MC68000 PROGRAMMING MODEL

The programming model for the MC68000 microprocessor is shown in Figure. It
consists of

* 19 registers

« 16 M-byte (2** bytes or 2%* 16-bit words) combined memory

* 1/O space.

The bank of eight 32-bits data registers, DO through D7, identifies the MC68000 as a
general register machine.

31 16 LIS
I

xR
~
<o

| D3 Data
D4 registers

| ps
D6
D7

b e
1

1
I
I
I
|
]
i
'
-]
I
I
|
I
i
1
I
!

The data movement and arithmetic/logic instructions manipulate data in these
registers or in memory locations. Most of those instructions can be specified to
operate on 8-, 16-, or 32-bit pieces of data in the data registers. Eight-bit operations
affect only bits O through 7, 16-bit operations affect bits O through 15, and 32-bit
operations affect the entire register.

31 24123 U

PC Program counter

Although the address registers and the program counter are 32 bits wide, the
processor chip has a 24-bit address bus, which uses only the lowest ordered bits of
these registers. Thus, the processor is capable of addressing 2** individual bytes
(16MB).

Registers AO through A7 and A7' are used to hold addresses of locations in
memory which are of particular interest in a program.

31 16

. AQ
Al
i
A2
A3 Adc.iress
~ registers
A4
AS

Ab

— o —— e — o —— o — — o Sob——

1

A byte may be accessed at any one of 16M locations, but a word (16-bits) may
be accessed only at one of the 8M even-addressed locations.

15 8/ U
000000 j} 000001
000062 : 000003
{
B : . Memory
:] and I/O
!
l -
FFFFFC | FFFFFD 31 0
B : . User Stack Pointer (USP) A7 Stack
FFFFFE 1 FFFFFF Supervisor Stack Pointer (SSP) A7' pointers

The internal structure and the instruction set of the MC68000 support 32-bit
operations; however, its 16-bit data bus and its byte-addressing scheme limit memory
accesses to 8 or 16 bits of data per cycle.

The status register (SR) is divided into two parts, the user byte and the system
byte. The system byte will be discussed later. The user byte (also referred to as the
CCR) is directly affected by the execution of certain instructions. It includes the
usual carry bit (C), overflow bit (V), zero bit (Z), and sign or negative bit (N). In
addition, it includes the extend bit (X), a modified version of the carry bit which is
used exclusively for multi-precision arithmetic operations

15 817 0
System Byte | User Byte | SR Status register
(CCR)

A FIRST EXAMPLE PROGRAM FOR THE MC68000

The column to the right of the memory content column lists the mnemonic form of
each instruction after the final word of that instruction. The last two columns show
the contents of the PC and either register DO or D7 after the word is fetched or the
Instruction is executed. The dashes in the contents of the data registers indicate that
the values present are immaterial because they either will not be affected by any
instruction or they will be overwritten by the current instruction.

After Fetch (Execute)

Address Content Instruction PC DO
001000 3038 001002 --------
001002 1014 MOVE 1014H,DO 001004 ----1234
001004 DO038 001006 ----1234
001006 1016 ADD 1016H,DO 001008 ----68AC
001008 3EO0 00100A ----68AC
00100A 1018 MOVE DO0,1018H 00100C ----68AC
00100C 2E3C 00100E D7
00100E 0000 001010 -mme--
001010 O00E4 MOVE L #228,D7 001012 000000E4
001012 4E4E TRAP #14 001014 000000E4

001014 1234 Data

001016 5678 Data
001018 0000 Place for result

A simple MC68000 program segment.

The PC starts at 001000, but after the first word is fetched it is incremented to
001002.

The processor starts in the fetch cycle and will therefore fetch the content of the
word location in memory to which the program counter is pointing. It does this by
placing the address 001000 on the address bus and executing a read cycle. It then
automatically increments the program counter by two. The word fetched is 3038,
and, since it is supposed to be the first word of an instruction, the processor decodes
it as such.

Having completed fetching the instruction, the processor proceeds to execute it.

3

The instruction, 3038-1014 (MOVE 1014H,D0), requires that the processor fetch the
word from the memory location whose address is 1014, sign extended to 001014.
The processor is then to load that word into register DO. The processor does this by
executing another read cycle, this time with the address 001014, and latching the
value read (1234) into DO. Notice that this is a word (16 bits) transfer, so it does not
affect the most significant half of DO.

The second instruction, D038-1016 (ADD 1016H, DO0), calls for the processor to
add to the content of register DO the word read out of location 1016 (sign extended
to the 24-bit address 001016). This requires another read cycle to obtain the word
from memory location 001016 (5678 hex). The processor adds this value to the
content of DO to generate the sum of 68AC.

