

:’/\

ST

CROMEMCO

DAZZLER GRAPHICS

Instruction Manual

/

CROMEMCO, INC.
289 Bernardo Avenue
Mountain View, CA 94@490

< , Part No. @23-0044 October 1978
» Copyriight 1978

CROMEMCO DAZZLER GRAPHICS MANUAL

ABSTRACT

This manual describes the Cromemco Dazzler* graphics
software package. This package is available from Cromemco
on either a 5" diskette (model DGR-S) or on a 8" diskette
(model DGR-L). The graphics package includes functions
such as Dazzler initialization, screen erase, line genera-
tion, character generation, and point display. Several
of these functions are based on a graphics standard pro-
posed by Dr. Vincent Jones. The functions are interfaced
to Cromemco Fortran IV and 16K Extended Basic as well as
being fully relocatable for linking to assembly language
programs. The graphics package also includes demonstra-
tion graphics programs in Fortran and Basic that use

the Dazzler display.

*Dazzler is a registered trademark of Cromemco.

Copyright 1978 Cromemco, Inc.

Table of Contents

Chapter Page
PrefacCe v v v o o o o o o« o o o o o o o o o o « o o « o ii

Part I - STANDARDIZED DAZZLER GRAPHICS

1 Introduction to Dazzler Graphics 1
2 The Standard Display and Its Functions
Standard Display . .« « ¢ ¢ ¢« o ¢ o o o s+ e
Standard Functions « « « « + o« o .
3 Using the Graphics Programs . . . + « « « o« . . 11
780 Assembly Protocol ¢« .« « .« & . . . 11
Non-Standard Routines (AREA, STRING,
PAUSE, CYCLE) .+ &+ « « & « o o o o« &« « « « o' 15
FORTRAN IV Graphics Protocol 21
16K BASIC Graphics Protocol 22
4 Function Algorithms ¢« . « « . « + . « 33
Logic of INITG, PAGE, CURSOR 35
DOT LOGIiC +v ¢ « ¢ o + o o o o o o« o« « « « « « 38
LINE LOGiC + & ¢ ¢ o o o o o o o o « o o« « o 40
CHAR LOGIC v « o « o o o o o o o « « « « « » 49
ANIMAT LOgic + v v & v & 4 &« & & « = « « « . 54

Sample Implementation of the Algorithms . . . 56

5 Demonstration Programs and Conclusion 63
Sample 7Z80 Assembly Language Program 63
Sample FORTRAN Graphics Program . « 65
Sample BASIC Graphics Program 65.
Conclusion of Part I +« +. « « . . . 66

Part II - INTERACTIVE DAZZLER PLOTTING

6 Loading and Executing DAZZPLOT 68
7 Dazzleplot Control Commands . . . « « « . « « . 10
Cursor Movement Controls « 71
Color and Intensity Controls 73
Program Control Commands . . « . « . « « . . 14

8 Conclusion and Example of Use of DAZZPLOT . . . 82

.

Preface

There are two major graphics routines supplied with the
DGR-S and DGR-L Dazzler Graphics diskettes. The first of these
is actually a series of 9 major subroutines which perform such
functions as line and area plotting, character generation, and
animation. These subroutines are all included in each of the
programs on the DGR disk beginning with the word "GRAPH".

~ GRAPHZ80.REL is a relocatable program module to be used as a

complete graphics interface to Z80 assembly language programs.
GRAPHFOR.REL is a very similar set of relocatable modules which
interfaces to CROMEMCO FORTRAN IV; however, GRAPHFOR has additions
to handle the passing of parameters to and from FORTRAN. Finally,
the program GRAPHX.COM is a complete interface of the standard
subroutines to CROMEMCO 16K BASIC. These programs and how they
work are fully described in Part I of this Manual. Chapter 3 of
Part I describes the protocol for calling these routines from
each of the various languages. Chapter 5 gives a discussion of
the various sample programs which are provided to illustrate
features of the graphics programs.

The second major graphics routine supplied on the DGR
diskettes provides a more interactive method of interface with
an emphasis on plotting abilities. This routine is supplied
under the name DAZZPLOT.COM and it provides a stand-alone graphics
package with full interface to the console keyboard as well as
the CROMEMCO Joysticks. Because this program is implemented in
a somewhat different way from those of Part I, it is described
separately in Part II of this manual along with a description
of a sample program.

Those users who do not presently have the CROMEMCO FORTRAN,
BASIC, or Assembler disks should not be overly concerned. These
disks may be purchased at some time in the future to provide
additional graphics capability. In the meantime, DAZZPLOT.COM
will provide a stand-alone version with which to gain familiarity

with Dazzler Graphics.

ii

TN

PART I - STANDARDIZED DAZZLER GRAPHICS

T

T

Chapter 1: INTRODUCTION TO DAZZLER GRAPHICS

A major stumbling block in making good software available
to a large number of users in the computer market has been
a lack of standardization. Manufacturers and writers of machine
programs tend to establish internal standards of software which
are incompatible with those of other manufacturers. In the
interest of minimizing this problem, this document proposes a
graphics interface standard protocol for computers. CROMEMCO
has attempted to retain the graphics standard as much as possible
in the development of this graphics package. Although there
are differences in the way the "GRAPH" programs interface to
their respective languages, all have in common the set of seven
subroutines originally outlined (Chapter 2) in a largely unchanged
form, and all have the CROMEMCO Dazzler as their graphics output
device. References in the following chapters to.the "proposed
graphics standard" refer to this original outline.

In addition, the interfaces to FORTRAN IV and 16K BASIC
implemented here have been adopted as a CROMEMCO standard graphics

protocol and will be supported by future graphics releases.

This graphics standard actually proposes two separate
but dependent protocols. The top level protocol is machine
independent. It defines a standard display coordinate system,
several standard display modes, and the functions available
and what they do. For example; a request for a red line from
the center of the screen to the bottom right corner would

always require the command sequence:

CHAR (RED) :Set the current color to RED
CURSOR (128,128) ;Move to the center of the screen
LINE (255,0) :Draw the line

Obviously not all displays are capable of color. For
example, a black and white display would draw a white line
instead. To allow for possible differences in the hardware
being used, a feedback path is included to inform the user
program of the available capabilities. General purpose programs
can check to verify that the display being used is suitable;
and, if necessary, either display an error (or warning) message
or use a different algorithm to accomplish the task at hand.
For example, a TV tennis game could check if full color were
available. If so, it could use red paddles, a yellow ball,

a green court, and white boundaries. If only three colors
were available, the paddles and ball could be the same color,
while if only a black and white display were available, all
markings could be in white with a black court and background.

The lower level protocol defines the calling sequences
used in a particular programming language. If necessary, it
also defines where in memory the routines are loaded and the
locations of their calling vectors. Returning again to the
example of drawing a red line, a Z80 assembly language program

would use the instruction sequence:

-

L,

r/—\\

LD A,l11H ;:Code for Red

CALL CHARS ;Vector for CHAR
LD HL,8080H ;X = 128, Y = 128
CALL CURSRS ;Vector for CURSOR
LD HL,O0FF00H ;X =255, Y =20
CALL LINES ;Vector for LINE

Similarly, a CROMEMCO BASIC program would read:

10
20
30
40
50
60
70
80

REM - Open the Device Driver

OPEN\1\"$DG"

REM ~ Select Color mode and Red
PUT\1\"ZR"

REM - Position cursor at center of screen
PUT\1,128,128\"P"

REM - Draw the Line to corner
PUT\1,255,0\"L"

o

Chapter 2: THE STANDARD DISPLAY AND ITS FUNCTIONS

Standard Display

The protocol defines a standard display device to circumvent
hardware differences. The standard device displays 256 lines
with 256 points on each line. As shown in Figure 2-1, the
origin (X = 0, Y = 0) is defined as the bottom leftmost point
on the display. X increases to a maximum value of 255 as you
move to the right, Y increases to 255 as you rise to the top.
Those of you with a mathematical background will recognize
this as the first quadrant of the standard Cartesian Coordinate
System. Each picture element (pixel) may be black, white, red,
green, blue, yellow, cyan, or magenta; that is, it may be any
combination of the three primary colors.

The display to be used is programmed to imitate the standard
to the best of its ability. To facilitate this, four standard
display modes are defined. Mode zero requests the maximum
possible resolution while mode one requests the maximum choice
of colors. This is to allow for displays which offer a tradeoff
between resolution and color such as the CROMEMCO DAZZLERtm.

Two additional modes provide the ability to deliberately select
larger pixels. Mode two is 128 by 128 resolution and mode three
is 64 by 64 resolution. Regardless of the resolution actually
used, the coordinate system remains at 256 by 256 as defined
above. General purpose applications programs can check to
determine the available resolution, the range of colors available,
whether the display is black/white or color, whether individual

points can be erased, and if dual-buffered animation is available.

#g,255 255,255
F =
>-+ -t
T X,y
> u
o
5
§
5
1
I
1 .
2.8 increasing x —> 255, 9

Figure 2-1. The Standard Coordinate System.

Standard Functions

A five command repertoire is generally considered the
bare minimum for a general purpose graphics display. These
commands provide all the output capabilities normally found *
on commercial nonintelligent graphics terminals.

The routines are:

PAGE -Next page, i.e. erase the entire
screen.

CURSOR (X,Y) -Position the cursor at the point

' (X,Y).

DOT -Set the pixel defined by the cursor
position to the currently selected
color.

LINE (X,Y) -Set the pixels along the line con-

necting the current cursor position
to the point (X,Y) to the currently
selected color.

CHAR (VAL) -Display the character whose ASCII
value is VAL at the current cursor
position using the currently selected
color.

To facilitate matching the hardware requirements of many

displays, an initialization command is also required.
INITG -Initialize the graphics subsystem.

Finally, a two buffer animation command is included for

interactive graphics and game playing.

ANIMAT -Display the refresh buffer currently
being filled and open a second refresh
buffer for filling.

Display mode and current color selection are provided by
the routine CHAR through ASCII control characters. Standard
carriage control characters are also recognized. Display
description parameters are returned by the routine INITG.

Let us now examine the function of each of the seven

routines in detail.
* INITG *

The INITG function serves three primary functions. As
an aid to the user, the display software is initialized to
a standard configuration; the cursor is positioned at X = 0,
Y = 0, the current color is set to white, animation is disabled,
and the display mode is set for maximum resolution (mode 0).
Any special options peculiar to the particular display are
also disabled so that general purpose programs do not need to
know about them to function correctly. Secondly, this routine
performs any initialization functions required by the display
hardware. For those displays which refresh from program memory,
it establishes the refresh buffers. If the display is under
program control, it is turned on. Finally, this routine causes
the display description variables to be set to the appropriate
values. Failure to initialize the display before using any

of the other functions may lead to unpredictable results.
* PAGE *

The PAGE function clears the display screen. No other
changes are made to the state of the display. In particular,
the cursor is not moved, the current color is not changed,

and the display mode is unaffected.
* CURSOR *

The CURSOR function sets the display cursor to a particular

pixel on the screen. This establishes the initial location for

the display functions which affect individual pixels on the

screen. Coordinates are always interpreted on the 256 by 256
pixel matrix regardless of the actual resolution of the display.
This is true even when the display mode is deliberately set to
a lower resolution mode.

Whén in a lower resolution mode, the low order bits of

the position requested are ignored. For example, when in

128 by 128 resolution mode (mode 2), the points (8,4), (8,5),
(9,4), and (9,5) will all be interpreted as the same pixel

(the low order bit in each coordinate has no effect). When
changing between display modes, cursor position is not required
to be maintained by the interface software. To avoid erroneous
results, all changes to display mode should be followed by a

cursor positioning command.

* DOT *

The DOT function sets the display pixel indicated by the
cursor to the currently selected color. Note that this has

no effect on cursor position.

* LINE *

The LINE function generates the line connecting the pixel

presently defined by the cursor to the pixel requested. Both

endpoints are included in the line. A line of zero length

therefore is logically equivalent to a call to DOT. When
erasing or otherwise changing the color of a line, care must
be exercised as the pixels making up the line from pixel A to
pixel B may differ from the pixels used when the line is drawn
from pixel B to pixel A. When lines are drawn in various re-
solution modes, the pixels used are the size made by the DOT

function at that resolution.

* CHAR *

The CHAR function provides the capability to display
alphanumeric as well as graphical data. 1In addition, control
characters provide limited cursor positioning and control over
display mode and current color as shown in Table 2-1. Control
characters not recognized are ignored. Note that form feed
only positions the cursor, it does not erase the screen.

