last four bits of the current PLCBus address, then writes four
bits of data to the PLCBus.

PARAMETER: adr contains the last four bits of the physical address
(bits 8-11).

dat (bits 0-3) specifies the data to write to the PLCBus.
LIBRARY: DRIVERS.LIB.

The 8-bit drivers employ the following calls.

e void set24adr(long address)

Sets a 24-bit address (three 8-bit nibbles) on the PLCBus. All read and
write operations will access this address until a new address is set.

PARAMETER: address is a 24-bit physical address (for 8-bit bus)
with the first and third bytes swapped (low byte most significant).

LIBRARY: DRIVERS.LIB.

E-10 + Appendix E: PLCBus BL1300

¢ void set8adr(long address)

Sets the current address on the PLCBus. All read and write operations
will access this address until a new address is set.

PARAMETER: address contains the last eight bits of the physical
address in bits 16-23. A 24-bit address may be passed to this function,
but only the last eight bits will be set. Call this function only if the first
16 bits of the address are the same as the address in the previous call to
set24adr.

LIBRARY: DRIVERS.LIB.
e int read24datalO(long address)

Sets the current PLCBus address using the 24-bit address, then reads
eight bits of data from the PLCBus with a BUSRDO cycle.

RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).
LIBRARY: DRIVERS.LIB.
e int read8datalO(long address)

Sets the last eight bits of the current PLCBus address using address bits
16-23, then reads eight bits of data from the PLCBus with a BUSRDO
cycle.

PARAMETER: address bits 16-23 are read.
RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).
LIBRARY: DRIVERS.LIB.

e void write24data(long address, char data)

Sets the current PLCBus address using the 24-bit address, then writes
eight bits of data to the PLCBus.

PARAMETERS: address is 24-bit address to write to.
data is data to write to the PLCBus.
LIBRARY: DRIVERS.LIB.
e void write8data(long address, char data)

Sets the last eight bits of the current PLCBus address using address bits
16-23, then writes eight bits of data to the PLCBus.

PARAMETERS: address bits 1623 are the address of the PLCBus
to write.

data is data to write to the PLCBus.
LIBRARY: DRIVERS.LIB.

BL1300 Appendix E: PLCBus ¢ E-11

E-12 + Appendix E: PLCBus BL1300

r
ApPPENDIX F:

SmuLatep PLCBus CoNNECTION

BL1300 Appendix F: Simulated PLCBus Connections ¢+ D-1

BL1300

Expansion boards can be connected to the BL1300 PIO port on header P5
with an expander cable (Z-World part number 540-0015). The first two
pins of the expander cable must extend past the end of header PS. Cut the
wire that runs from pin 2 of the 26-pin expander cable connection to pin 3
of the 20-pin connector. Then supply +5 V from an external source to the
expansion board at pin 1 of the expander cable.

Dynamic C’s PBUS_LG. LIB library provides software that may be used for

programming.
Note: The first two pins of the expander cable
connector must extend past the end of the
controller’s header.
(A 20-pin connector is used because
an 18-pin connector is not available.)
Cut the wire leading from pin 1
on BL1300 header P5.
Strip and run this lead to VCC
(available on pin 1 of SmartBlock
header J1).
Picks up PAO-PA7. Pin 1—
Pk p PAO-PK \T
available. , :
4
PIO PLCBus (2’;2‘:§//://:—. -l
Signal Signal s .;Fﬁ—: 3
PAO(P5:3) /STBX | £ % E
PAL (P55) A3X g:..:ﬁ"%
PA2 (P5:7) A2X g;..:‘%://:’\"é
PA3 (P5:9) A1X il"lﬂ:\::ﬁ
PA4 (P5:11) D2X Sl % :
PA5 (P5:13) D3X [oo
PA6 (P5:15) DOX ° E LK)
. o xpander Cable
PA7 (P5:17) Di1X . o 540-0015

Figure F-1. BL1300 Expander Cable Connection

Use an external power supply with expansion boards
connected to the BL1300. There is no provision in the
expander cable to supply +24 V from the controller to
header P1 or P2 on the expansion boards.

F-2 + Appendix F: Simulated PLCBus Connections BL1300

Aprenpix G: POWER M ANAGEMENT

Appendix G provides information about power consumption and intermit-
tent operation.

