T

MACROTECH MI-286

AND

COMPUPRO CPU 8085/88

CompuPro Macrotech
16-bit: 8088 16-bit: 80286
CPUs 8-bit: 8085 8-bit: Z80H
8087
e (as a piggy-back board 80287 optional
coprocessor
from Hudson Assoc.)
Maximum
Memory 16 megabytes 16 megabytes
Addressable
f 8 bits (restricted)
Data Bus 8 bits or 16 bits
Processor active
on power-up 8085 IR
8-bit speed 2 o0r6 MHz 2 or 8 MHz
16-bit speed 10 MHz 6 MHz

I/0 wait states

0 or 1 - switch
selectable

Z80: 0 or 1-switch selectable
286: up to 3 - switch selectable

800-842-7961
800-842-7962 (California)

MWRITE generator switch selectable switch selectable
Cost $350 $1095
CompuPro Macrotech
26538 Danti Court 9551 Irondale Ave.
Manufacturer Hayward, CA 94545-3999 Chatsworth, CA 91311

800-824-3181
818-700-1501 (California)

Jay Vilhena

ince so much of this issue is

dedicated to dual-processor

boards, | decided to throw
in this small article with an at-a-glance
table showing you the main features
of the CompuPro CPU 8085/88 and
the Macrotech MI-286.

Although 16-bit systems (and the
CPU 8085/88 in particular) have been
available for several years, many
readers have 8-bit-only machines and
may now be considering a 16-bit up-
grade to run extra software. A dual-
processor board is a good choice be-
cause all your older 8-bit software can
still run. (Another alternative is to buy
a 16-bit slave or coprocessor board
available from several manufacturers.)

Both the Macrotech and the Com-
puPro are excellent dual-processor
boards and are now essentially bug-
free. The MI-286 offers outstanding
performance due to a fast Z80 pro-
cessor and a 16-bit data path for the
80286. The CPU 8085/88 can be ob-
tained at extremely attractive prices.
So the choice, as usually, depends on
your intentions. If what you want is an
economical and dependable upgrade
to 16 bits, the 8085/88 is ideal. Since
the 8085/88 uses an 8-bit data path for
both processors, it will work fine with
all your old 8-bit memory. However, if
you are after the ultimate speed, want
to take advantage of 16-bit memories,
or plan to use the board in multiuser
environments, you need the MI-286.
You may also prefer the MI-286 if your
current CPU is a Z80, since some
Z80-specific programs may not run
with the 8085.

=l

5-100 JOURNAL, VOL. T NO. 2

4191 IS _.zmxo.__lau nUl.Ol_Ua ANO9a0D |
| VB TN LANY |

vsnm u_n_u_ -

ﬂl gy .‘l -.l_ [[
—aecsnia !-rlLlllll

t" rll.E.. q

o
'y

...I pntnau-vru‘wrvrrrrﬂ Frrrreerend
ﬂ- . " ="
- - L S PN -u....-
= 5 -~
4 . [4 3 — =
gl £ e ’ e s ==
L] a “> =1 .1‘1 o brbvnw 4
* . = kb -r ————y
- LA d . [~ =4 s =
.mlrlllill- N SR NPT M wv..... -~
m 3 - = r, & - - —=
£ 1 ¢ 8 w ~
gy pl .-..--.:.!...w, _, bt~ |
m.w..uu|nn. PR Y eReebees S R et

FRNATIONAL TSNP BARE IN USA COryRIO

A | prrrewwag tm

L o
. O rrtmier Fepmsces
) AL T RN)
SAf ZSIE358 _2THNEEE seasandW,(< e P
[/ =
£ - gttt . |
- Efaw - - - ea - — -
| - | Prvewss -
...r-l[.....- 2232858 223RANE Laidhed = .
m M _ 1 = ‘lvvvurr\-u —=
==
=

L]

NY
L]
L
L}
1]
L
¥
L]
oo
)
'
"
"
(1
]
4
| -
)
(]
L)
L)
¥
L
L]
L]
]
1
i
L)

&
-
\
i
\
i
{
]
4
‘l
}
o o
| RS
{22 Be 2
[L]
g7
!
"*:.-i- .
i
]
\
1]
v
¥, My
]
Wi

Ev:ﬂl
™
A

-t

(Il

EE

(continued from page 13)

block. The 8088 registers are con-
verted to the 8085 equivalents and
written to the task block memory
area. The 8088 also writes into the
task block memory the function code
for the requested BIOS function. The
8088 then issues an input instruction
to activate the 8085.