The third instruction, fetched from locations 001008 and 00100A, is 3EO0O-0018
(MOVE DO,1018H). This instruction tells the processor to copy the content of
register DO into memory location 001018. It does so by executing a memory write
cycle with the address 001018 and the data 68AC.

The fourth instruction (MOVE.L #228,D7) is a three-word instruction (2E3C-
0000-OOE4 in hex) used to prepare the system to terminate the program segment
gracefully. It requires the processor to load the 32-bit pattern for the decimal number
228 (hex 000000E4) into register D7. When the final instruction (4E4E or TRAP
#14) is executed, it acts as a call to the monitor or the operating system and, in
conjunction with the value stored in D7, serves to end the program. All programs
which use the ASSYMO0O00 simulator software must end with these two instructions.

THE MC68000 ADDRESSING MODES
This section describes the addressing modes used in the Motorola MC68000
microprocessor, their formats within program memory, and how they are specified in
the instruction mnemonics.

Motorola's literature lists 14 different addressing modes used with the MC68000.
One of these, the implied mode, is not discussed here since it requires no
specification on the part of the programmer.

The remaining 13 are grouped into seven categories in this chapter:

absolute,

Immediate,

register direct,

address register indirect,

address register indirect with auto increment/decrement,

address register indirect with offset/index, and

PC relative.

Instructions occupy one to five consecutive (16-bit) words in memory. The
addressing mode is encoded in the first word, the op-word, which also identifies the
total number of words in the instruction and the operation it is to implement. The
remaining words, called extension words, further specify the operands when
necessary.

Although the MC68000 is described as a 16-bit processor and has a 16-bit data
bus, it can access memory on the byte level. That is, every byte in the memory space
has its own 24-bit address. Instructions may refer to a single byte, a double-byte
word, or a quadruple-byte long word.

Memory:
Even Addresses 0Odd addresses
n IWO0, W0,B0 | -, --,Bl | n+1
n+2 -, W1,B2 | -, --,B3 | n+3
n+4 IWI,W2,B4 [-—-,-,B5 { n+5
n+6 -, W3,B6 | -—,--,B7 | n+7

FIGURE MC68000 data formats.

The figure shows eight consecutive bytes in memory which may be accessed as
eight bytes, four words, or two long words. The most significant byte is BO and it
comes first in memory. The most significant word is WO and it comes first and
includes bytes BO and B1. The most significant long word is LWO and it comes first
and includes bytes BO through B3 as well as words WO and W1. Bytes may be
accessed at any location, but words and long words may be accessed only at even
addresses as shown.

With most instructions the programmer must select the desired data size by
including an extension after the mnemonic (.B .W or .L). If such an extension is not
included, the default size is word.

1 ABSOLUTE ADDRESSING IN THE MC68000

The MC68000 includes two forms of absolute addressing, long and short. The
long form requires two extension words (32 bits) after the op-word to specify the 24-
bit address (the most significant 8 bits have no effect). The short form specifies a 16-
bit address in a single extension word. During execution it is sign-extended to 32 bits
(24, effectively)

Figure shows an example of the absolute long mode. The instruction is to load
register DI with the (word) content of location 123456 hex. The mnemonic form is
MOVE.W 123456H,D1 including the optional .W extension. The source and
destination identifiers are listed in the order from, to (from location 123456 to
register DI).

MOVE.W 123456H,D1

’\/ Coding:
00-11-001-000-111-001
3239 —— Op-word 3239 in hex
XX12
Address
3456

123456 | Operand

/\/
Absolute long addressing in the MC68000.

The op-word is found from the tables of Appendix C to be

00 - size - destination - source (effective address)

The size code for word is 11, the destination code for register D1 is 001,000 (register
number, mode), and the source or effective address code for absolute long is 111,001
(mode, register in the table). Combining these yields 00 11 001 000 111 001, which
Is 3239 in hex. This op-word is followed by the two-word extension, which provides
the absolute address. In Figure the symbol X represents nibbles which are of no
consequence in the program but which would normally be made equal to 0.

In mnemonic form the same instruction with a 32-bit operand would be
specified by MOVE.L 123456H.D1. When this instruction is executed the processor
loads the word from location 123456 into the upper half of DI and the word from
location 123458 into the lower half of DI.

2 IMMEDIATE ADDRESSING IN THE MC68000

Immediate addressing requires that the instruction include the operand as an integral

part of itself (in extension words). Thus, this addressing mode refers to locations
immediately following the op-word.