BL1300 Appendix G: Power Management ¢+ G-1

Power Consumption

Table G-1 provides the power consumption for various BL1300 compo-
nents. The figures are approximate. Remember to add a safety margin.

Table G-1. Current Draw of Major BL1300 Components

(mA)
Main Board 4.608 MHz 9.216 MHz
16V8Q PALs 40 45
85C30 SCC 10 12
External crystal (each) 4 4
PIO (2 installed) 10 14
LT1180 RS-232 drivers (2 installed) 46 46
RS-485 drivers (2 installed) 120 120
Sub-total 230 241
SmartBlock™ 4.608 MHz 9.216 MHz
Z180 10 20
22CEV10 PALs 50 55
32K RAM 10 20
64K EPROM 20 30
24C04 EEPROM Standby ! !
Program 7 7
72421 clock nil nil
Sub-total 91-97 101-107
BL1300 Total 321-327 342-349

Intermittent Operation

You can turn power on and off under program control on BL1300s
equipped with a switching power supply. This is done under the control of
the time/date clock or by an external switch.

The switching power supply turns off when the signal VOFF is raised high
and turns on when VOFF is pulled low. When the supply turns on, there is
a power-on reset lasting approximately 50 ms. The application’s main
routine begins execution approximately 10 ms after the power-on reset.

G-2 ¢+ Appendix G: Power Management BL1300

VOFF can either be driven by an external circuit, or controlled by the open
drain output of the Epson 72421 clock chip. You can control the power in
one of the following two ways.

1.

An operator pushbutton grounds VOFF, enabling power. The applica-
tion then calls the library routine powerup to keep the power enabled
after the operator releases the pushbutton. When power is no longer
needed, the program calls the function powerdown to turn the power
off until another external event reenables power. This logic can be
used to create a battery-powered instrument that turns off automatically
after a certain period of inactivity to conserve the battery.

Power is enabled periodically for a short period of time. The following
periods are available.

1 second
1 minute
1 hour

The minimum time for power to be on is approximately 60 ms. Power
consumption will be decreased by a factor of approximately 15 to 1 if
the power is on for only 60 ms every second. If the power is on only
once a minute, the ratio will be 900 to 1. Once every hour reduces the
ratio to 54,000 to 1. Ifa 9 V, 500 mA hour battery is used, the battery
life with power on continuously is only 1.5 h. The battery life would be
extended to approximately one day with power enabled every second.
Enabling power only once a minute extends battery life to approxi-
mately two months. Enabling power every hour extends battery life to
approximately 10 years. This type of power usage is convenient for
data collection applications, for example, recording the temperature at
1 min intervals under battery power.

VOFF can be enabled permanently by installing a
o~= headerat J16 and jumpering pins 1-2. For more
ﬂ information on this option, including factory installa-
tion of J16 for quantity orders, call your Z-World Sales
Representative at (530) 757-3737.

The following library functions are used for intermittent operation.

setperiodic(int period code)

Specifies the interval between VOFF pulses from the time/date clock.
The values for period_code are 4 =1 second, 8 =1 minute, and
12 =1 hour.

void sleep()

Turns power off until next periodic time.

BL1300 Appendix G: Power Management ¢+ G-3

The periodic interrupts depend on the modes set into the battery-backed
memory of the time/date clock, the 72421 chip. If the 72421 is upset by a
voltage transient or the lithium battery goes dead, then the board could fail
to wake up at the specified time. For this reason it is advisable to add an
external wake-up circuit to replace or supplement the 72421 for critical
applications that must run unattended.

G-4 + Appendix G: Power Management BL1300

a

Arrenoix H: HARDWARE CONFIGURATION

BL1300 Appendix H: Hardware Configuration ¢+ H-1

If you change the BL1300 clock speed, you must either calculate the new
baud rates based on the new clock or modify locations 0x108 and 0x109 of
the EEPROM. The Dynamic C EPROM generates baud rates based on the
following considerations.

1. If no EEPROM is installed on the SmartBlock or if the baud rate for
the Dynamic C Interface Board is set to 9600 bps, then the micropro-
cessor clock speed, which affects the baud rate, is assumed to be
9.216 MHz.