3. The 8085 wakes up and loads
all of its registers from the information
in the task block memory, and calls
the existing CP/M BIOS code for the
requested function. When the existing
BIOS returns, the 8085 writes all of
its registers back to the task block
memory area and in turn issues an
input instruction that reactivates the
8088.

4. The 8088 reconverts, into their
8088 equivalents, the 8085 registers
stored in the task block memory area.
It then returns to CP/M-86.

Of course, things are not always as
simple as one would like. The above
scenario becomes more complicated
when disk 1/O is involved, as you will
see when each BIOS function is
examined in individual detail.

Memory Allocation

Memory must be carefully managed
when both iricroprocessors on the
Dual CPU are used because both
processors can address and alter the
same physical memory. It would be
very easy (and probably disastrous)
for one of the microprocessors to
clobber information used by the

other. Not only that, but CP/M and
CP/M-86 differ significantly in their
memory layout. CP/M uses low
memory for a number of important
fields, such as the BDOS and warm-
boot vectors, and the IOBYTE. CP/M
itself runs in high memory in the 8085
address space. CP/M-86 is forced by
the architecture of the 8088 to use
low memory for interrupt vectors.
CP/M-86 itself is relocatable — that
means it can run anywhere within the
address space of the 8088. Typically,
CP/M-86 occupies a memory area
starting at address 400 (hex), with the
BIOS starting at address 2500 (hex).

Somewhere in this messy picture,
a secure area must be found for the
BIOS task blocks. The memory allo-
cation [used is pictured in Table 3.
Low memory does cause some con-
fusion due to conflicting usage by
CP/M and CP/M-86. The code that
processes the task block interface
has to do some saving and restoring
of key low-memory areas.

The Software Pieces

In order to implement the BIOS task
block approach, I wrote three separ-
ate programs. The first program is
the CP/M-86 BIOS. This is a special
BIOS which runs on the 8088 and
creates BIOS task blocks for the
8085 to process. The second program
is called the BIOS Task Block Proces-
sor, and it runs on the 8085. It loads
CP/M-86 into memory and causes
the 8088 to start executing CP/M-86.

CP/M (8085)

rCrIMOOD>

CP/M-86 (8088)

Table 2.

CP/M versus CP/M-86 Register Allocation. Whenever a BIOS call is

invoked, processor registers are used to pass the parameters. This table depicts the
translation conventions used in CP/M-86. For example, if a CP/M BIOS call used the
8085 register C to pass a parameter, the corresponding CP/M-86 BIOS call will use

8088 register CL for that same parameter.

16

A portion of the second program re-
mains in memory to act as an inter-
face between the CP/M-86 BIOS and
the CP/M BIOS. The third program
is a very simple program, called the
CP/M Reboot Program, which runs
on the 8088. It causes your computer
to cease running CP/M-86 and re-
sume running CP/M. This allows vou
to freely alternate between CP/M and
CP/M-86 without the need to reset
(reboot) your computer.

The CP/M-86 BIOS

Listing 1 (CBIOS86.A86) is a BIOS
for CP/M-86. This code is really only
a translator to allow your existing
CP/M BIOS to do all the hard work.
Let’s examine each of the routines in
this BIOS. During this discussion I
will frequently refer to program labels
which you can find in Listing 1.