Characters are positioned so that the cursor defines the
lower left corner of a normal character (characters with
descenders will extend below the cursor position). Following
display, the cursor is left positioned at the next character
position. No check is made to detect characters off the edge
of the screen. The parity bit is ignored. Lower case charac-

ters, if not supported, are converted to upper case.
* ANIMAT *

The function ANIMAT provides for flicker free changes in
the display by permitting the user to load one refresh buffer
while displaying another. Each call to ANIMAT causes the
buffer which is being filled to be displayed and another buffer
to be opened for filling. This buffer exchange is performed
at the start of the next vertical blanking period. Those
displays without the ability to utilize multiple buffers but
which do allow erasing individual pixels will just delay until
the start of the next vertical blanking period. In either
case, no changes are made to either buffer and the cursor
position is maintained. The ANIMAT function will do nothing
on displays which support neither double buffering nor selective
erase. The CROMEMCO DAZZLER fully supports double buffering.

To return to normal mode where updates are displayed in real
time, it is necessary either to reinitialize with INITG or to
use one of the control character calls to CHAR to stop-animation
in buffer 1 or buffer 2 (i.e., select buffer 1 or buffer 2 in

real-time mode).

L

e

10

CONTROL
MNEMONIC ASCII CHARACTER HEX STANDARD FUNCTION
Display Mode Selection
MAXR NUL CTRL-@ 00 Maximum resolution
MAXC SOH CTRL-A 01 Maximum colors
R128 STX CTRL-B 02 128 by 128
R64 ETX CTRL-C 03 64 by 64
RXXX EQT CTRL~-D 04 Undefined
Carriage Control
BS BS CTRL-H 08 Backspace (optional)
HT HT » CTRL-I 09 Horizontal tab (optional)
LF LF CTRL-J 0A Line feed
VT VT CTRL-K 0B Vertical tab (optional)
FF FF CTRL~-L 0cC Form feed
CR CR CTRL-M 0D Carriage return
Character Style
SO SO CTRL-N OE Undefined
ST ST CTRL~0O OF Undefined
Current Color Selection
BLK DLE CTRL-P 10 Black
RED DC1l CTRL-Q 11 Red
GRN bC2 CTRL-R 12 Green
YEL DC3 CTRL~S 13 Yellow
BLU DC4 CTRL-T 14 Blue
MAG NAK CTRL-U 15 Magenta
CYN SYN CTRL~-V 16 Cyan
WHI ETB CTRL-W 17 White
NO CAN CTRL-X 18 EighF
NE to to to optional
Vs CTRL-__ 1F colors

Table 2-1. Standard Control Character Funétions.

Chapter 3: USING THE GRAPHICS PROGRAMS

As described in the Introduction to this Part, there
are three implementations of the Dazzler Graphics subroutines:
one for each of the languages, EASIC, FORTRAN, and Z80 Assembler.
Each of these is described briefly in this chapter along with
an exact description of the ways they aré called and used.

The subroutines described throughout Part I of this manual
comprise a standard Z80 assembly language protdéol which has
been proposed to encourage maximum software interchange. The
programs which have been developed to interface this graphics
standard to FORTRAN and BASIC do so leaving the original routines
in unchanged form. It is only the passing of parameters and
the calling procedure itself which has been simplified. The\
procedures adopted for FORTRAN IV and 16K BASIC will be suppdrted

as far as is possible by any subsequent graphics releases.
Z80 Assembly Protocol

Z80 programmers may write graphics software in standard
Zilog 7Z80 mnemonics into a file with the .Z280 extension. (Use
EDIT.COM, supplied on all CROMEMCO disks, to create this file.)
The names which must be used in calling the various graphics
routines are given in Tables 3-1 and 3-2. 1In addition there

must be a statement somewhere in the Z80 file of the form:

EXT INITGS, CHARS, etc.

to declare the routines which were used to be EXTernal. The
Z80 program should have a labeled statement at the desired

start of the program such as:

START: LD SP,1000H
and an END statement such as:
END START

11

12

. An END statement alone is not sufficient as this declares the
program a sub-module rather than the main module (refer to the
Macro Assembly Manual for more information). Except for the
CHAR and PAUSE routines which use the A register, all arguments
are passed to the called routine in register pair HL. Except
for the INITG routine (which returns display data in HL), the
contents of all registers and flags are preserved. It is up
to the programmer to set up the HL registers with the correct
parameters. The desired routine is then called with an instruction
such as:

CALL CHARS

(Either the global names or the standard names may be used in
calling the routines.) The routines return with a simple RET
instruction. Much of this information along with the parameters
required (in some cases, none) is given in Tables 3-1 and 3-2.
Generally H contains the X value and L contains the Y value.
However, for INITG if H is 0 (regardless of L), the routine will
search for the highest 4K block of RAM below CDOS to locate the

two picture buffers. This is generally the preferred location

because it is well above the typical graphics program. On the
other hand, if H contains a non-zero value, the 2 buffers will
be put in the first 4K block above the end of the program.
When this method is used, the graphics routines (GRAPHZ80.REL)
must be LINKed last. Be sure when writing a graphics program
to call INITG before any other graphics operations to initialize
the picture buffers and other variables. Also be sure to ini-
tialize the stack pointer. 1000H is a good value because the
graphics program will be linked starting at 1000H.

Once your Z80 file is completed, it must be assembled
using the CROMEMCO Relocatable Assembler (ASMB.COM, provided
on the Assembler disk) and linked to the graphics routines
(LINK.COM, provided on this disk) with a command of the following
form:

LINK MYPROGRM,GRAPHZ80/G

13

to execute the program directly, or /E to exit to CDOS. If
exiting to CDOS, the program may be saved using the CDOS SAVE

command (see CDOS manual).

ROUTINE GLOBAL NAME PARAMETERS

INITG INITGS Returns display description
in HL.

PAGE PAGES None

CURSOR CURSRS H = X coordinate; L = Y
coordinate.

DOT DOTS None

LINE LINES H = X end coordinate; L = ¥
end .coordinate.

CHAR CHARS A = ASCII value of character
to be printed or control
character.

ANIMAT ANIMTS None

Table 3-1. Z80 Assembly Language Standard -Subroutines.

The parameter passed in HL when calling INITG has already
been described. However, if it is desired to make your Z80 program
graphics standard compatible, a good value to load into HL
prior to calling INITG is 5800H. The picture buffers will then
be placed at the end of the current program. The address in HL
is replaced by INITG with a two-byte description of the display
being used (all other registers and flags are left undisturbed).
The format for these bytes is given in Figure 3-1. The available
colors and scale factor fields in the H register describe the
display when maximum resolution is selected; the same fields
in the L register describe the maximum color selection mode.

The available colors field gives the number of colors a
point can be written to other than white. If this field is
zero, it means the way to erase what has been written is to page

the display. The scale factor field indicates the physical

14

size of display points in standard coordinates. If the X and
Y scale factors differ, the larger of the two is used. For
example, if the display had 64 lines with 100 points on each,
the scale factor would be four, based on the Y axis resolution.
The animation and color fields apply to all display modes.
If the animation field is one, then the display supports double
buffered animation. If this field is zero, then it is impossible
to build one display scene while another is displaying. In
this case the ANIMAT routine is\a delay until the start of
vertical blanking. The color/BW field is self-explanatory. If
one, the display is in color; otherwise it is black, grey, and
white.

- This two-byte description returned in HL is provided only
for graphics standard compatibility. Presumably, the programmer
already knows the number of available colors, etc. of the Dazzler,
and will therefore not need to examine these two bytes in a

program unless the program is of a "universal" graphics nature.

H L
- T T | l T l 1 I | 1
ANIM MRC;OLS I MlRSCI;F COL | MCC‘OLS | MCSCLF
L ! |
D7 D6 D5 D4 D3 D2 D1 DO D7 D6 D5 D4 D3 D2 D1 DO
MAXRD MAXCD
ANIM = 1 - Double buffered animation supported.
0 - Delay to start of vertical blanking.
COL = 1 - Display is in color.
0 - Display is black and white.
MRCOLS - Colors (gray shades) in MAXR mode.
MCCOLS - Colors (gray shades) in MAXC mode.
MRSCLF - 256 in MAXR mode.
Display resolution
MCSCLF - 256 in MAXC mode.

Display resolution
(8AFCH is value returned in HL for the Dazzler.)

Figure 3-1. Z80 Assembly Language Standard Display Parameter Field<

Py

15

For convenience several additional subroutines have been
defined in this graphics package which were not a part of the
original proposed standard. These have been implemented in
the FORTRAN, BASIC, and %80 versions and are described in the

following sections as well as in Table 3-2.
AREA Routine

This routine is designed to f£ill a horizontal, rectangular
area on the screen with the current color. The square or
rectangle plotted is defined by four points, its four corners.
However, it is equally well-defined by its two diagonals. The
parameter passed to AREA in HL is the X,Y) coordinates of any
one of the corners, and the AREA routine will define a square
or rectangle one of whose diagonals is drawn between this point
and the point at which the cursor was positioned upon entering
AREA. Either diagonal may be used and HL may contain the
coordinates of any of the four corners. For example, the square
defined by the four points (0,0), (0,40), (40,40), and (40,0)
may be plotted by first positioning the cursor at any of the
four corners using the CURSOR routine and then passing AREA
the coordinates of the diagonally opposite corner. The cursor

will be left positioned at this second set of coordinates.

ROUTINE GLOBAL NAME PARAMETERS

AREA AREAS : H=X corner coordinate;
I=Y corner coordinate.

STRING STRINS 'HL=address of start of
string.

PAUSE PAUSES A=delay time in tenths
of a second.

CYCLE CYCLES None.

Table 3-2. Additional Non-Standard Graphics Subroutines.

16

The AREA routine is implemented internally by multiply-
calling the LINE routine (which in turn calls DOT). All
registers and flags are preserved. If the present cursor
position and that passed to AREA agree, a dot will be plotted.
If either their X or their Y coordinates agree, a vertical or

horizontal line will be plotted, respectively.
STRING Routine

The STRING routine is used to plot a string of characters
on the screen by means of a single call (rather than by multiple
calls to CHAR). The string may contain any of the control
characters described (for example CR and LF) and thus may be
used as a fast way of setting display parameters as well as
for character plotting. The parameter passed in HL is the
address of the start of the desired string; the string is
terminated by the parity bit set in the last character to be
printed. (The relocatable format of the Assembler and Linker
will take care of creating an absolute address if the address

you use is symbolic.) Here is a sample implementation of STRING:

LD HL,STRIN1
CALL STRING

STRIN1: DM 'GRAPHICS'

The DM pseudo-op automatically sets the parity bit of the last
character in the object code. The word "GRAPHICS" will be
plotted on the TV screen by this routine call. The STRING
routine is implemented by multiple calls to the CHAR routine.

All registers are preserved except HL, which is returned pointing

to the next character following the last character of the string.

o

17

PAUSE Routine

This routine may be used to provide pauses of 0.1 second
increments. This is needed because during animation the display
may be updated far faster than is desired. The number of 0.1
second pauses desired is passed to the routine in the A register,
up to a maximum of 25.5 sec. (A=255 or FFH). 1If A is 0, a
negligible pause is produced.

The routine is implemented by a carefully timed software
loop. The 0.1 second time assumes a 4MHz ZPU speed. If 2MHz
is being used, all times will be doubled. No registers are

changed by this routine.
CYCLE Routine

The CYCLE routine first examines several internal parameters
and determines the currently-set color, resolution, intensity,
and whether Color or B/W mode. It then changes the display
to 128 X 128 mode in the color red (or lowest grey scale), and
cycles through all colors (in Color mode) or through all shades
of grey (in B/W mode) at tenth-second increments. The display
is then returned to its entry settings of color and resolution
prior to return to the main program. All registers are preserved.
The CYCLE routine is implemented by calls to CHAR to generate
the desired display modes and by calls to PAUSE for the required

delays. This routine is provided for special color effects.
CHAR Routine Additions

The control characters which the graphics standard CHAR
routine is able to interpret and implement are described in
Table 2~1. However, since not all available control characters
were used, several additional features for this graphics
program were assigned to the extra ones. These are summarized
in Table 3-3, and described here in the following. Note that
Table 3-3 defines all those control characters which were unde-
fined in Table 2-1.

MNEMONIC ASCII

CONTROL
CHARACTER HEX

STANDARD FUNTION

MAXR
MAXC
R128
R64

RXXX

BS
HT
LF
VT
FF
CR

S0
SI

NUL
SOH
STX
ETX
EOT

ENG
ACK

BEL

BS
HT
LF
vT
FF
CR

SO
SI

DLE
DC1l
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
Vs

Table 3-3.

CTRL-@ 00
CTRL-A 01
CTRL-B 02
CTRL-C 03
CTRL-D 04
CTRL-E 05
CTRL-F 06
CTRL-G 07
CTRL-H 08
CTRL-I 09
CTRL-J 0A
CTRL-K 0B
CTRL-L ile!
CTRL-M 0D
CTRL-N OE
CTRL-0 OF
CTRL-P 10
CTRL-Q 11
CTRL-R 12
CTRL-S 13
CTRL-T 14
CTRL-U 15
CTRL-V 16
CTRL-W 17
CTRL-X 18
CTRL-Y 19
CTRL-Z 1A
CTRL-[1B
CTRL-\ 1c
CTRL-] 1D
CTRL-4 1E
CTRL-_ 1F

Display Mode Selection

Maximum resolution

Maximum colors
128 by 128

64 by 64
Undefined

Additional Functions

Undefined
Undefined
Undefined

Carriage Control

Backspace (optional)
Horizontal tab (opt.)