2. If an EEPROM is installed and the baud rate jumpers on the
Dynamic C Interface Board are set to 19,200 bps, 28,800 bps, or
57,600 bps, then the system clock speed is taken from address 0x108 of
the EEPROM.

This clock speed is expressed as a 16-bit number in units of 1200 Hz.
Thus, 9.216 MHz is represented by the decimal number 7680. An 18.432
MHz crystal will result in the baud rates corresponding to the jumper
settings listed in chapter Installation.

If you use a different clock speed for the microprocessor, then either the
value at 0x108 in the EEPROM must be altered, or the new baud rates
must be calculated. For example if a 6.144 MHz clock is used

(12.288 MHz crystal), then 28,800 bps becomes 19,200 bps since the ratio
of 6.144 MHz/9.216 MHz = 19,200 bps/28,800 bps. For the debugging
port, a given baud rate can be generated if the clock speed is exactly
divisible by 32 times the baud rate. Thus, 9,216,000 Hz divided by (32 x
19,200 bps) = 15, so a baud rate of 19,200 bps can be achieved with a
9.216 MHz clock. But, 38,400 bps can only be achieved by changing the
clock to a different speed, such as 6.144 MHz. Keep in mind that if you
wish to use the asynchronous ports on the Z180, only clock frequencies in
the series 12.288 MHz, 6.144 MHz, 3.072 MHz ... or 9.216 MHz,

4.108 MHz ... will allow you to obtain the standard baud rates.

For a list of available baud rates, see Table 4-2, “Baud Rates
asd for ASCI Control Register B,” in Chapter 4, “System Devel-
opment.”

H-2 + Appendix H: Hardware Configuration BL1300

Appenpix I BATTERY

Appendix I provides information about the onboard lithium battery.

BL1300 Appendix I: Battery ¢ I-1

Battery Life and Storage Conditions

The battery on the BL1300 controller will provide approximately 9,000
hours of backup time for the onboard real-time clock and static RAM.
However, backup time longevity is affected by many factors including the
amount of time the controller is unpowered and the static RAM size. The
controller should be stored at room temperature in the factory packaging
until field installation. Take care that the controller is not exposed to
extreme temperature, humidity, and/or contaminants such as dust and
chemicals.

To ensure maximum battery shelf life, follow proper storage procedures.
Replacement batteries should be kept sealed in the factory packaging at
room temperature until installation. Protection against environmental
extremes will help maximize battery life.

Replacing Soldered Lithium Battery

Use the following steps to replace the battery.

1. Locate the three pins on the bottom side of the printed circuit board
that secure the battery to the board.

2. Carefully de-solder the pins and remove the battery. Use a solder
sucker to clean up the holes.

3. Install the new battery and solder it to the board. Use only a Panasonic
BR2325-1HG or its equivalent.

1-2 + Appendix I: Battery BL1300

Battery Cautions

Caution (English)

There is a danger of explosion if battery is incorrectly replaced.
Replace only with the same or equivalent type recommended by the
manufacturer. Dispose of used batteries according to the
manufacturer’s instructions.

Warnung (German)

Explosionsgefahr durch falsches Einsetzen oder Behandein der
Batterie. Nur durch gleichen Typ oder vom Hersteller empfohlenen
Ersatztyp ersetzen. Entsorgung der gebrauchten Batterien geméab den
Anweisungen des Herstellers.

Attention (French)

I1'y a danger d’explosion si la remplacement de la batterie est incorrect.
Remplacez uniquement avec une batterie du méme type ou d’un type
équivalent recommand¢ par le fabricant. Mettez au rebut les batteries
usagées conformément aux instructions du fabricant.

Cuidado (Spanish)

Peligro de explosidn si la pila es instalada incorrectamente. Reemplace
solamente con una similar o de tipo equivalente a la que el fabricante
recomienda. Deshagase de las pilas usadas de acuerdo con las
instrucciones del fabricante.

Waarschuwing (Dutch)

Explosiegevaar indien de batterij niet goed wordt vervagen.
Vervanging alleen door een zelfde of equivalent type als aanbevolen
door de fabrikant. Gebruikte batterijen afvoeren als door de fabrikant
wordt aangegeven.

Varning (Swedish)

Explosionsfdra vid felaktigt batteribyte. Anvédnd samma batterityp eller
en likvardigt typ som rekommenderas av fabrikanten. Kassera anvint
batteri enligt fabrikantens instruktion.