The beginning of the BIOS contains
several equates. A few of them are
very noteworthy. The equate called
IFAREA is used to locate the BIOS
task block in memory (see Table 3).
In Listing 1, the BIOS task block is
located at D000 (hex). In the installa-
tion section of this article, you will
learn how to locate the BIOS task
block in your system. The definition
of the task block format starts at the
equate called CODE. The task block
contains the CODE which determines
the BIOS function the 8085 is to per-
form, the 8085 registers, the current
IOBYTE and CDISK settings of
CP/M (remember that CP/M and
CP/M-86 conflict in their usage of low
memory, so these important low-
memory fields must be saved and
restored), and a disk buffer (labelled
DSKBUF). The disk buffer will be
used by the CP/M BIOS whenever a
disk read or write is requested by the
8088. The 8088 will then be responsi-
ble for moving the disk buffer’s con-
tents to wherever CP/M-86 has cur-
rently set its DMA address. Since the
8085 is not capable of addressing
more than 64K, and the CP/M-86
DMA address can be outside of the
bottom 64K of memory, a fixed disk
buffer is required in the BIOS task
block.

The BIOS INIT routine is very stan-
dard. It initializes all interrupt vectors,

S-100 JOURNAL, VOL. 1 NO. 2

prints a sign-on message, and enters
CP/M-86.

The console status (CONST) rou-
tine is the first place where anything
unusual happens. This routine sets
the CODE byte in the BIOS task
block. The codes used are the offsets
from the base of the CP/M BIOS
jump table to the location of the jump
for the requested BIOS service. Con-
sole status uses a code of 6 because
the console-status jump is the third
jump in the BIOS jump table; there-
fore, it is at offset 6 from the beginning
of the table. Table 4 contains a listing
of the BIOS functions and their
CODES. After setting the code, the
console status routine does a jump to
the routine that will swap processors
to perform the BIOS function.

Most of the BIOS functions are as
simple as console status. The func-
tions LISTOUT (list device output),
LISTST (list device status), PUNCH
(punch device output), READER
(reader device input), HOME (cause

the disk drive head io seek to track
zero), SETTRK (select the track for
the next disk operation), and SET-
SEC (select the sector for the next
disk operation) all work the same as
console status and will not be further
discussed.

In CP/M-86 the IOBYTE was
moved from low memory to a location
inside the BIOS. Two new BIOS func-
tions, GETIOBF (get IOBYTE) and
SETIOBF (set IOBYTE), are provid-
ed. In this case, the IOBYTE itself is
in the BIOS task block area so that
the 8085 can examine it for any
changes.

The SELDSK (select disk) routine
1s the most complicated routine in the
CP/M-86 BIOS. Like most of the
other BIOS routines, it starts out by
setting the CODE byte and swapping
to the 8085 to perform the SELDSK
routine in the CP/M BIOS. If no
errors were detected in the CP/M
BIOS, a pointer to a Disk Parameter
Header (DPH) is returned. The

CP/M-86 BIOS uses the information
returned to build a local copy of the
DPH for CP/M-86 to use. When the
CP/M BIOS returned its pointer to a
DPH, it returned an absolute pointer
to a location. Within the CP/M-86
BIOS, all references to memory are
made relative to the 8088’s DS seg-
ment register. (If the concept of seg-
ment registers is unfamiliar, you might
want to read the series of articles on
the architecture of the 8086 which
have appeared in BYTE [4]. The 8086
and 8088 architectures are identical
from a software viewpoint.) The DS
register is always set to the base of
CP/M-86, in this case 400 (hex). Be-
fore the pointer returned from the
CP/M BIOS can be used, that pointer
must be adjusted by subtracting the
bias added by the DS register. This is
accomplished by the instruction sub
bx,cpm-offset. After the pointer is
adjusted, the necessary fields are
copied to the local DPH, and a pointer
to the local DPH is returned to

CP/M-86. One of the fields in the
copied DPH (the sector translate
table pointer) must also be adjusted
for the DS register offset. Incidentally,
when 1 originally wrote this BIOS, I
tried not making a local copy of a
DPH and just passing to CP/M-86 the
adjusted pointer to the DPH in the
CP/M BIOS. This did not work pro-
perly, and | was not able to find out
why.

The SETDMA (set DMA address)
and SETDMAB (set DMA base ad-
dress) BIOS functions are handled
without calling the CP/M BIOS.

These two functions save pointers to
where disk records are found on disk
reads or disk writes.