Line feed

Vertical tab (opt.)

Form feed
Carriage return

Character Style

Undefined
Undefined

Current
Color Selection

Black
Red
Green
Yellow
Blue
Magenta
Cyan
White

18

DAZZLER FUNCTT

128x128 B/W

64X64 Color
128X128 Color
64X64 Color
64X64 B/W

Select Picture
Buffer 1

Select Picture
Buffer 2

Toggle Dazzler
Of£f/On

X=X-6

X=(X+32) MOD 32
Y=Y-8

Y=(Y MOD 32)-6

X=0;Y=-6

X=0

Fixed

Proportional
Color B/W
Mode Mode
Black Black
Red Gray 1
Green Gray 2
Yellow Gray 3
Blue Gray 4
Magenta Gray 5
Cyan Gray 6
White Gray 7
Black Gray 8
Dim Red Gray 9
Dim Green Gray 10
Dim Yellow Gray 11
Dim Blue Gray 12
Dim Magenta Gray 13
Dim Cyan Gray 14
Gray White

Dazzler Graphics Control Character Functions.

19

The following control characters are now defined:
CTRL-@ through CTRL-D (00-04)

Display mode selection. Although only four of these are
described under the Standard Functions, all five are implemented
for the Dazzler to cover all possible combinations of color
and resolution. Note that CTRL-A (01) and CTRL-C (03) are

the same.
CTRL-E (05H)

Select picture buffer 1. This may be used to return to
the first picture buffer in real-time display (i.e., the buffer
being displayed is the buffer being filled) after a number of
calls to ANIMAT, for example. (ANIMAT does not display in real
time, i.e., the buffer being displayed is not the buffer being
filled.) This control may also be used in conjunction with
CTRL-F to switch back and forth between the two picture buffers.

CTRL-F (06H)

Select picture buffer 2. The use and features of this

control character are the same as for CTRL-E above.
CTRL~G (07H)

Toggle Dazzler on/off. There is a conflict when doing
disk accesses while the Dazzler is turned on (because the
Dazzler does a DMA of memory and holds the bus for approximately
15% of the CPU time). This control character is provided for
turning off the Dazzler during disk accesses. No flags or
internal variables are changed; therefore, the next time this
character is used, the Dazzler will be turned back on with the
same color/resolution and pointing to the same picture buffer.
(INITG turns on the Dazzler initially, pointing to the first
picture buffer.)

20

CTRL-N (OEH)

Fixed character spacing. This control selects a fixed
character width for all characters. It is useful if it is
desired to have characters line up in vertical columns on the
screen or if the backspace control character (CTRL-H 08) is
to be used, which always backs up the cursor one fixed character
width.

CTRL-0O (OFH)

Proportional character spacing. This is the default
mode set by INITG, and provides for greater legibility and the
ability to type more characters per line than with fixed
character spacing. In this mode the letter "I" for example

occupies a much smaller width than the letter "W".
CTRL-X through CTRL-_ (18H-1FH)

Eight additional colors. These eight control characters
are used to provide the eight Dazzler low-intensity colors
which correspond to the eight high-intensity colors, CTRL-P
through CTRL-W. In black and white mode, CTRL-X through CTRL-_
correspond to the eight higher intensity shades of gray on the
gray scale. See Table 3-3, where the higher the number on

the gray scale, the brighter the shade selected.

21

FORTRAN IV Graphics Protocol

The standard graphics routines have also been included
on this diskette in an interface to CROMEMCO FORTRAN IV in
the file GRAPHFOR.REL. This is a relocatable object program
very similar to GRAPHZ80.REL and, in fact, includes all of the
routines from that file in unchanged form. However, additions
have been made to allow FORTRAN to call the routines directly
with complete parameter passing ability. FORTRAN passes the
addresses of parameters in the register pairs of the 2%80.
Therefore, when a routine requiring X and Y is called from
FORTRAN, for example, the address pointing to X will be found
in the HL register pair and the address pointing to Y in the
DE register pair. The called routine then loads X and Y from
these addresses into H and L, respectively, prior to calling
the graphics routine desired.

The global names of Tables 3-1 and 3-2 are used exactly
the same in FORTRAN, and the parameters required by the various
routines are also the same. (Refer to the sections on SUBPROGRAMS
and Calling Machine Language Subroutines of the FORTRAN IV
Instruction Manual for more information on the way parameters
are passed.) An example FORTRAN program passing integer X and
Y values to CURSOR might be:

IXVAL=128
IYVAL= 40
CALL CURSRS (IXVAL,IYVAL)

Whereas for the 280 program the Routine names and Global names
of Tables 3-1 and 3-2 could be used interchangeably, they

cannot be for FORTRAN. The Global names (those ending with $)
are now the names which must be used when calling these routines
from FORTRAN. The other names still correspond to the Z80

subroutines themselves. Thus, a FORTRAN program may either call

22

a machine language subroutine which in turn calls a graphics
subroutine by its non-global name, or FORTRAN may call the
graphics routine itself directlf by its global name.

Refer to the FORTRAN IV User's Manual for more information
on the correct method to create, compile, l1ink and load CROMEMCO
FORTRAN programs. Also, refer to Chapter 5 of Part I of this

manual for some examples.

16K BASIC Graphics Protocol

¢

This interface between the graphics standard and CROMEMCO
16K BASIC is perhaps the most versatile of the programs on the
DGR disk. It has been designed to be completely interactive
so the user can actually see what is being created on the screen;
then when the program is complete it can be run directly from
the disk using BASIC's extensive disk-file-handling capabilities.
The 16K BASIC-graphics interface is contained in the file
GRAPHX.COM. Notice that this is a CDOS command file. The use
.of this will be explained further in the following.

An unfortunate consequence of the extended capabilities
of this graphics program is that more than 32K of memory is
required to run a graphics—-BASIC program. The recommended
procedure is to boot up with either a 48K or a 64K operating
system (CDOS) prior to attempting to run GRAPHX. This allows
room in memory to contain the graphics program itself, the two
2K picture buffers, all of BASIC and its associated user space,
as well as all of CDOS. Since GRAPHX is a command file, its
name may be typed directly from the console. When this is done,
the following events occur: First, GRAPHX is loaded into memory
from the disk and the sign-on message is printed. Then, the
program determines the bottom address of CDOS and reserves 4K
bytes below that (beginning on the next lowest 512-byte boundary)
for the picture buffers. Next, GRAPHX relocates itself in

AR

TN

P

23

memory to just below the picture buffers. Finally, the
directory of the current disk is searched for the file BASIC.COM,
which, if found, is then loaded into memory below the graphics
program and béginning at 100H. TIf BASIC is not found on the
current drive, drive A is also searched. (If the current

drive is A, this step is skipped.) If any errors occur during
the above procedure (for example, insufficient memory or BASIC
not found), an error message will be printed on the console

and control returned to CDOS.

Once BASIC has been successfully loaded into memory and
prior to execution, the following additional steps take place:
The graphics program finds the location of the Device Driver
Table in BASIC, i.e., DDLIST, and creates an entry in the table
called "DG" for "Dazzler Graphics". This entry points to the
l6-byte address table for the DG driver. Finally, the routine
checks to see if a filename was typed following the word
"GRAPHX" initially. If so, this file is then LOADed into
BASIC's user area and its execution begun.

The following example will serve to further illustrate

the above procedures. Suppose a graphics program is created

in BASIC and is then SAVEd on disk (using the BASIC SAVE command).
Suppose further that both BASIC and this saved program called
DEMO are on the disk in drive B and that the DGR disk is in

drive A. Drive B is selected as the current drive and then

the command line is typed:
A:GRAPHX DEMO

This command then loads GRAPHX, which loads and chains to

BASIC, which in turn loads and begins execution of the program

-DEMO. Because execution can be achieved via a single command

line (no intermediate steps), Dazzler Graphics programs can be
executed through .CMD files in Batch (@) mode (see CDOS Manual).

24

Although the preceding information is not all necessary
to successfully use the GRAPHX.COM program, it is provided
here as an aid in understanding to the interested user. What
follows now is a description of the BASIC-graphics interface

driver itself.

Since Dazzler Graphics as interfaced to 16K BASIC has been
implemented as a device driver, parameters and quantities are
passed as they would be to any device through PUT and PRINT
statements. PUT and PRINT statements allow for the passing of
0, 1, or 2 parameters within the slash marks (which also contain
the device number as it was given in the OPEN statement). The.
BASIC driver has the name "DG"; thus, the general form of the
OPEN statement is:

OPEN\N\" $DG"

where N stands for a number 1-4 in the standard production
CROMEMCO BASIC. The "$" above distinguishes "DG" from a disk

file. The general format of the calling sequence from BASIC is:
puT\N [, x,¥J\"c1[c2c3...]"

where N is the file specifier used in the OPEN statement, X
and Y are optional parameters corresponding to the X and Y
cursor position, and Cl, C2, C3, etc. are the various commands
as given in Table 3-4. Note that these commands may be strung
together to as many as will fit on one BASIC line. Also, the
PRINT statement may be used in place of the PUT above. There
are two basic differences between PUT and PRINT (at least for
the purposes of Dazzler Graphics): (1) the PRINT transmits a
CR-LF (carriage return-line feed) following the termination of

any command string, (2) the PRINT command is somewhat slower

25

CHARACTER OPERATION
+* @ Area fill routine. Fills a rectangle from the

current cursor position to the (X,Y) value supplied
in the call, with the currently selected color.

The cursor is left at the value of (X,Y) given.

The two points determining the rectangle, i.e.,

the current cursor position plus the (X,Y) given
may lie along either diagonal of the finished
rectangle.

* A Animate the display. Causes the buffer which is
'~ being filled to be displayed and a second buffer
to be opened for filling. The buffer exchange is

done during the DAZZLER'S vertical blanking interval.

B Select Blue as the current color. All subsequent
points will be plotted in blue.

C Cyan is made the current color.

* D A Dot is plotted at the current cursor position in
the currently selected color.

E The display is placed in Extended resolution mode
(128x128).
F 'Select Fixed spacing between displayed characters,

regardless of width.

G -Green is made the current color.

H The current color will be plotted with High intensity.
I The current color will be plotted with lew intensity.
J Select buffer #1. Stop animate mode and return to

real-time updates displaying picture buffer #1.

* K Clear (remember Klear) the currently displayed buffer.
Entire screen will then be black.

+* T Draw a Line (using the current color) from the
current cursor position to the (X,Y) value supplied
in the call. The cursor is left at the end of
the line corresponding to the (X,Y) given.
M Magenta is made the current color.

N Black (No color) is made the current color.

0 Toggles DAZZLER picture On/Off.

26

CHARACTER OPERATION
+* P Position cursor to the supplied value of (X,Y).
* Q Cycle through all colors (or through all shades of
gray if display is in B/W mode) .
R Red is made the current color.
S The display is set for Simple resolution (64x64).
* T Type the next characters in the string starting at the

current cursor position. The T can be omitted if the
desired characters are supplied in lower case. The
first upper case character next encountered in the
string will then be interpreted as a command.

U Select buffer #2. Stop animate with picture buffer
42 displayed in real-time.

\Y Select Variable spacing between characters depending
on character width.

W White is made the current color.
X | The display is placéd in B/W Mode.
Y Yellow is made the current color.
Z The display is placed in Color Mode.
* \ Re-initialize the display to default parameters.

"OPEN"ing a file also does this automatically.

CR Carriage Returns are ignored (unless sent following the
""" command as CHR$ (13)).

LF Line Feed displays both a carriage return-line feed for
typed characters on the screen. ILF's following the CR
in a PRINT statement are ignored, however.

NUL These are ignored if they follow the CR. (If they pre-
cede the CR, they are interpreted as a CTRL-@, or MAXR.)

NOTE: OPEN\1\"$DG" will turn on the DAZZLER, 128x128 mode, black and
white, variable spacing, high intensity white, real-time mode,
cursor position at (X,Y¥)=(0,0). The display area is not
cleared. -

CLOSE\1\ will leave all modes undisturbed, but will turn off
the DAZZLER (the DAZZLER must be turned off in order to access
the disk). _ : '

{

Table 3-4. DG Device Driver-BASIC Commands for GRAPHX.COM.

N

27

than PUT. The CR sent to the DG driver by PRINT is ignored
in all cases. The LF (and also any NULLS sent after the LF)
are also ignored provided they follow the CR. If the LF or

NULL precedes the CR, then it is treated as one of the control
characters as explained in Table 3-4.