BL1300 Appendix I: Battery ¢ 1-3

I-4 + Appendix I: Battery BL1300

INDEX

Symbols

#INT VEC C-13
#JumMp_veEc C-14, C-15
/AT E-3

/CTS 4-9, 4-13

/DCDO 4-9, 4-10

/RDX E-3

/RTSO 4-11

/STBX E-3

/WRX E-3

= (assignment) A-4

4-bit bus operations E-4, E-6
5 x 3 addressing mode E-5
75174 driver chip 2-2

75175 driver chip 2-2

8-bit bus operations E-4, E-5, E-7

A

AO0X E-3

Al1X, A2X, A3X E-3, E4

accessory kit 2-2

addresses
encoding E-5
inputs/outputs C-7
modes E-5
PLCBus E-4, E-5

ASCI 4-7, 4-9, 4-10, 4-12
description 1-2
handshake signals 4-7
mini-8 connections 4-6
multiprocessor communications

4-7

ASCI serial ports 1-2

ASCI status registers 4-9
Control Register A 4-10
Control Register B 4-12
MODO 4-11
MOD1 4-10, 4-11, 4-13
MOD2 4-11

asyn_init _scc 4-21

asyn_kill scecx 4-21
asyn_send_scc 4-21
asynchronous serial communication
4-3
interface 4-9
attention line E-3

B

background routine E-6
battery
cautions 1-2, I-3
power consumption G-2
replacing 1-2
shelf life B-3
battery-backed
RAM 2-4
battery-backed RAM 1-5, C-15
baud rate 3-2, 4-12, 4-13,
4-14, B-3
adjusting for system clock rate
H-2
ASCI Control Register B 4-13
changing 3-3
divide ratios 4-12
SCC 4-20
BAUDCODE C-16
Bell Industries 5-3
bias
RS-485 4-18
transmission line 4-6
bidirectional data lines E-3
board layout 1-3
brownout C-14, C-15
bus
control registers E-7
expansion E-2, E-3, E-4,
E-5, E-6, E-7
4-bit drivers E-8
8-bit drivers E-10
addresses E-6
devices E-6, E-7

BL1300

Index ¢ 1

bus
expansion
digital inputs E-7
functions E-8, E-9, E-10,
E-11
rules for devices E-6
software drivers E-7
LCD E-3
operations
4-bit E-4, E-6
8-bit E-4, E-7
BUSADRO E-4, E-5
BUSADRI E-4, E-5
BUSADR2 E-4, E-5
BUSADR3 E-10, E-11
BUSRDO E-7, E-8, E-9, E-11
BUSRDI E-7, E-8
BUSWR E-8

Cc

cable
DIN-8 to bare leads 1-5
DIN-8 to DB25M 1-5
DIN-8 to DBI9F 1-5
changing baud rate 3-3
CKAI1D 4-11
clock D-4
changing clock speed H-2
frequency 4-13, 4-14
real-time 5-3
SCC clock encoding methods
4-21
system A-2
time/date 5-3, C-14
CLOCKSPEED C-16
CNTLA 4-10, 4-13
CNTLBO 4-14
CNTLBI1 4-14
common problems
programming errors A-4
wrong COM port A-2
communication
Dynamic C C-15

communication
RS-232 2-4, 3-2
RS-485 2-4, 3-2
serial 2-4, 3-2, 4-8, 4-12,
4-13, 4-14, 4-15, C-8
connecting BL1300 to PLCBus
F-2
connectors
Centronics
pin assignments 4-26
26-pin PLCBus
pin assignments E-2
CTS 4-8
CTS/PS 4-13
CTSI1E 4-9

D

DOX-D7X E-3
default communication rate 2-5
digital interfaces 4-29
dimensions B-2
DIN-8 to bare leads cable 1-5
DIN-8 to DB25M cable 1-5
DIN-8 to DBIF null modem cable
1-5
DIP relays E-2
display
liquid crystal E-3
divide ratio 4-12
DMA 4-11
DMA IN.C 4-23
dma_mem sccx 4-23
DMA OUT.C 4-23
dma_sccx_mem 4-23
drivers
expansion bus E-7
4-bit E-8
8-bit E-10
relay E-7
DRIVERS.LIB 4-2, E-7
Dynamic C 2-5, 3-2, 5-2
communications C-15
libraries 4-2