The READ function calls the CP/M
BIOS to read one disk record. Re-
member that the CP/M BIOS uses a
fixed disk buffer which is stored in
the BIOS task block area. After call-
ing the CP/M BIOS, the READ func-
tion transfers the data from the BIOS
task block area to the address speci-
fied by the current DMA address.
The WRITE function is very similar.
Before calling the CP/M BIOS, the
WRITE function copies the data from

CP/M-86 Expansion Memory

8085 BIOS

10000 (hex)

BIOS base

BIOS Task Biock Processor

BIOS base

BIOS Task Block

—100 (hex)

Available CP/M-86 Memory

BIOS base
—200 (hex)

CP/M-86 BIOS

CP/M-86 CCP and BDOS

2500 (hex)

CP/M-86 Interrupt Vectors and
CP/M Low Memory

400 (hex)

Table 3. Memory Allocation. This table depicts the memory of the computer as it
looks when CP/M-86 is running, and the 8085 is providing BIOS seruices for the 8088.
The area between the top of the CP/M-86 BIOS and the bottom of the BIOS task
block is available for running programs. If more than 64K of memory is available, any
memory abouve the bottom 64K (memory above address 10000 hex} can also be used

for running programs.

18

the current DMA address to the BIOS
task block area. The CP/M BIQOS is
then called to do the actual disk write.

The CALLCE is the routine where
the CP/M BIOS gets called. First, the
register translation is performed ac-
cording to the mapping shown in
Table 2. Second, the IN AL SWAP
instruction shuts down the 8088 and
wakes up the 8085. After the 8085 is
finished processing the BIOS task
block, it reawakens the 8088 which
starts executing right where it left off.
Lastly, the register translation is per-
formed in reverse, and the routine
exits.

The remainder of the CP/M-86
BIOS consists of data areas. The only
one of any real interest is the segtable.
This table defines for CP/M-86 what
memory is available in the computer.
In Listing 1, this table is set so the
area between the end of the CP/M-86
BIOS and the BIOS task block is
available for program use (see Table
3). If you have memory at or above
address 10000 (hex), you will want to
change this table to add the other
memory areas. The first byte of the
table tells how many entries are in the
table. The remaining entries are two
words each. The first word is the
base paragraph address (physical
address divided by sixteen) of the
available memory; the second word is
the number of paragraphs (16-byte
chunks) available in this region. Up to
eight noncontigquous memory regions
may be defined.

The BIOS Task Block Processor

Listing 2 (BOOT86.ASM) is a pro-
gram which runs on the 8085. This
program has four responsibilities. Its
first job is to load the CP/M-86 system
file (a file containing the CP/M-86
CCP, BDOS, and BIOS) into mem-
ory. Second, it attempts to provide
for the 8088 reset vector. Third, it
saves part of the 8085 environment in
the task block area so that some
important variables are not smashed
by CP/M-86. Fourth, it relocates a
portion of itself to the BIOS task
block area, and functions as the
interface between the BIOS task
block and the CP/M BIOS. The major
sections of Listing 2 are identified by

S-100 JOURNAL, VOL. 1 NO. 2

comments, and you may want to
refer to each section during the
following discussion.

Loading the CP/M-86 system file is
straightforward. However, beware
that object files under CP/M-86 have,
as their first sector, an information
sector on how to set segment regis-
ters after loading. This sector is of no
use and must be discarded. Since the
CP/M-86 file must be loaded at 400
(hex), loading is started at 380 (hex)
to discard this first sector. The load
code terminates at the label EOF.

The section of code that saves
some of the important 8085 memory
regions simply copies the contents of
this memory to secure locations in
the task block. The regions copied
are those that might be smashed by
the 8088 when running CP/M-86. The
area at FFFO0 is saved as part of pro-
viding for an 8088 reset vector.

The next section of code attempts
to provide for the 8088 reset vector
(the reset vector is an 8088 jump
instruction to the address where the
8088 should start executing). This is a
tricky problem. A restart vector must
also be provided. The reset vector is
used the very first time that the 8088
is turned on. The restart vector is
used every subsequent time that the
8088 is turned on. The text box on
page 28 details the problems of pro-
viding for reset and restart vectors on
the Dual CPU.