The X and Y parameters which are passed are converted
to integers first. They may or may not be referenced by the
routines called, but will be ignored if not needed. The
routines requiring X and Y are listed in Tables 3-1 and 3-2.
Some of the most common features of CHAR were singled out and
assigned a single-letter command as in Table 3-4. These func-
tions do not require a parameter as they generate their own.
If it is desired to send specific control characters to CHAR
(for example a CR which is usuallyAignored when coming from
a PUT or PRINT statement), the "T" or Text command is put in
the statement. All text of any kind which follows on that
same BASIC line will then go to the CHAR routine. Note from
Table 3-3 that all control characters have been assigned a
function under Dazzler Graphics. It turns out in fact that
nearly every character in the ASCII character set has been
assigned a function here. The ASCII character set (seen in
Figure 3-2) can be roughly divided into four groups as shown.
Column A contains the control characters of Table 3-3. These
can be output to DG by following the "T" command as already
mentioned. Column B contains standard punctuation and number
digits. These can be output directly to CHAR (through PUT or

@ statements) and will be printed on the screen as the characters

themselves in the current color. Characters in column C
comprise the commands of Table 3-4. Those commands which
correspond to the 7 subroutines of the graphics standard as
well as the additional routines AREA and CYCLE (STRING and
PAUSE are not implemented because of the ease with which they
can be done through BASIC) are marked in the Table with an

28

A

B

Columns

C

HEX
VALUE

0

High Digit of Hex Number
2

=N

[2))

WHWVWO Ok WNHO

= e o O

CTRL-@
CTRL-A
CTRL-B
CTRL-C

CTRL~-D
CTRL-E
CTRL-F
CTRL-G

BACKSPACE
HORI.TAB
LINE FEED
VERT.TAB

FORM FEED
CARR.RETURN
CTRL-N
CTRL-0O

SPACE

- o N =H=

+ %~ o~

RaHm (Rl) QWP ®

ozgzt

?

Qop

oOBHEFr wWWrHD Qoo

%3]

~J

IoqunN XoH ;04115¢q MO'T
Oy O s WO

v Ji e)

o0

CTRL-P
CTRL-Q
CTRL-R
CTRL-S

CTRL-T
CTRL-U
CTRL-V
CTRL-W

CTRL-X
CTRL-Y
CTRL-7Z
CTRL-[

CTRL-\
CTRL-1
CTRL-+4
CTRL-_

whoR—o

~ oy >

O

w v IibA

nwo

L/ TINKX =Jad

A NN £ 46 n Hx.Q'T

-

v
i
=

Figure 3-2.

ASCII Character Set.

29

asterisk ("*"). Those requiring an (X,Y) coordinate for the
cursor are also marked with a plus ("+") sign. The ASCII
characters in column D of Figure 3-2 may be sent to the driver,
but will be interpreted and printed on the screen as their
upper-case counterparts of column C. For example, the letter
"d" sent to DG through a PUT or PRINT statement would be printed
on the screen as "D". This feature is provided to prevent
having to use "T" to type output on the screen. (With the "T"
command the entire rest of the line is taken as text, which
may be considered an inconvenience.) Some of these features
will be illustrated in the example at the end of this section.

There are a few more points to be made on the procedure of
using the device driver "DG". The values for X and Y should be
in the range 0 through 255. If they are not, the value used
will be MOD 256. (For example, if X is 265, then the actual
value used for X will be 9.)

The OPEN routine calls the INITG routine, thus turning
on the Dazzler and initializing all parameters. The cursor
is set to (0,0), color is set to white in B/W mode at high
resolution and intensity. The CLOSE routine should always be
called when finished with a graphics program; it serves to
turn off the Dazzler (thus preventing problems with disk access).
Within a graphics program the "O" command may be used to turn
on and off the Dazzler.

Finally, BASIC has provisions for reading values from a
driver through the IOSTAT function (which works through the
GETSTAT routine of a driver). The driver DG will return up to
5 IOSTAT's, which are listed on the next page. These allow a
BASIC programmer to make decisions based on such things as the
current cursor position. These functions are not implemented
in the FORTRAN and %80 versions of Dazzler Graphics, thus making
GRAPHX.COM even more versatile than is immediately apparent.

30

SCREEN READ FUNCTIONS

A=IOSTAT(N,1l) returns the X co-ordinate of the current cursor
position.

A=IOSTAT (N,2) returns the Y co-ordinate of the current cursor
position.

A=TOSTAT (N,3) returns a value corresponding to the screen color
at the current cursor position according to the
chart shown below. '

A=TOSTAT (N,4) returns a 64 if in 64x64 mode or a number from
0-15 representing the screen color or shade of
gray if in 128x128 mode, according to the chart
below.

A=IOSTAT(N,5) returns a 0/1 for B&W/Color mode.
(where N stands for a file specifier, usually 1-4.)

TOSTATS 3 and 4 return one of the values in column 1 below depending
on the mode and resolution selected. The mode can in turn be
determined (if unknown) from IOSTAT 5 as above. IOSTAT 4 returns

a value of 64 if in 64x64 resolution; it may therefore be used to
test resolution as well as color (test for a value =64 for 64x64

and <64 for 128x128).

IOSTAT NO. MODE
4 128x128-COLOR 128x128-B/W (not applicable)
3 64x64-COLOR 64x64-B/W 128x128-COLOR or B/W
0 Black Black Black (dot off)
1 Low Red Gray 1 White (dot on)
2 Low Green Gray 2
3 Low Yellow Gray 3
g 4 Low Blue Gray 4
? 5 Low Magenta Gray 5
S| 6 Low Cyan Gray 6
gl 7 Low White Gray 7
g 8 (not used) Gray 8
a9 Hi Red Gray 9
ol 10 Hi Green Gray 10
g 11 Hi Yellow Gray 11
12 Hi Blue Gray 12
13 Hi Magenta Gray 13
14 Hi Cyan Gray 14
15 Hi White White |

Table 3-5. Summary of IOSTAT Functions 3 and 4 Implemented for
the DG Driver.

P

31

For example a graphics program which plots a function could be
self-modifying to rescale the axes if the function is found to
go out of range.

This chapter is now concluded with a well-commented example
of some of the features just described of GRAPHX.COM:

10 OPEN\1\"S$DG"

Dazzler Graphics is opened (Dazzler turned on) and assigned to

file specifier 1.
20 PUT\1\"KSz"

The screen is cleared (K), set to simple, or 64 X 64, resolution
(S), and set to Color Mode (Z).

30 PUT\1,64,64\"RP"

The current color is set to red (R) and the cursor is positioned (P)
at (64,64). Note the cursor parameters are ignored by the

routine which sets color.
40 PUT\1,192,64\"L" : PUT\1,192,192\"L"

Two straight lines are drawn (L), the first from (64,64) to
(192,64) and the second from (192,64) to (192,192).

50 @\1,64,192\"L" : @\1,64,64\"L"

Two more lines are drawn, thus completing the red square. Note
that PRINT statements are used this time and that the CR-LF's

following the "L's" are ignored.
60 PUT\1,70,120\"BPsquare"”;CHRS (10)

The color blue is selected (B), the cursor is positioned at (70,120),

the word "SQUARE" is written on the screen (translated to upper

32

case), and the cursor is moved by a CR-LF (CHR$(10) is a LF
which generates both CR-LF) to be ready to plot a new line of
text.

70 FOR I=1T02000
80 NEXT I

A short pause is generated to allow viewing of the display.
90 CLOSE\1\
The DG driver is closed and the Dazzler turned off.

100 END

o~

TN

Chapter 4: FUNCTION ALGORITHMS

The algorithms used to produce the CROMEMCO DAZZLER
implementation of the Z80 Assembly Language Standard (upon
which the BASIC and FORTRAN standards are based) are provided
here as an aid in understanding their function. Of particular
interest to most readers will be the line and character gener-
ation algorithms, which work completely independently of the
hardware configuration of the display used.

The algorithms which follow are illustrated by the use
of Nassi-Shneiderman design charts. For those readers who
are not familiar with Nassi-Shneiderman charts, a brief
explanation is in order. More detailed information can be
found in their original article published in the August 1973
SIGPLAN Notices. The Nassi-Shneiderman chart is a stylized

flow chart for structured programming. By supporting only
standard structured programming constructs (see Figure 4-1)
and not supporting GOTO's and off-page connectors, it forces

the software designer to avoid the convolutions and obscurities

in logic which make programs excruciating to debug and impossible

to maintain.

The INITG and DOT routines are the only routines which
normally require extensive adaptation to suit different
displays. Other adaptations which may be required are the
refresh memory size parameter in PAGE, the color and mode
select controls in CHAR, and the scale factors used by the

internal subroutine SCALE.

33

T
-
(0] /
- I
—

B
B
C
Sequential Execution - IF A THEN B ELSE C
Block Name 8
A
WHILE B
BEGIN ... END DO A WHILE B

Figure 4-1. Sample Nassi-Shneiderman Constructs

35

INITG Logic

Initialization is normally required for both hardware
and software. The first step is to establish the refresh
buffer. This requires taking the address defining the top
of the user program and moving up to the first address
legal for refresh buffers. This address is needed by other
routines, as well as for starting the display hardware. The
different variables and flags are then set to the required
values. The PAGE routine is not called to clear the screen
so that the program may be re-entered at a later time without
fear of erasing what has already been plotted in the picture
buffers. To override this feature, PAGE may be called
immediately after calling INITG. The appropriate display
description is generated and control is returned to the calling
program.

PAGE Logic

The PAGE command clears all the memory used for display
refresh. Probably the most general algorithm and the one
charted is some variety of clear byte, increment address,
decrement byte count, and test for done. In machines with
indexed addressing, the byte count can double as an index
register. In machines with a memory to memory block transfer
instruction, it is usually possible to clear just one byte

and transfer it to all of the display refresh memory.
CURSOR Logic

The CURSOR routine must convert from standard coordinates
to software coordinates. Software coordinates are required
by the LINE and CHAR algorithms to have a one to one correspon-
dence with the actual display pixels being used. CHAR further

requires X coordinates to be increasing to the right and Y

36 -

INITG
Legal Refresh Address -
F - ? /——————/—T’—/f
Move up to next legal address 0K ‘

Save refresh buffer address

Set Animation Inactive flag

Set Cursor to X =@, Y = /]

Set Current Color to White

Set Mode to MAXR

Turn off all nonstandard options

Start the display hardware

Generate the display description

Figure 4-2. Nassi-Shneiderman Chart for INITG Routine.

PAGE

ADR = Refresh buffer address
CNT = Refresh buffer length
D Set [ADR] to zero (black)
° ADR = ADR + 1
CNT = CNT - 1

UNTIL CNT equals @

Figure 4-3. Nassi-Shneiderman Chart for PAGE Routine.

37

CURSOR

Call SCALE to interpret coordinates

Set the software cursor to the scaled values.

SCALE

' MAXR MODE.
F 2 T

‘““‘“‘--—-~,_~___~__~_~§‘~T§xc MODE 4 X
F -] T X = YRSCALE
F

R128 MODE T
? ! X = YRsCALE yoo Y
X=X/4 X=X/ 128 y YRSCALE
Y= ot
Y=Y/4 Y=Y/ 128 YRSCALE

| Figure 4-4. Nassi-Shneiderman Chart for CURSOR Routine.

38

coordinates to be increasing to the top. Since LINE must
also scale its arguments, CURSOR and LINE can usually share
the same internal scaling routine for efficiency. This

routine is also outlined in Figure 4-4.
DOT Logic

DOT is the only routine (other than PAGE) which actually
modifies the refresh memory. LINE and CHAR both use it to
modify the desired pixels in the display (this is what makes
them hardware-independent). This routine is extremely hardware-
dependent. Indeed, one of the primary reasons for defining
this protocol was for protection from differing display
idiosyncracies. The DOT routine must translate the coordi-
nates in the software cursor to the actual bits in memory
that correspond. Keep in mind that the software cursor is
scaled so that a unit change in a coordinate is equivalent
to the adjacent pixel. The logic presented here assumes a
linear scan through refresh memory to‘generate the entire
display a line at a time--top line first. Note that this
algorithm is adjusted slightly for the DAZZLER since it divides
the display into four quadrants, each in its own block of
memory with each byte describing points on more than one line.
These modifications to the algorithm are explained in the
sample implementation.

The first step is to determine the address of the byte
containing the requested point. The cursor Y coordinate is
converted to a display line number which, when multiplied by
the number of bytes per line gives the offset into the refresh
buffer of the first byte on the line. The X coordinate normally
corresponds directly to the desired point along the line.
Dividing the X coordinate by the number of points in each
byte gives the offset from the first byte in the line. Taking
the base address of the refresh buffer (set up by INITG) and

39

DOT
MAXR MODE
F - ? _ 1
Determine the Calculate the address of the affected byte
Mode in use Convert Y coordinate to Line Number
and proceed in : :
the same man- Y-OFFSET = Line Number * Bytes/line
ner as MAXR to X-OFFSET = X coordinate / Pixels per byte
calculate the Address = Base address + X offset + Yoffset
address of the ;
affected byte
and obtain a Determine the affected bits in the byte
mask of the X even
. F ? T
affected bits. .
MASK = p1p1911 MASK = 19191919
X/2 even .
F ? T
MASK = MASK AND MASK = MASK AND
/ pp1I1ppI 11991190
! X/4 even
, F ? - T
MASK = MASK AND MASK = MASK AND
20001111 11110000

Modify refresh memory to current color at addressed pixel

Temp = MASK AND [Address]

MASK = MASK AND Color

[Address] = Temp OR MASK

Figure 4-5. Nassi-Shneiderman Chart for DOT Routine.