2 ¢+ Index

BL1300

Dynamic C
serial options 2-5
standard version 4-2
troubleshooting A-2
Dynamic C Interface Board
2-3, 2-4
Jo4 2-3
Jo6 2-3
JO7 2-3
KIO registers C-10
run program in RAM 2-3
setting baud rate 2-3
setting RS-232 or RS-485
protocol 2-3

E

ee_rd D-3

ee wr D-3

EEPROM 1-5, 3-3, 5-2
constants C-13
jumper settings D-2
library routines D-3
write-protect D-2, D-3
writes

lifetime D-3

wrong clock frequency A-2

EFR bit 4-10

EIA levels 4-5

eioPlcAdrl2 E-§

eioReadD0 E-9

eioReadDl E-9

eioReadD2 E-9

eioResetPlcBus E-8

eioWriteWR E-10

enclosure 1-4

EPROM 1-5, 3-2, 3-3
choosing 3-4
copyright 3-5
installing 3-4
options 3-4
programming 3-3

expansion boards
reset E-8
expansion bus E-2, E-3, E-4,
E-5, E-6, E-7
4-bit drivers E-8
8-bit drivers E-10
addresses E-6
devices E-6, E-7
digital inputs E-7
expansion register E-6
functions E-8, E-9, E-10, E-11
registers E-4, E-6
rules for devices E-6
software drivers E-7
EZIOBL17.LIB E-7
EZIOLGPL.LIB E-7
EZIOMGPL.LIB E-7
EZIOPL2.LIB E-7
EZIOPLC.LIB E-7
EZIOTGPL.LIB E-7

F

features 1-2
framing error 4-10, 4-11
frequency

system clock 4-13, A-2
function libraries E-4

H

handshake signals

ASCI 4-7

SCC 4-16
HD64180Z microprocessor 5-2
Hitachi America 5-2
Hitachi technical manuals 5-2
hitwd D-5

inport C-2, C-7, C-14, E-8,
E-9, E-11

execution times C-6 inputs/outputs
Exp-A/D12 E-2 cycle timing C-5
devices C-8
BL1300 Index ¢+ 3

inputs/outputs
map C-8
select map C-7
space C-8
Integrated Electronics 5-3
intermittent operation G-2
optional jumper installation G-3
options G-3
interrupt priorities C-16
interrupt routines C-14, C-15
interrupt service routine 4-14
interrupt vectors C-13, C-15
default C-13
Z180 internal devices C-13
interrupts A-3, C-13, C-15,
E-3, E-6
and ASCI 4-9
nonmaskable A-3, C-14, C-15
power failure C-14, C-15
routines E-6
serial 4-8, 4-9, 4-10, C-15
IOSTOP 4-10

J

jump vectors C-15
jumper blocks
connections B-5
location B-4
jumper settings
baud rate 3-3
DCDA 4-16
DTRA 4-16
EEPROM 2-4, D-2
EPROM size 3-4
intermittent operation G-3
JO1 Dynamic C Interface Board
2-4
JO02 Dynamic C Interface Board
2-4
J04 Dynamic C Interface Board
2-3
JO6 Dynamic C Interface Board
2-3
JO7 Dynamic C Interface Board
2-3

jumper settings
J1 4-16, 4-19
J1 SmartBlock 2-3
J12 4-17
J13 4-17
J14 4-17
J15 4-17
J16 G-3
J2 SmartBlock 2-4
J3 SmartBlock 2-4
J4 SmartBlock 3-4
J5 SmartBlock 3-4
J6 SmartBlock 3-4
program/run 2-3, 2-4
RS-232 DCDA 4-16
SCC 4-16, 4-17
Channel A 4-19
SRAM size 3-4
summary B-5
watchdog timer 2-4
JUMPERS C-16