An example of immediate addressing is shown in Figure, where the instruction is

6

to move the 16-bit word 789A into the low half of DI. Immediate addressing in
Motorola processors is indicated in the mnemonic form by the use of the number
symbol #. The example MOVE #789AH,D1 implies a word length operand by the
lack of an extension and should be read as "move the word-sized number 789A hex
into register D1". The op-word is 323C, which is followed by the single extension
word, which contains the operand itself.

MOVE #789AH,DI

— A — Coding:

00-11-001-000-111-100
1st Word 323C |— Op-word 323C in hex
2nd Word 789A +——— Operand
A,

FIGURE Immediate addressing in the MC68000.

3 REGISTER DIRECT ADDRESSING IN THE MC68000

In the register direct modes the operand is in a processor register..

Instruction Binary coding Hex code
a. MOVE D5,D1 00-11-001-000-000-101 3205
b. MOVE A3,D1 00-11-001-000-001-011 320B
c. MOVEA D1,A3 00-11-011-001-000-001 3641

When the destination for a MOVE instruction is an address register then a
different mnemonic, MOVEA, is used.

4 ADDRESS REGISTER INDIRECT ADDRESSING IN MC68000

The address register indirect mode calls upon the processor to use an address register
as a pointer to a target memory location. This mode must specify one of the address
registers (not a data register) as a pointer. Register indirect addressing in the
MC68000 includes many options which will be discussed later. These options are
listed in Motorola's specifications as separate addressing modes.

Three examples of instructions using the register indirect mode of addressing to
specify a source or destination are shown in Figure. Each is encoded with a single
op-word and no extensions.

The first instruction shown in Figure 5.25 should be read as "move the (word)
content of the memory location pointed to by register A3 into data register D1".

Instruction Binary coding Hex
MOVE (A3),D1 00-11-001-000-010-011 3213
MOVE D1,(A3) 00-11-011-010-000-001 3681
MOVE (A3),(A6) 00-11-110-010-010-011 3C93

FIGURE Address register indirect addressing in the MC68000.

The second example, "move the (word) from D1 into the memory location
pointed to by A3," is an example of a store operation, where data is moved into
memory from the processor.

The third example is a rarity among microprocessors, a memory-to-memory
move which bypasses the programming model registers. Its operation is to move the
content of a location pointed to by A3 into the location pointed to by A6.

5 ADDRESS REGISTER INDIRECT WITH AUTO INCREMENT/DECREMENT IN THE
MC68000

Arrays of data are normally stored in sequential locations in memory. When
operating on arrays, the processor often traverses a program loop during which it
must change the address in an address register in order to "point to" subsequent array
elements. In this way the array may be accessed one element at a time during each
pass through the loop. It may be necessary to increment or decrement the address,
depending upon the direction in which the array is scanned. The address may need to
be changed by 1, 2, or 4, depending upon whether the array consists of bytes, words,
or long words.

The auto increment (decrement) mode first uses the register as a pointer in the
Instruction and then increments (decrements) its value. To emphasize the sequence of
activities the modes are referred to as address register indirect with postincrement
and address register indirect with predecrement, often abbreviated post-inc and pre-
dec. In the mnemonic form the modes are indicated by the use of a plus or minus
sign.

The amount of increment or decrement is automatically selected by the processor
during execution to reflect the data size specified in the instruction: 1 for byte, 2 for
word, and 4 for long word. The one exception to this is when the pointer is register
A7. In that case a byte operand will result in an increment or decrement of 2 in order

8

to keep the register pointing to a word boundary. This is necessary because of the
special use of A7 as a stack pointer, as will be described later.

The first example is the instruction MOVE D1,(A3)+, move the word in DI to
memory, address register A3 indirect with postincrement. When this single word
instruction is executed the processor moves a word from DI into the location pointed
to by A3 and then increments the content of A3 by 2.

MOVE DI, (A3)+

’\/ Coding
00-11-011-011-000-001
36C1 p~—— Op-word 36C! in hex
123456 —=| Destination A3 (Before) A3 (After)
123456 123458

The example in Figure b is the instruction MOVE.L D1,-(A3) ("move the long
word in DI to memory, address register A3 indirect with predecrement™). When it is
executed the processor first decrements the content of register A3 by 4. This opens
up four new bytes in memory where the long word in DI is subsequently stored in
accordance with the instruction.

MOVE.L D1, ~(A3)

-—/\/—— Coding
00-10-011-100-000-001
2701 ——— Op-word 2701 in hex

123452 —»| Destination Target
Destination

Destination
123456 —»| A3 (Before) A3 (After)
123456 123452

As a consequence of using the increment/decrement modes not only does the
instruction accomplish its primary task of manipulating the targeted operands, it also
modifies the content of the selected address register. Thus, these modes combine two
basically different operations into a single instruction.