40

adding the offsets to the desired line in the buffer and the
desired point on the line yields the address of the byte
requiring modification.

The second step is to determine which bits in the byte
correspond to the desired pixel. The hypothetical display
the Nassi-Shneiderman chart depicts has eight pixels in
each byte. The selected bits are then changed to match the
current color and the refresh memory updated to reflect the
revised point. An effective procedure is to‘generate a mask
containing 1's at bit positions corresponding to the addressed
point and 0's elsewhere in the byte. The byte of refresh
memory is ANDed with the complement of the mask to delete the
old contents. The mask itself is then ANDed with the bit
pattern for a byte with every pixel the current color and the

result ORed into the cleaned-up byte of refresh memory.
LINE Logic

Probably the most crucial facet of any graphics system
is its line generator. Before introducing the actual algorithm
used, it may prove beneficial to discuss its theoretical
development.

We wish to generate an arbitrary line from a point (XC,YC)
to a point (XF,YF). (See Figure 4-6.) The goal is to determine
those discrete points (xn,yn) which best approximate the desired
line.

To simplify the derivation, we will only consider gener-
ating a line from the point (0,0) to a point (X,Y) where X is
greater than or equal to Y and both are greater than or equal
to zero (Figure 4-7). (This situation is still general because
any arbitrary line may be rotated and translated to match the
proposed conditions.) Under these conditions, there is a

point along the line for every value of x (0 < x% X) and for

—

T
7 .

41

.

XC,YC
AN
YL O
/-
é;/,&vyn
A
A7
%
77 g
~)
X, YF
72

Figuré 4-6.

Generating an Arbitrary Line,

x=4f
X =
e /7
7
Ve
T /7 (X,Y)
/
L /7
/
/
L , s
7 Y)
) /’,/ _+_
//
T 7*/ 8' o
2 L4
— l - {]
#,9)

Figure 4-7.

Simplified Line Generation.

42

ST

43

each value of x there is only one value of y. Closer

examination reveals that for any value of x, the y value

for the following point (x + i) will either remain unchanged

or be increased by one. No other value of y is possible.

Furthermore,

it can be shown that the decision to increment

y for the next x is based solely on whether the point

(x + 1, v + %) lies above or below the line. If above the

line, y remains unchanged. If below the line, y is incre-

mented. In the event (x + 1, v + %) is exactly on the line,

either option is correct. For convenience "on the line" is

arbitrarily treated as equivalent to "above the line".

Assuming we have some method to determine the position

on the point (x + 1, ¥ + %) relative to the desired line, we

can generate an optimal approximation of the line from (0,0)

to (X,Y) where X 2Y2 0 using the following algorithm:

1)
2)
3)
4)

5)
6)

7)

Initialize x = 0, y = 0.
Display the point (x,y).
Test for done: x = X.
Calculate the position of the point (x + 1, y + %)
relative to the desired line. '
Set dy to 1 if below the line; 0 if on or above.
Calculate the next point.

x=x+1

y =y + dy
Go to step 2.

There are only two obstacles to overcome before im-

plementing this algorithm: step 4 and the restrictive

initial conditions. Let us examine each in turn.

A brief excursion into trigonometry is required to

evaluate step 4. Referring back to Figure 4-7, if we call

the angle between the desired line and the x-axis, €, and

44

the angle formed by the current point (x,y), the origin,
and the x-axis, ©'; then if (x,y) lies above the desired
line, 6 < 8'. Conversely, if (x,y) lies below the desired
line, 6 > 8'. Of course, if the two coincide, & = 8'. We
know from trigonometry that for angles in the first quadrant,
the greater the angle, the greater its tangent. We also
know that the tangent of 6 is § while that of 8' is i.
Therefore, we can easily determine the position of any point
relative to the desired line be comparing the quotients %
and %.

X

Unfortunately, division is a time consuming process on
microcomputers. Using the properties of inequalities to
eliminate the divisions we can build the decision table in

Table 4-1, which requires only multiplication. Returning

ABOVE ON BELOW
Angle
Relationship g < o' 6 = 8' 8 > o'
Tangent Y. ¥ I_y L,y
Relationship X X X X X X
Relationship
after Multiplying
through by x-X xY < Xy XY = Xy XY > Xy
Result of
XY - Xy Neg Zero Pos

Table 4-1. Point Position Relative to a Line.

to our original algorithm, we set dy to 1 if
(x + 1)*Y > Xe(y + %)

and to 0 if it is not. Further advantage can be gained by
realizing that at each iteration, the product on the left

side of the inequality increases by Y while that on the

45

right either remains the same or increases by X. By remem-
bering the products from the previous iteration and whether
or not y is incremented, the multiplication can be reduced to
additions. For maximum efficiency the right-hand product
can be maintained negated so the comparison can be made with
a single addition.

The restriction that the line be from (0,0) to a point
(X,Y) with X 2 Y 2 0 requires the use of coordinate transla-
tions, rotations, and reflections. The first step is to
translate the line so it starts at (0,0). Since the line
originates at the cursor, traditionally we would subtract
the cursor from the other endpoint to obtain its relative
position. Because a 256 by 256 display does not give us room
for a sign bit in an eight bit byte, it is first necessary to
rotate the line to the first gquadrant and then calculate the
magnitude of the endpoint displacements from the cursor.

" While all these coordinate transformations may seem
complicated, the actual implementation is quite simple. Con-
sider the command to generate the line from the current cursor
position (XC,YC) to a final point (XF,YF). The first step
is to compare XF to XC. If XF 2 XC, then we are in the first
or fourth quadrant (see Figure 4-8); otherwise, we are in the
second or third. Similarly, if YF 2 YC we are in the first
or second quadrant; otherwise, the third or fourth. Combining
the two results, the gquadrant is uniquely determined and we
can proceed to determine the magnitude of the X and Y displace-
ments, XM and YM, as in Table 4-2. Finally XM and YM are

compared to determine the exact sector.

QUADRANT XM YM

1 XF - XC YF - YC
2 XC - XF YF - YC
3 : XC - XF YC - YF
4 XF - XC YC - YF

Table 4-2. Component Magnitudes in the Four Quadrants.

46

+y
A
.-x ::\y x/= y
AN 7/
2nd Quadrant 1st Quadrant
N
\ Sector 3 Sector 2 /
AN o/
AN /
Sector 4 N 7/ Sector 1
AN /
-;x < (ﬁ lﬁ) S 432
(XC,YC)
/ AN
Sector 5 / ~\\. Sector 8
/ AN
/7 N\
4 Sector 6 Sector 7 N
3rd Quadrant 4th Quadrant
/ AN
/ AN
-X =y x ="y

Y

-Y

Figure 4-8.

Quadrant and Sector Definition.

47

The easiest technique for remembering this multiple
logical decision is to weight the results of each decision
and check the sum. Each sector is then assigned an equivalent
weight and the sector parameter table reordered accordingly.
Column 2 of Table 4-3 applies a weight of 4 to (XF > XC),
2 to (YF > ¥YC) and 1 to (YP > XP).

-

SECTOR MOVE 0 MOVE 1

SECTOR WEIGHT X Y X incr y incr X incr y incr
1 6 _ XM YM +1 0 +1 +1
2 7 M XM 0 +1 +1 +1
3 3 YM XM 0 +1 -1 +1
4 2 XM ™M -1 0 -1 +1
5 0 XM YM -1 0 -1 |
6 1 YM XM - 0 -1 -1 -1
7 5 YM XM 0 -1 +1 -1
8 4 XM YM +1 0 +1 -1

Table 4-3. Coordinate Equivalents for each Sector.

Once the sector is determined we have all the information
required to construct any arbitrary line. Referring to step 5
of the fundamental sector 1 algorithm, we call setting dy to 0
"move 0" and setting dy to 1 "move 1" and generate the equivalence
chart in Table 4-3. As the algorithm steps along in transformed
coordinates, it modifies the cursor position using the "move 0"
and "move 1" X and Y increments appropriate for the sector the
line actually lies in.

The LINE routine algorithm is summarized in the Nassi-

Shneiderman chart of Figure 4-9.

LINE
48

Scale destination coordinates

el Sy

\
i - T

X = XC - XF X =XF - XC
Sector Code = @ Sector Code = 4§
YF>YC
F ? T
Y =YF - YC
Y =YC - YF

Sector Code = Sector Code + 2

““\\\x< Y
F ? I

Exchange X and Y

Sector Code = Sector Code + 1

Using the Sector Code, look up the appropriate cursor adjustments
for a "Move 1" and a "Move §".

x=90
TA=XxXx e Y =29
= 1y o y= - X
TO""(.V+’2_) X 2
WHILE x< X
D Display a "DOT" at cursor location XC,YC
0
X =x+1
TA=TA + Y
' TA+T0<P
F ? T
Make a "Move 1" Make a "Move 9"

TO = T0 - X
; “Move P" the cursor

"Move 1" the cursor

Figure 4-9. Nassi-Shneiderman Chart for LINE Routine.

49

CHAR Logic

Almost everyone is familiar with generating characters
with a 5 by 7 matrix of points (see Figure 4-10). However,
not too ﬁany people .realize why 5 by 7 is the smallest common
size. The limiting width, of course, is the minimum number
of points capable of displaying the three separate parallel
lines required for the letters "M" and "W". This sets the
minimum width possible to five, but why must seven be the
minimum height? The answer is it does not! However, human
engineering studies have indicated that the average person
finds it easier to read characters which are proportioned the
same as in standard printing. Ratios of width to height far
removed from the "normal" 0.75 increase fatigue and error
rates.

To generate easily read lower case characters, even
larger matrices are required. This results from the greater
complexity and finer detail of the lower case characters. The
full ASCII character set can be generated with a 7 by 9 matrix
if provision is made for characters with descenders ("g", "j",
"p", etc.). This requires using an extra bit to determine if
the matrix is displayed normally or shifted down two positions.
As far as the display is concerned, the character uses a 7 by
11 matrix of display points. Larger display matrices can be
used for greater legibility and varying character fonts, but
even a 7 by 11 character matrix severely restricts the total
number of characters that will fit on the low resolution
displays this graphics standard is designed for. Even if
just one row of blank points is left between adjacent characters,
only sixteen 7 by 9 characters will fit across a 128-wide
display. Memory requirements for large matrix character pattern

storage are also severe. The table space required is directly

%%%@Z
O 7
% 2///
/// %

51

proportional to the area of the matrix (see Table 4-4).

LOWER CHAR/LINE LINES/PAGE MEMORY USED FOR
CHAR SIZE CASE (256 by 256) (256 by 256) TABLES (bytes)
9 x 11 Yes 25 18 1200
7 x Yes 32 21 864
5 x No . 42 32 320
4 x 5% No 64 32 192

*See text

Table 4-4. Effects of Different-sized Character Matrices.

Since even 5 by 7 characters require 320 bytes for their
lookup table, a character matrix size less than the "absolute
minimum" 5 by 7 was desirable. Readable versions of 58 of the
64 upper case printing ASCII characters can be generated within
a 4 by 5 matrix. The remaining six characters ("#", "$", "g&",
"g", "M", and "W") fit in a 5 by 5 matrix. Since these are
normally considered wide characters anyway, their unity width
to heighth ratio is not objectionable.

To simplify table lookups and the special handling of
five wide characters, three bytes (24 bits) are used for each
character. Twenty bits are used for the 4 by 5 display matrix.
The four extra bits are used as flags to define the specific
parameters for each character. Two flag bits are used to
indicate the width of the character. Proportional spacing
also fits the maximum number of characters into any given
space. The third flag bit is used by five wide characters to
indicate whether the first column is all ones ("M" and "W")
or must be retrieved from an auxiliary lookup table ("#",

"$", "%", and "&"). The remaining flag is used to indicate

descending characters (",", ";", and " "). These characters

CHAR

52

Remove parity bit from character

Control Character

—

E S SRt T
Lower case t“-\‘Nﬁ~\\\\ NULEgl#”’,,aa”""
F 7T F 2 I
Convert to - :
0K upper case | 0K MODE = MAXR
Determine Char. Table entry &““\7;‘-~\“\‘59H (b T
Retrieve byte with flags 0K MODE = MAXC
Calculate next char. position ‘\‘\\~F~“‘--.SIX (2) T
[ve wide T 0K MODE = R128
\M or W ETX(3)//
F -2 T F ? T
Look up 1st} Pretend 0K MODE = R64
col. in theg retrieved
Aux. Table | all ones - LR
OK Put up a "DOT" in the 0K Adiuitvcgrgor
firs? column for eac FF(FcH)
one in the entry F ? -
Move cursor right 1 col 0K AdEUSt qutsor
: X=0,Y=-6
Set width to 4 columns F Cg(gDH) T
Descender 0K Adjust cursor
F ? T X=9
DLE(1gH)
0K | Move down 2 rows = z‘ﬂ—_’,,-'?""d
Look up the bottom row and put 0K COLOR = black
up a "DOT" at each position ‘
indicated by a one. OLTit1HE) -
F ? T
-Do the same for the 2nd row 0K COLOR = red
Do the same. for the 3rd row F 2(128) thrg ETB(1TH) T
: Set COLOR as
Do the same for the 4th row 0K reques ted

Do the same for thé Top row

Set cursor to next char. pos.