K

KILL 4-2
KIO registers
Dynamic C Interface Board C-10

L

LCD E-3

LCD bus E-3

LCDCLK.C D-5

LCDX E-3

LED 2-5, C-14

libraries
function E-4

library
EPROM vs. source 4-2
replacing EPROM functions 4-2
source 4-2

liquid crystal display E-3

lithium backup battery C-14, I-2

lprsend 4-27

LT1180 driver chips 2-2

4 ¢+ Index

BL1300

memory
access times C-4
battery-backed C-15
map C-2
memory cycles C-3
execution timing C-6
inserting wait states C-5
LIR cycles C-3
standard C-4
Microchip 5-2
mini-8 pin connections to PCB 4-18
mktime D-4
mktm D-4
mode
addressing E-5
modems 4-6
multidrop networks
resistor packs 1-5
multiprocessor bit 4-11, 4-13
multiprocessor communications 4-7
multiprocessor mode 4-13

N

NMI A-3, C-14, C-15

NMI_VEC C-14, C-15

nonmaskable interrupts A-3,
C-14, C-15

(o)

operating modes 3-2
run mode 3-3

options 1-5
outport 4-21, C-2, C-7,
E-8, E-9, E-11

overloaded power supply C-14
overrun error (OVRN) 4-10, 4-11

P

parallel communication
description 4-3, 4-24
pin assignments 4-25

parallel communication
protocol 4-26
specifying PIO 4-27
parallel ports
see PIO ports
parity 4-11, 4-13, 4-14
error 4-10, 4-11
PBUS_TG.LIB F-2
PC A-3
parity error 4-10, 4-11
periodic interrupts G-4
PIO ports 4-29
bidirectional mode 4-31
bit mode 4-31
connecting to Centronics device
4-25
connector 4-29
description 1-4
handshaking 4-29
I/O register control word 4-32
I/O registers 4-30
input mode 4-31
interrupt control word 4-32
interrupt disable word 4-33
interrupt vector word 4-32
mask control word 4-33
Mode 0 4-31
Mode 1 4-31
Mode 2 4-31
Mode 3 4-31
mode control word 4-31
modes 4-31
output mode 4-31
pin assignments 4-28
printer drivers 4-27
printer emulation 4-28
specifying 4-27
use as digital interface 4-29
using PIO ports 4-31
PIODEMO.C 4-33
PLCBus E-2, E-3, E-4, E-5,
E-6, E-7
26-pin connector
pin assignments E-2

BL1300

Index ¢+ 5

PLCBus
4-bit operations E-4, E-5
8-bit operations E-4, E-5
addresses E-4, E-5
BL1300 connections F-2
memory-mapped I/O register E-4
reading data E-4
relays
DIP E-2
drivers E-7
writing data E-4
plink_getcO 4-28
plink_init0 4-28
plink_rdy0 4-28
Port Z0 4-14
ports
serial 1-5
power consumption G-2
power failure
detection 2-4
interrupts C-14, C-15
power regulator
switching 1-5
power supply
Dynamic C Interface Board 2-4
powerdown G-3
powerup G-3
prescaler 4-12
printer drivers 4-27
printer emulation 4-28
programming 5
PRPORT.LIB 4-2, 4-31
prsend 4-27
prsend init 4-27
PSFLASH.C 2-5

R

RAM

battery-backed 2-4, C-15
read-only memory 3-2, 3-3
readl2data E-9
read24data E-11
read4data E-10
read8data E-11

reading data on the PLCBus
E-4, E-9
real-time clock 5-3
receiver data register 4-8, 4-10,4-11
receiver enable 4-11
receiver shift register 4-8, 4-10
registers
Dynamic C Interface Board C-10
inputs/outputs C-7
KIO C-10
other C-12
user-defined C-11
7180 C-8, C-9, C-10
regulated input voltage C-14
reset 4-10
expansion boards E-8
hardware 3-2
system C-14
resistor packs 4-18
receiver interrupts 4-10
ROM
programmable 3-2, 3-3
RS-232 2-4, 3-2,4-5
driver chips 2-2
mini-8 connections
ASCI 4-6
SCC 4-17
RS-422/RS-485 2-4, 3-2,4-5, 4-6
bias resistors 4-18
driver chips 1-5, 2-2
mini-8 connections
SCC 4-17
SCC Channel A RS-485 driver
4-16
SCC Channel B RS-485 driver
4-16
terminating resistors 4-18
receiver shift register 4-8, 4-10
running sample program 2-5