6 ADDRESS REGISTER INDIRECT WITH OFFSET/INDEX IN THE MC68000

Based addressing, builds upon the address register indirect mode by allowing the
programmer to specify a fixed offset value to be temporarily added to the content of
the register in order to generate the target address. It is available in the MC68000
where it goes by the name address register indirect with displacement. The
displacement or offset value is a 16-bit signed number which occupies a single
extension word within the instruction. When the instruction is executed the processor
temporarily adds a sign-extended 32-bit version of the displacement, together with
the contents of the specified address register, to generate the target address. The
content of the address register is not changed by the instruction.

An example of this mode is shown in Figure. The displacement value of 4000
hex is specified in the mnemonic form by writing it just ahead of the lead parenthesis
indicating the register indirect mode: MOVE D1,4000H(A3). The displacement must
be an even number when the operand size is word or long word so that the target

address will also be an even number.
MOVE D1,4000H(A3)

’\/ Coding:
A3 00-11-011-101-000-001
3741 —— Op-word
4000 (—— Displacement

127456 | Destination

/\l

FIGURE 5.27 MC68000 address register indirect addressing
with displacement.

10

A combined indexed and based addressing mode is available in the MC68000
under the name address register indirect with index. This mode allows the
programmer to specify both a constant offset and a processor register to be used as an
index register. When this mode is used, the processor adds three numbers together to
generate the target address. or data register which the instruction has specified as the
index register.

The instruction MOVE D1,7AH(A3,D5.L) is shown bellow.
MOVED1,7AH(A3,D5.L) Coding: 00-111011f{110-000-§01=3781
MOVE.W\A3 Mode\Mode D1

The extension word includes all the necessary index and displacement
information, including the eight-bit offset value of 7A. An instruction which uses this
mode for both the source and the destination would require two extension words, one
for the source and one for the destination.

The calculation of the target address during the execution of the example
instruction is shown in Figure. Registers A3 and D5 are assumed to contain the
values 22222200 and 33338800, respectively. The processor generates the target
address of 5555887A by adding these together with the offset of 7A from the
instruction. It then stores the content of DI in that location. Neither the content of A3
nor that of D5 is changed by the instruction.

31 A3 0

22222200
Target address:
31 D5 0 31 0
33338800 »-{ + 5555AATA

Displacement (sign-extended)
31 0

0000007A

7 PROGRAM COUNTER RELATIVE ADDRESSING MODES IN THE MC68000

The PC-relative addressing mode is implemented in the MC68000 under two
different names; "program counter with displacement™ and "program counter with
index." These two modes are similar to the two address register indirect modes:
"address register indirect with displacement™ and "address register indirect with
index." The program counter is used instead of a specified address register as the

base register.
11

The instruction MOVE D1,2000H(PC) would store the content of D1 into the
memory location whose address is found by adding the offset value of 2000 hex to
the content of the program counter.

A similar mode, sometimes referred to as relative addressing, is used only with
certain branch instructions. As with other instructions using the PC-relative modes,
the offset value must be calculated not from the location of the branch instruction
itself, but from the beginning of the next instruction in sequence.

Including the displacement in the mnemonic form for a branch instruction would
require the programmer to calculate the displacement value. To simplify the
programming task the programmer will instead write a branch instruction in
mnemonic form by naming the target destination address for the branch and writing
that name instead of the displacement in the instruction. The displacement is
calculated and included in the code at a later time when the program is translated into
binary form (usually by a computer).

The example in Figure is an instruction to branch (unconditionally) to the
instruction at the location named LOOP (BRA LOOP in mnemonic form). The
instruction is in location 4568 and the op-code for BRA is 60. The displacement from
the following instruction at 456A back to LOOP at 4560 is -0A, which is P8 in 2's
complement form. Hence, the coding for this instruction is 60F8 and includes no
extension words.

The processor executes the instruction by adding to the content of the program
counter the displacement value of F8 specified in the instruction, sign-extended to
FFFFF8. This new address, which is loaded into the program counter (004560), is the
location from which the next instruction will be fetched.

v
Loop = 004560 —— Target address
004562
004564
_0A 004566
Branch 04568 | 60F8 |— BRALOOP Coding: BRA = 60, Disp = F8
oA ————— _ (PC)During
execution
A

FIGURE (PC) Relative addressing in the MC68000: eight-bit displacement.

Notice also that the offset can range only from — 128 decimal to +127 decimal
since that is the range of an eight-bit 2's complement number. If the distance to the
target address is farther, then more bits must be used to specify the displacement.

12

	MC68000 PROGRAMMING MODEL
	
	D7
	
	1 ABSOLUTE ADDRESSING IN THE MC68000
	
	
	3 Register Direct Addressing in the MC68000

	Instruction

	Binary coding