Similarly check for and act on
any optional control char.
to be implemented

Figure 4-11.

Nassi-Shneiderman Chart for CHAR Routine.

53

are displayed two positions lower than their matrices indicate.
Each character therefore is displayed in an n by 7 display
area where n ranges from 2 to 5.

The basic character generation algorithm is applicable
to any sized character matrix whether the character is stored
by column (more efficient for 5 by 7 and 6 by 8 matrix
characters) or by row (more efficient for "variable 4 by 5",

7 by 9, and 8 by 11). If the character set being used does

not include lower case, it is necessary to shift lower case
characters to their upper case equivalents. Comparing the
ASCII value of the character to 32 separates control characters
for special handling.

The character table is ordered by ASCII value and lookup
is done by indexing on the ASCII value requested. Since the
first 32 ASCII characters are control characters, the table's
physical contents start with character 32 ("blank"). To index
into the table, the ASCII value of the first table entry is
subtracted from the value requested. This index value is then
multiplied by the number of bytes per character and the product
added to the address of the first character in the table to
obtain the address of the first byte of the character desired.
The cursor is then sequenced through the character matrix
turning on the points indicated. Since only the points éctually
making up the character are affected, background data is not
erased and an overprint results.

Control characters are handled separately. Mode and
color changes will depend on a special portion of the CHAR
routine. Since these will be overly hardware dependent, their
implementation is left as an exercise to the reader. Carriage
control characters modify the cursor position without otherwise
affecting the display. Any unrecognized characters should be

ignored.

54

ANIMAT Logic

The first requirement of the ANIMAT logic is to wait
for vertical blanking of the TV screen to start. Most
displays provide an input port with a status bit indicating
when vertical blanking is in progress. By delaying first
until the status bit indicates normal scan, and then delaying
until it indicates vertical blanking in progress, we are
assured of a full vertical blanking period being available.
If the display being programmed does not support changing
the location of the refresh buffer by software controls, the
routine is finished.

Displays whose refresh buffer locations are changeable
are programmed to provide double buffering. After waiting
for the vertical blanking period, the refresh buffer currently
being filled is put on display. The alternate buffer is then
opened for filling. Note that this algorithm is valid whether
the buffer being filled is being displayed (first call to
ANIMAT after an INITG) or one buffer is being filled while
another is being displayed (all subsequent calls to ANIMAT) .

ANIMAT

Delay until the start of the next Vertical Blanking period

WHILE Vertical Blanking in progress

D - .
0 K111 time
UNTIL Vertical Blanking in progress
D . .
0 Kill time

Display buffer currently being filled

Filling bufffz—9—‘—_—______,,__,.————~“‘”
F ? . T

Shift to filling buffer @ Shift to filling buffer 1

Figure 4-12. Nassi-Shneiderman Chart for ANIMAT Routine.

55

56

Sample Implementation of the Algorithms

An implementation of the Z80 Assembly Language Protocol
for use with the CROMEMCO DAZZLER illustrates how the algorithms
and standards presented in the first half of this chapter
translate into working software. Except for a few instances
where the architecture of the %80 or DAZZLER allowed substantial
simplification, the program code corresponds exactly to the
Nassi-Shneiderman charts. The major deviations are in the
handling of control characters in the routine CHAR, affected
byte address calculation in DOT, and the termination condition
in PAGE. Also, throughout the following, the DAZZLER is

assumed to be jumpered to use ports OEH and OFH.
Z80/DAZZLER INITG ROUTINE

The first step in all these routines is to preserve any
registers affected. 1In this case HL is not saved because its
contents will be replaced by the display description parameters.

The DAZZLER requires the refresh buffer to start at an '
even multiple of 200H (512D). The algorithm used depends on
the GRAPH routine being called. For example, GRAPHZ80.REL and
GRAPHFOR.REL will place the first picture buffer at the first
even 200H boundary following the end of the program, regardless
of where the relocatable module is loaded. The second picture
buffer immediately follows the first. The refresh buffer address
calculated is then stored for use by the other graphics sub-
routines. Placing all the variables in one section of memory
is not only good programming practice; it also permits efficient
setting of defaults by using register indirect addressing. The
call to the CHAR routine with zero accumulator sets the display
mode to MAXR and takes care of outputting the required controls
to the DAZZLER's COLOR/MODE port.

P
;o

57

Finally, the DAZZLER is turned on without clearing the
picture buffer. This allows the user to exit from a graphics
program and then be able to re-enter it without fear of the
picture buffer automatically being cleared. The high byte
of the refresh buffer address is retrieved from memory and
rotated into the bit position expected by the DAZZLER. An OUT
instruction with the high bit set actually starts the display.
The last step before restoring register values is to load the
appropriate parameter description into HL. The value SAFCH
indicates double buffered animation is available, MAXC mode
has 15 colors and 64 by 64 resolution, the display is in color,
and MAXR mode has 1 color and 128 by 128 resolution.

%80/DAZZLER PAGE ROUTINE

The PAGE routine takes advantage of the hardware require-

- ment that refresh buffers exist only on 512 boundaries and are

2K bytes long. The low byte of the address is used for a free
zero, while the whole HL register is incremented until H
corresponds to the high byte of the first address beyond the
buffer.

Z80/DAZZLER CURSOR ROUTINE

Since the same scaling routine is used for both CURSOR }
and LINE, CURSOR becomes an almost empty routine. Aside from
preserving registers, all it does is call SCALE with the
coordinates presented and save the scaled result as the new
software cursor position (XPOS,YPOS).

Some cleverness was used in formatting the MODE byte to
efficiently indicate the desired mode. The numeric value

associated with the mode is rotated right one bit position.

/ The resultant value can be incremented up to 254 times and

still remain negative if in MAXC or R64 mode, positive if in

58

MAXR or R128 mode. Since MAXR on the DAZZLER is 128 by 128
resolution, and MAXC is 64 by 64, we have a simple test to
determine which mode is in use.

The SCALE routine divides X and Y by two, checks to see

if R128 or MAXR is selected, and divides again if they are not.
7280/DAZZLER DOT ROUTINE

This routine tends to be somewhat complex due to the
convoluted mapping from bits in the byte to points on the
screen used by the DAZZLER in 128 by 128 fesolution mode, and
the dividing of the screen into four quadrants. Fortunatély,
if the 128 by 128 coordinates are divided by two, the address
and mask generated by applying the algorithm for 64 by 64
resolution yields the four bits corresponding to the four
possible 128 by 128 points. The low order bits of the X and
Y coordinates lost in the division are then used to select the
single bit corresponding to the desired point. (Refer to the
DAZZLER manual.)

The four gquadrant problem is similarly solved by using
the high order bit of each coordinate to determine the quadrant
and the remaining lower order bits to find the location inside
the quadrant. Once a point has been uniquely determined, a
pixel is plotted and the routine returns, restoring all registers.
'DOT's register restore sequence is also used by LINE and CHAR.
All plotting on the screen is done by the DOT routine. Both
LINE and CHAR perform plotting by multiply-calling the DOT

subroutine.
7Z80/DAZZLER LINE ROUTINE

The LINE routine is almost a block for block encoding of
the LINE algorithm outlined in the first part of this chapter.

The variable name correspondence table (Table 4-5) is provided

o

59

as a cross reference guide since some of the variable names
used in the algorithm were modified.

Because the values of XP and YP are lost when the cursor
adjustments for "move 0" and move 1" are looked up, initializa-
tion of variables is moved to immediately after sector
determination. TA and TO are both 16-bit numbers since they
represent the product of two eight-bit numbers. To subtract
X from TO, the 16-bit two's complement of X, DX, is calculated
and added. Similarly DY is the 1l6-bit representation of Y.

Z80 SOFTWARE ALGORITHM DESCRIPTION

XT X

YT (not used) y

XP X

YP Y

XPOS or XC XC

YPOS or YC YC

XF XF

YF YF

TA TA

TO TO

DX ~X

DY! +Y

MOX, MOY Cursor adjustment for a "Move 0"
M1X, M1y Cursor adjustment for a "Move 1"

Table 4-5. Variable Name Definitions for LINE.

The cursor adjustments required for a "move 0" and a
"move 1" are found through a look~-up table. Entries are indexed
by sector weight. Each entry is four bytes long (MOX, MOY,
M1X, and M1Y for the particular sector) so the sector weight is

60

multiplied by four (two shift lefts) and added to the starting
address of the table. The correct cursor adjustments are then
retrieved and stored where access is more convenient.

The only other significant change to the logic is the
placement of the test for completion. For efficiency x is
compared to X immediately after the point is displayed. This
has the added advantage of occurring at the only time the stack

is free of temporary variables.
7280/DAZZLER CHAR ROUTINE

The CHAR routine, with the exception of control character
processing, also follows its ﬁassi—shneiderman chart (Figure 4-11)
rigorously. The major change has been to convert the string of
_Ifs used for control character processing to a SELECT construct.
This avoids a multitude of tests which are guaranteed to fail
once the character has been recognized. The processing of

control characters with similar actions has also been consolidated

to reduce redundancy.

As is obvious from its Nassi-Shneiderman chart, CHAR is
really two independent routines with a common entry point.
The only common code is the register saving and parity stripping.
By pushing the address of the register-restoring routine onto the
top of the stack, the RET instruction will jump to the restoring
sequence from DOT, restore all registers, and then return to the
calling program, regardless of where the RET is encountered.

The character matrix table is indexed by ASCII value minus
32, i.e. the first entry is a blank. Since each entry is three
bytes long, the index must be multiplied by three to get the
offset into the table. The first four bits of the first byte
of each entry contain all the flags describing the character.
The width bits are masked off and the cursor value for the next

character position is calculated. If the width is six (includes

e

61

a blank pixel between characters), the special subroutine to
generate the first column of a five column wide character is
executed. The descender indicator flag is then checked and
the cursor adjusted if necessary.

The normal character generation code scans the character
matrix row by row. Whenever a 1 is encountered, the DOT routine
is called to display the pixel at that location. When all five
rows are completed, the cursor value is set for the next character
position as calculated earlier and control returned to the calling
program.

The special subroutine used for five wide characters
generates only the first column. By incrementing the cursor
position, the normal character generation sequence is used to
generate columns two through five instead of the normal one-
through four.

Control character handling proceeds in three phases.

Phase one checks for any of the four mode controls and sets

MODE as required. The DAZZLER hardware must also be informed

so it can change mode. Phase two is entered if the control
character is not a mode control. This is an individual check
for each of the carriage control characters and the specially-
defined characters (see Chapter 3 of this part). Note that

to get to the top line, form feed must determine what resolution
is in use. Phase three, if reached, is current color selection.
The value of the control character is first checked to verify
that it actually is a color-select character. If it is black,
the COLOR byte is set to all zeroes. If any other color, a
check is made to determine if the DAZZLER is in a color-supporting
mode (MAXC or R64). If not, the COLOR byte is set to all ones
(high resolution white). If a color mode is in use, the bright
bit is set and the low order four bits are duplicated in the
high half of the byte to yield a COLOR byte with the desired
color in both pixel fields. Conveniently, the DAZZLER color bit

62

definitions match the low three bits of the color-select

character.
7280/DAZZLER ANIMAT ROUTINE

The ANIMAT routine's implementation is not complicated
and has already been described well. The flag byte ANIM
indicates whether the first 2K buffer or the second 2K buffer
is currently being filled. Note that if the buffer swap
were made as soon as vertical blanking was detected rather
than as soon as vertical blanking was detected following an
absence of vertical blanking, it would be posSible to swap
buffers, modify the display, and swap buffers again--all during
one vertical blanking period. The net (undesirable) result,

of course, would be that the one buffer was never displayed.

//m\\

Chapter 5: DEMONSTRATION PROGRAMS AND CONCLUSION

Several demonstration programs have been provided on the
DGR diskettes in source-file form to illustrate the correct
methods of interface to the various graphics programs. These

are briefly discussed in the following sections.