S

sample programs 4-23, D-5
LCDCLK.C D-5
PIODEMO.C 4-33

6 ¢ Index

BL1300

sample programs serial communication

PSFLASH.C 2-5 multiprocessor bit 4-13
SER_DEMO.C 4-15 protocols 4-5
SCC 1-2 serial ports 4-7
baud rate generation 4-19 serial communication controller
baud rate table 4-20 see SCC
channel signals 4-17 serial interrupts 4-8, 4-9,
clock encoding methods 4-21 4-10, C-15
description 1-2, 4-16 serial ports 1-5, 4-8, 4-15
digital phase-locked loop 4-18 ASCI 1-2
encoding/decoding data 4-20 SCC 1-2
handshaking 4-16 SERIAL.LIB 4-2
initializing 4-22 function library 4-14
modes 4-22 setl2adr E-8
ports 4-16 setl6adr E-8
RS-232 set24adr E-10
mini-8 connections 4-17 setd4adr E-9
RS-422/RS-485 set8adr E-11
Channel A driver 4-16 SETCLOCK.C D-5
Channel B driver 4-16 setperiodic G-3
mini-8 connections 4-17 shadow registers E-6
serial ports 1-2 shared variables 4-14
software drivers 4-21 shutdown C-14
software reset 4-21 sleep G-3
system clock frequency 4-19 SmartBlock
scc_rst 4-21 EEPROM 2-4
SDLC synchronous transmission 4-5 features 1-4
select PLCBus address E-8 J1 2-3
SE1100 E-2 12 2-4
SER DEMO.C 4-15 I3 2-4
ser_init _z0 4-14 J4 34
ser_init_zl 4-14 J5 34
ser_kill z1 4-14 J6 3-4
ser_rec_zl 4-14 layout 1-3
ser_send zl 4-14 parts 1-4
SERO_VEC 4-8 software
SER1_VEC 4-8 libraries 4-14, E-4
Serial Channel 0 drivers
block diagram 4-7 SCC 4-21
serial communication 2-4, 3-2, 7180 serial ports 4-14
4-8, 4-12, 4-13, 4-14, source (C term) A-4
4-15, C-8 specifications B-3
character format 4-5 stack corruption 4-14
description 4-3, 4-5 start bit 4-13

BL1300 Index ¢ 7

startup sequence 3-2
stop bits 4-11, 4-13, 4-14
switching voltage regulator 1-5
sysclock 4-14
system clock

changing H-2
system clock frequency A-2
system reset C-14

T

terminating resistors
RS-485 4-18
termination
twisted pair 4-6
time and date C-14
time/date clock 5-3, C-14
drivers D-3
registers C-12, D-3
timer C-8
watchdog 3-2, C-14
tm rd D4
tm wr D-4
transmitter data register 4-8, 4-9
transmitter interrupt enable 4-9
transmitter shift register 4-7, 4-8
troubleshooting
baud rate A-2
COM port A-3
communication mode A-3
input/output problems A-3
nonmaskable interrupts A-3
power supply A-3
repeated interrupts A-3
serial link A-3
watchdog timer A-3

U

Ul 2-2
U2 2-2
U3 2-2
U4 2-2
unregulated input voltage C-14

\'

variables
initialization C-16
VOFF G-2

w

watchdog timer 3-2, A-3,
C-14, D-5
drivers D-5
wderror D-5
writel2data E-10
write24data E-11
writeddata E-10
write8data E-11
writing data on the PLCBus
E-4, E-10

X

Xicor 5-2

XP8100 E-2

XP8200 E-2

XP8300 E-2

XP8400 E-2

XP8500 E-2

XP8600 E-2

XP8700 E-2, E-4, E-7
XP8800 E-2, E-7
XP8900 E-2

V4

7180 5-2
channel signals 4-6
internal I/O registers C-8,
C-9, C-10
Port1 C-13
Serial Channel 0 4-9
serial ports 4-7
software drivers 4-14
z180baud 4-14
Zilog 5-2
Z10
see Z180 serial ports

8 ¢ Index

BL1300

Z-World
2900 Spafford Street
Davis, California 95616-6800 USA

Telephone:
Facsimile:
24-Hour FaxBack:
Web Site:

E-Mail:

(530) 757-3737

(530) 753-5141

(530) 753-0618
http://www.zworld.com
zworld@zworld.com

Part No. 019-0006-03
Revision 3

Printed in U.S.A.