Sample Z80 Assembly Language Program

The program GDEMO.Z80 is provided to illustrate the use of
the various original subroutines of the graphics standard. The
file GDEMO.REL is its assembled relocatable object code module.
This program is run by using LINK.COM to link and load it into
memory along with GRAPHZ80.REL. The command line to be used is:

LINK GDEMO,GRAPHZ80/G

Once the program has been loaded, execution will begin. Execution
may be terminated at any time (and control returned to CDOS) by
typing CTRL-C on the console. Execution may be stopped at any
time to allow viewing of the display by typing CTRL-S. Typing
CTRL-S a second time will restart the sequence. The sequence
runs continuously until terminated. More information on creating,
assembling, and linking user-Z80 files may be found in the Macro
Assembler Instruction Manual. The GDEMO program contains four
independent demonstrations. EXTernals are used to allow mnemonic
references to the standard protocol's ENTRY addresses.

The first demonstration is a maximum resolution exercise
for the line generator. The identification message uses R64
resolution deliberately to get large characters. A series of
maximum length lines are drawn to generate the string art
parabolas in each corner. The calculation of the endpoints of

all the lines is simplified by the standard coordinate system.

63

64

Their spacing is controlled by the value for MRSCLF returned
by INITG. Because of the speed of generation, the variable
delay utility subroutine PAUSE is used to give time to observe
the display.

The second demonstration tests the generation of all 64 of
the upper case ASCII characters. Again, advantage is taken of
the lowest resolution mode to display larger characters. The
64 characters are drawn eight times, once in each color, to
show the ability to dynamically vary the display. On the last
iteration, they are drawn in black leaving a clear screen. Rather
than verify that the display is capable of selective erase, the
PAGE routine is also called. The full range of available
character sizes is then displayed using R64, MAXR, and R128
display modes for one line each. All mode changes are immediately
followed by absolute cursor positioning commands to avoid
erroneous results.

The third demonstration cycles through all available colors
while executing line generation. To avoid claiming "Full Color
Control" on a monochrome display (since this is a "universal"
graphics routine), the color bit in MAXCD is tested. MCCOLS is
then checked to see how many colors or gray shades are available.
All available colors are used, one .at a time, as one end of each
line is moved closer to (255,255). The shift to mode RXXX after
mode R64 is used is to select the DAZZLER's sixteen-level gray
scale mode.

The final demonstration is a short animation sequence. The
header is inserted in both buffers after they have been cleared
using PAGE. The algorithm used to animate the figure will work
with either double buffered displays or selectively erasable
displays. For the DAZZLER the figure is backed up one step and
drawn in black to erase it from the nondisplaying buffer (PAGE
would require too much time and would also erase the header.)
The figure is then advanced two steps to get to the position

past the one currently being displayed, and drawn in white.

65

Finally, ANIMAT is called to display the updated buffer and the

whole procedure repeated until the screen has been traversed.
Sample FORTRAN Graphics Program

The sample FORTRAN program BARPLOT.FOR is provided as a
simple example of interfacing FORTRAN to the Graphics routines.
The file BARPLOT.REL is its associated relocatable object file
(already compiled). Since a compiled FORTRAN program is very
similar in structure and operation to an assembled Z80 program,
the procedure for loading and running BARPLOT is exactly similar

to that described in the previous section. Type:
LINK BARPLOT,GRAPHFOR/G

to run the program. This program will demonstrate how to use
the Dazzler Graphics routines to draw simple bar graphs using
FORTRAN.

Sample BASIC Graphics Programs

Because of the greater complexity (and hence, versatility)
of the BASIC—Graphics interface, two demonstration programs are
provided on the DGR disks, one simple and one more complex. The
simple example is BOUNCE.LIS. To run this program, type "GRAPHX"
to load and execute both GRAPHX.COM and BASIC as described in
Chapter 3. (Be sure when doing this that either the current drive
or drive-A contains the program BASIC.COM.) Now, from BASIC type:

ENTER BOUNCE.LIS

Next LIST the program. By reading the statements along with the
REMarks in the program, you can gain some knowledge as to the
correct and easiest ways to design BASIC-Graphics programs. Now
type RUN to begin execution. This program will first draw a blue
box and then "bounce" a red ball around its interior. Note the

66

subroutine to produce a "plop" sound from the CROMEMCO Joysticks
if they are connected.

When you are satisfied that you understand the operation of
BOUNCE.LIS, press the ESCape key to stop execution, type CLOSE or
CLOSE\1l\ to close the DG driver, type SCR to scratch the present
program, and finally type:

ENTER ROTATE.LIS

This is the more complex example mentioned earlier. It is designed
to read a data file from the disk, create a picture of a geometrical
figure, and then rotate this figure in 3-D. Upon typing RUN,

the program will prompt you. It will first ask for the name of'

a DATA file. Two are supplied on this disk; therefore, type

either "CUBE" or "TETRAHED". Type ESC at any time to stop the
rotation; then type "E" to return to BASIC enter-mode. You may
create your own DATA files for use with ROTATE. Use EDIT, the

CDOS Text Editor, to enter the coordinates of the points to be
connected, remembering to include all lines of the figure. Also,
remember to name your data files with the .DAT extension. The

orientation of the axes of the 3-D figure is as follows:

Y

pA
Figure 5-1. Orientation of Coordinate Axes for ROTATE.LIS.

Conclusion

The availablility of a powerful graphics protocol immensely

"simplifies the design and coding of graphics programs. The

P

67

limitations imposed by forcing individual capabilities to meet

a common protocol are more than made up by the availability of
precisely defined functions and controls. Furthermore, as we
have seen, the protocol is sufficiently flexible to allow the
installation and use of unique display features without adversely
affecting the ability to run programs designed to the standard.
It is hoped that the programs provided in this package will not
only stimulate an interest in graphics as a method of displaying
computer output but will also encéurage the design and exchange

of graphics programs among users.

PART II -

INTERACTIVE DAZZLER PLOTTING

Chapter 6: LOADING AND EXECUTING DAZZPLOT

Dazzleplot is a program which provides one with fast and
simple control over the Dazzler hardware for many kinds of
plotting and drawing. This software does all of the translation
between simple up/down, left/right instructions and the complex
memory storage required by the Dazzler. The program also
performs a number of special purpose functions such as clearing
the screen, drawing coordinate axes with tic marks, changing
among several different picture buffers, selecting high/low
resolution and intensity, providing complete cursor control,
and a number of others. Dazzleplot is stored on the disk under
the name DAZZPLOT.COM. Since it is a .COM file, its name may
be typed directly from CDOS and it will load from the disk
and start executing at 100H. Input to DAZZPLOT may be provided

from two sources: input from the CROMEMCO Joysticks and input

from the console keyboard. These are described in detail in
Chapter 7. (The first of these requires a pair of CROMEMCO
JS-1 Joysticks interfaced through a D+7A analog-to-digital
board.)

The hardware requirements to run Dazzleplot are not as
extensive as for the Dazzler Graphics package. 16K of memory
and the Dazzler itself are sufficient to operate DAZZPLOT.
However, to take advantage of all 16 of the available picture
buffers, 48K of memory is required. Dazzleplot is loaded and
begins execution at 100H as mentioned; however, it then
immediately moves itself in memory to just below the operating
system (CDOS) and executes from this location. It then clears
picture buffers 0 (location 200H) and 1 (location AO00H), as
this is where DAZZPLOT itself was originally loaded. The

68

69

reason for this move to high memory is the following: From
locations 100H to 200H in memory, DAZZPLOT stores a short
program which will turn on picture buffer 0. Thus, at any
point during execution of Dazzleplot, you may save what you

are doing on disk by performing the following steps:

1) TUse the CTRL-E or exchange command to move the
picture buffer which you are currently using to the
buffer 0 position.

2) Press the ESCape key to exit from Dazzleplot and
return to CDOS.

3) Type the command:

SAVE filename.COM 9
where filename is replaced by a name of your choice
and where 9 is the number of 256-byte blocks required

to save picture buffer 0 on the disk.

To reload this buffer and display it at any time in the future,
simply type the filename (since it is a .COM file). The

picture will be loaded into memory and the Dazzler will be
turned on at the correct location by a short program at 100H.

To return to DAZZPLOT simply. type "D"; however, be sure DAZZPLOT
actually resides in memory before doing this.

If Dazzleplot is executed when there is insufficient
memory in the user area for all 16 picture buffers (for example,
with a 32K CDOS), it will automatically print an error message
if one of the illegal buffers is selected by use of the CTRL-W
command. Each Dazzler picture buffer requires 2K of RAM. The

starting addresses of these are listed in Table 7-5.

Chapter 7: DAZZLEPLOT CONTROL COMMANDS

There are quite a number of input commands recognized by
Dazzleplot and for ease of explanation they can be broken into
three groups. Each of these groups of commands is described

separately in this chapter. The first group of numeric character

inputs control the movement of the cursor or actual plotting or
drawing process. Each time one of the numeric characters is
entered the current cursor location is moved accordingly and
the current color or black and white intensity is deposited at
this new location. The color and/or intensity is specified by

the second group of input alphabetic commands. The color can be

specified or changed at any time and remains the same until a new
color is input. Thus, after specifying a color or intensity
several movements can be input and this same color will be used
to draw the line specified by these movement commands. The third

group of input commands are control characters. These are used

to alter the basic operating characteristics of Dazzleplot such
as high/low resolution, color/black and white mode, cursor
on/off/blink, reverse background on/off, and several others.

Inputs from any of these three groups may be freely mixed at
any time with predictable, although sometimes unusual, results.
For example, if you have drawn some figure in high resolution
mode and then enter CTRL-L (change to low resolution), the
resulting drawing may appear rather strange. While in the high
resolution mode all points are the same color (128 by 128 grid).
When you change to low resolution, each point can be any of 16
colors or intensities (64 by 64 grid).

One of the CROMEMCO JS-1 Joysticks may also be used as
input to Dazzleplot. This actually provides for the most inter-

active method of control of cursor movement. When using Joystick

70

71

as an input to this program, the Joystick movement replaces
(actually duplicates) the numeric input commands. When you
move the Joystick up the cursor moves up, and when you move
it to the right the cursor moves right, and so on for all
directions of movement. As you move the cursor, the specified
color or intensity will be deposited in the picture storage
area. Also, it is important to note that the speed of cursor
movement is dependent upon how far the Joystick is displaced
from its zero or rest position. (This zero position may have
to be adjusted initially by use of the vertical and horizontal
trimmer pots which are mounted on the face of the Joystick. If
the cursor is moving across the screen on its own when you first
execute DAZZPLOT, simply adjust these for zero movement.)

The four buttons on the JS-1 console have been assigned
four. often used control functions. These predefined functions

are as follows:

Button 1 - CTRL-C Center cursor without screen clear.

Button 2 - CTRL-O Move cursor to lower left corner
(X=0,Y=0).

Button 3 - CTRL~A Draw coordinate axes.

Button 4 - CTRL-P Print out X and Y coordinates of cursor.

These functions are provided as a convenience to the user doing
interactive plotting with the Joystick. Note that their functions

may be duplicated at the keyboard.
Cursor Movement Controls

The movement of the cursor and thus all drawing or plotting
is controlled with eight numeric input commands (ASCII '1'-'4' and
16'-'9')., Entry of any one of these numeric commands moves the
cursor by exactly one position in the appropriate direction.
Coincident with such a move is the depositing of a coldr or
intensity in this new location. The choice of which color or

intensity is to be deposited is determined by the last alphabetic
\‘\ —

72

color command entered prior to the numeric move command. The
allowed numeric input commands and their meanings are defined

as follows:

ASCII MOVEMENT

Up

Down

Left

Right

Up and Right
Down and Right
Down and Left
Up and Left

No Effect

Nd-= WO &N

Table 7-1. Console Cursor Controls.

Note that these numeric command assignments correspond in direc-
tion to imaginary pointers which are part of the adding machine
type of number keypad found on many terminals such as the CROMEMCO
3100-series CRT's (see Figure 7-1). For example, the command 9

- means move towards the upper-right, and the number 9 key is in

the upper-right corner of the keypad.

/ 3 9
4 5 b
1 2 3

0 .

(not used) (n.u.)

Figure 7-1. Standard Adding Machine Keypad.

73

Color and Intensity Controls

The color and/or intensity of points drawn with Dazzleplot
are controlled through the use of this set of alphabetic color
commands. Executing one of these commands changes a color/
intensity flag which will be used to load a picture storage
location upon entry of the next move command (whether numeric
from keyboard or a displacement from Joystick). When Dazzleplot
is in the high resolution mode (128 by 128 grid), this color
flag is used to specify the color of the entire plot because in
this mode all points can have only one of two values, on or off.
However, in the low resolution mode (64 by 64 grid) this color |
flag is used to load the appropriate 4-bit nybble into the
picture storage area. In this mode each point can have one of
16 intensities or colors. Thus, in low resolution you can draw
multicolored plots, diagrams, or any other kind of picture.

- The exact 4-bit combination which is loaded into the color
flag is specified by a set of eight color commands which are used
together with two intensity commands. Since the two intensity
commands are independent of the eight color commands, a total
of 16 possible combinations are allowed. It is important to
remember that the two intensity commands (H and L) can be changed
without altering the color command and vice versa. What this
means is that you must set both a color and an intensity before
you can know what will be deposited at the next move location.
Points will continue to be plotted in this color or intensity
until a new one is selected. The exact commands and their effect

are given in the following table.

ASCII COLOR GRAY SHADE
N No Change or Black Black Gray 8
'R' Red Gray 1 Gray 9
'G! Green Gray 2 Gray 10
'y!' Yellow Gray 3 Gray 11
'B! Blue Gray 4 Gray 12
'M! Magenta Gray 5 Gray 13
c' Cyan Gray 6 Gray 14
'w! White Gray 7 White
'H' High Intensity X
'L' Low Intensity X

Table 7-2. Color and Intensity Controls.

74

Program Control Commands

Dazzleplot recognizes a number of different control commands
which can alter most of the operating characteristics of the
program itself as well as the operation of the Dazzler hardware.
These commands can be divided into five major areas of operation
and are so-outlined in Table 7-3. Their detailed descriptions

are given in alphabetic order in the following text.
Control-A (ASCII 'SOH' = (01H)

This command draws a pair of X and Y axes to be used for
subsequent plots. When in the normal background mode, these
axes are white on black and when in the reverse mode, they are
black on white. The two axes intersect at the current cursor
location as it was defined immediately prior to entering this
command. The axes have "tic" marks at specified intervals to
indicate X and Y values quantitatively. As initialized there is
a tic mark every tenth point from the origin along each axis.

This setting may be changed by the CTRL-I command."
Control-B (ASCII 'STX' = 02H)

This command sets the cursor in a blinking mode so that it
is always visible as a blinking white cross. Otherwise, operation
in this mode is identical to operation in the cursor-on mode
(CTRL-N) .

Control-C (ASCII 'ETX' = 03H)

This command centers the cursor on the screen (X=127,Y=127)
without clearing or altering the display.

Control-E (ASCII 'ENG' = 05H)

This command is used to exchange the currently selected
picture buffer with the "base" or zeroth buffer. This is useful

75

1. Memory Control

CTRL-E

CTRL-S

2. Picture
CTRL~-H
CTRL-L
CTRL-X
CTRL-Z
CTRL-Q
CTRL-R

Exchange one of the alternate picture buffers
with the base picture buffer at location 200H.

Select alternate picture buffer (up to 16
possible).

Characteristics Control

Set to High resolution mode (128x128) .
Set to Low resolution mode (64x64).
Set Dazzler to Black/White mode.

Set Dazzler to Color mode.

Select normal picture background.

Select complementary (Reverse) picture background.

3. Cursor Display and Location Control

CTRL-B
CTRL~N
CTRL-F
CTRL-C
CTRL-K

CTRL-0O

CTRL-P

4, X and Y
CTRL-A

CTRL-I
5. Program

CTRL-J
ESC

Table 7-3.

Axes

Select cursor-blinking.

Select cursor-always-on.

Select cursor-always-off.

Center cursor on screen with no screen-clear.

Center cursor and clear (remember Klear) picture
buffer (cleared to white if complementary
background has been selected).

Move cursor to Origin or lower-left corner of
screen; (X,¥Y)=(0,0).

Print the current cursor Position (X,Y) on the
console. These values are in the range 0-255
as they were for the Dazzler Graphics routines.

Control

Draw a pair of X-Y Axes centered at the current
cursor location and having tic-marks at the
current spacing.

Change tic-mark Interval spacing (0 through 15
possible).

Entry and Exit Control

Re-initialize DAZZPLOT flags and parameters.

Turn off Dazzler, exit Dazzleplot, and return
to CDOS.

Dazzleplot Control Characters and Their Functions. {

if it is desired to save a particular picture on the disk--
the buffer can first be exchanged into the base buffer, then

saved by a command of the format:
SAVE [D:]filename.[ext] 9

If the optional 3-letter extension .COM is used, this picture
may be viewed at any later time simply by typing the filename.
Because DAZZPLOT clears the base picture buffer (as well
as the next following buffer--see Chapter 6), the exchange
command may also be used to transfer either of these two buffers
elsewhere in memory so that DAZZPLOT may at a later time be
re-loaded from the disk. Note that following execution of
CTRL-E the current buffer remains selected, although its contents

will have changed.
Control~F (ASCII 'ACK' = 06H)

This command turns off the cursor and makes it invisible
on the display. Even though invisible, a current cursor position
is always maintained by Dazzleplot and operation is the same as
if a cursor were visible. 1In all cases except the No Change
condition (combination 'L' and 'N' commands) a visible line
can be seen to appear when move instructions are entered. 1In
these cases the next point to be drawn will always be adjacent
to the last one and in the direction specified by the next move

instruction.
Control-H (ASCII 'BS' = 08H)

This command sets the Dazzler in high resolution mode.
In this mode the display is made of 128 by 128 points, each
of which' can have only one of two possible values, on or off.
The color currently selected will determine the color of the

entire picture when in this mode.

77

Control-I (ASCII 'HT' = 09H)

This command is always immediately followed by a single
key input from the keyboard, whose possible values are sum-
marized in Table 7-4. The command together with the single
input immediately following it specifies the interval between
tic marks on the (X,Y) axes drawn by CTRL-A. The interval
between tic marks can be set to any integer value between 0 and
15 by following Control-I with an ASCII '0O' through 'F', cor-
responding to the hex numbers 0-F. For example, the default
interval of 10 can be restored after some change by typing
Control-I immediately followed by the letter 'A'.

Hex Number Tic Mark Interval

0 0 (no tic marks)
1 1 (solid tic marks)
2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10 (default value)
B 11

C 12

D 13

E / 14

F 15

Table 7-4. Tic Mark Intervals for CTRL-I Command.

Control-J (ASCII 'LF' = 0AH)

This command initializes the c¢ritical flags for Dazzleplot
and is always called upon program entry. However, if you wish
to reinitialize Dazzleplot after some time in use you need only
enter Control-J. Reinitializing performs the following functions:
the display is returned to high intensity white, high resolution

T
7
/

o

78

color mode with a blinking cursor; the tic mark spacing is

‘internally reset to the default value of 10, although this will

not be visible until the next time CTRL-A is used; the reverse
background flag is set to normal so that subsequent plotting
will be done with the normal colors (not their complements);

and picture buffer 0 is again selected as the current buffer.
Control-K (ASCII 'VT' = 0BH)

This command actually performs two functions: firét, it
clears the display memory of the currently selected buffer, and
then it defines the current cursor position to be in the center
of the display. When in the normal background mode, the display
is cleared to black (memory = 0H). When in the reverse back-
ground mode, this command clears the display to white (memory =
FFH) .

Control-L (ASCII 'FF' = 0CH)

This command sets the Dazzler in low resolution mode. 1In
this mode the display is made of 64 by 64 points, each of which
can have either any one of 16 possible colors or shades of gray.
The specific colors which are allowed are listed together in
table 7-2. -

Control-N (ASCII 'SO' = 0EH)

This command turns on the cursor and makes it visible on
the display at all times. When in this mode, the cursor is
represented by a white cross on the display which moves so
that the point in the center of the cross is always the point
which has most recently been loaded or drawn. Thus, the next
point to be drawn will be adjacent to this and in the direction
specified by the next move instruction.' When in the reverse
background mode, the cursor is a black cross.

79

Control-0O (ASCII 'SI' = OFH)

This command moves the current cursor location to the lower
left hand corner of the display. This location is defined as
x=0 and Y=0 and is commonly used as the origin for plots
(especially plots occurring entirely in quadrant I of the
Cartesian plane). For reference the maximum values of X and
Y are (X=255,Y=255). Points plotted are automatically scaled
to this even if the resolution of the hardware device (in this

case the Dazzler) is less.
Control-P (ASCII 'DLE' = 10H)

This command calculates and prints out on the console
the X and Y values of the current cursor location. These values
are always in the range 0-255 regardless of the resolution

currently selected.
Control-Q (ASCII 'DC1l' = 11H)

This command sets a normal background for drawing. This
means that for high resolution you will draw white or color
lines on a black background. For low resolution the actual

colors given in table 7-2 are loaded into memory when drawing.
Control-R (ASCII 'DC2' = 12H)

This command produces a reverse background condition with
respect to the condition described for Control-Q. When in
high resolution mode, this command produces a black drawing on
a white or color background. In low resolution mode the com-
plement of the selected color in table 7-2 is loaded into memory
when drawing. Note that the effect of this command is not
apparent until plotting is actually done. It has no effect on

alreay-plotted points in the picture buffer.

Control-S (ASCII 'DC3' = 13H)

80

This command is always immediately followed by a single

key input from the keyboard, whose possible

values are sum-

marized in Table 7-5. The command is used to change the memory

location of the picture storage area to any

one of 16 possible

addresses; i.e., it is used to select one of 16 possible picture

buffers. The allowed addresses are also given in Table 7-5.

DAZZPLOT always executes from the highest possible portion of

the CDOS user area, and the picture buffers
that. Therefore, if a smaller CDOS size is
there will not be sufficient memory for all
The CTRL-S command automatically checks for

print a warning to the console if an out of

are located below
used (e.g., 32K),
16 picture buffers.
this and will

range buffer is

selected.
Hex Number Picture Buffer Memory Start Addresses
0 First 200H
1 Second - AOOH
2 Third 1200H
3 Fourth 1AQ0H
4 Fifth 2200H
5 Sixth 2A00H
6 Seventh 3200H
7 Eighth 3A00H
8 Ninth 4200H
9 Tenth 4A00H
A Eleventh 5200H
B _ Twelfth 5A00H
C Thirteenth 6200H
D Fourteenth 6A00H
E Fifteenth 7200H
F Sixteenth 7A00H
Table 7-5. Numbers and Addresses of the 16 Possible Picture
Buffers.
Control-X (ASCII 'CAN' = 18H)

This command puts the Dazzler in black

and white mode.

81

When in high resolution mode, this command will produce binary
black and white drawings or plots. When in low resolution,
this command will produce drawings with up to 16 different
shades of gray. This mode can be used to display or reproduce
photographic-like images or actual digitized photographs. 1In
this mode the gray level intensity is determined as described
in table 7-2 for levels of 0 to 15.

Control-Z (ASCII 'SUB' = 1AH)

This command puts the Dazzler in color mode. In high
resolution mode this results in a single-color plot. 1In low
resolution mode this allows you to draw or plot multicolor
pictures with up to 16 different colors (8 each for both high
and low intensities--see Table 7-2).

ESCape Command (ASCII 'ESC' = 1BH)

This command is used to return to CDOS. It will first
turn off the Dazzler and then execute a jump to location 0,
the warm start for CDOS. Note that you may return to DAZZPLOT
(if ESC was pressed accidentally) by using RDOS to "Gl00" and
then typing "D" for DAZZPLOT in response to the console message.

Chapter 8:

CONCLUSION AND EXAMPLE OF USE OF DAZZPLOT

The example following is designed to acquaint the beginning

user of Dazzler plotting routines with some of the color and

motion changes possible.

1)

2)

3)

Insert your DGR diskette in drive-A of the computer
and boot-up CDOS.

Now type the word "DAZZPLOT" to load and execute the
program.

Press CTRL-K to clear the picture buffer (after the

. sign-on message has been printed).

4)

5)

6)

7)
8)

9)

10)

11)

12)

13)

Press CTRL-A to plot X-Y axes centered at X=127,
Y=127.

Now press CTRL-W immediately followed by the character
"1l" to select picture buffer 1 (press CTRL-W,0 at
any time to return to the first buffer).

Press CTRL-L to select low resolution (64x64)
followed by CTRL-K to clear the picture buffer.
Press CTRL-O to move the cursor to the origin.

Press CTRL-A to plot the axes centered at the origin
(X=0,Y=0).

Now press CTRL-C to again center the cursor. Press
"G" to select the color green.

Press the "9" key 6 times to move the cursor in an
upper-right-hand direction.

Press "M" for magenta and then the "2" key 25 times
to move the cursor downward.

Press "C" for cyan and then the "4" key 7 times
followed by the "6" key 14 times.

Now press CTRL-F to turn off the blinking cursor and

82

Simply perform the numbered steps below:

83

you should have a large number "1" plotted in several
colors on your TV screen.
14) This concludes the example. Press "ESC" (escape key)

to abort the program and return to CDOS.

This chapter concludes both Part II, the section on the
program Dazzleplot, and also the Dazzler Graphics manual. It
is hoped that the programs provided in this package and described
here will stimulate an interest in graphics software with an
emphasis on its serious application.v There are many practical
uses for graphics--from visual display of real-time control
devices to 3-D plotting as an educational and visual aid. The
availability of graphics software will become increasingly
important as the resolution and color distinction of graphics
output devices gets higher. Persons who make interesting or
novel application of the programs contained herein are encouraged
to share their ideas and input with CROMEMCO.

i
§ 3
.) :
P)

9

e