Following the code for the 8088
reset vector, there is a short loop
which relocates the remainder of the
program to the BIOS task block area.
This relocation places the remaining
code in a secure area of memory (just
after the task block). The relocated
code must remain resident during
CP/M-86 operation because it pro-
cesses BIOS requests for the 8088.

CODE (hex) Function

00 Cold Boot

03 Warm Boot

06 Console Status

09 Console Input

0C Console Output

OF List Device Output

12 Punch Device Output

15 Reader Device Input

18 Home Disk

1B Select Disk

TE Set Disk Track

21 Set Disk Sector

24 Set Disk DMA Address

27 Read Disk

2A Write Disk

2D List Device Status

30 Translate Logical Disk Sector to Physical
Disk Sector

FF Terminate CP/M-86 and Resume
CP/M Operation

Table 4. BIOS Functions and BIOS Task Block CODES. This table lists the codes
used in the CODE field of the BIOS task blocks. The CODE field is used by the 8088
to inform the 8085 which BIOS function is to be performed. The values for the codes
are actually the offset of the requested jump vector from the beginning of the BIOS

jump vector table.

This code is relocated to the BIOS
task block area, rather than simply
being loaded at the task block area,
because it overlays a portion of the
CP/M BDOS.

The definition of the task block
area follows. This definition must
match the definition provided in the
CP/M-86 BIOS. The code that is
relocated starts at the label HIMEM.
All the jump instructions in this sec-
tion look funny because of the
relocation.

The code that starts at the label
HIMEM processes task block re-
quests. The first thing it does is to

with this issue.

PROGRAM LISTINGS

The listings for the three programs described in this article
are published in the S-100 Journal Supplement distributed

They are also available on standard IBM format 8" single-
sided, single-density diskettes from Howard Spindel, 20877
S.W. Winema Drive, Tualatin, Oregon 97062. There is a
handling charge of $30.00 which includes the disk and
shipping by United States Postal Service.

FALL 1985

allow the 8088 to run. CP/M-86 has
been loaded into memory, and the
reset vectors have been set for the
8088 to begin running at the CBOOT
(cold boot) entry point of the CP/M-
86 BIOS. After the 8088 gets an initial
chance to run, the memory at FFF0
which was altered to provide a reset
vector is restored from the values
saved in the task block area.

The code starting at the label
NXTCMD begins a loop that will
continue to execute for as long as
CP/M-86 is running. NXTCMD is the
entry point for processing task block
requests. The CP/M-86 low-memory
environment is pushed onto the stack
and the CP/M low-memory environ-
ment is restored from the values
saved in the task block area. A special
check is made to see if the task block
is requesting a return to CP/M oper-
ation (the task code for this special
request is FF). If CP/M is to be
resumed, the warm-boot vector is
rebuilt in low memory, and a jump to
0 warm boots CP/M back into mem-
ory. If the task block is requesting a
BIOS operation for CP/M-86, the

(continued on page 25)

9

(continued from page 19)

8085 registers are loaded from the
information that the 8088 left in the
task block area. Then, based on the
task block CODE, the correct routine
in the CP/M BIOS is called. Since the
8085 instruction set does not provide
an indirect call instruction, the BIOS
call is performed with a common
8085 trick. The return address is
pushed on the stack, followed by the
address which is to be called. A return
instruction is then executed which
actually calls the intended routine.
The return instruction at the end of
the called routine will pull the return
address which was pushed on the
stack.

After the CP/M BIOS returns to
the task block processor, the 8085
registers are stored in the task block
area. The possibly updated CP/M
low-memory environment is saved
again in the task block area. The
CP/M-86 environment is rebuilt in
low memory. Then the 8088 is allowed
control again so it can use the infor-
mation which the 8085 built in the
task block area. When the 8085 next
wakes up, it will begin processing by
jumping back to NXTCMD.

The CP/M Reboot Program

Listing three (BOOT80.A86) is a pro-
gram that runs on the 8088. It will
cause CP/M-86 to terminate and
CP/M to be warm booted. This pro-
gram is quite short, but contains an
interesting trick. A task block is built
(in the task block area) which uses
the task code FF to request that the
8085 task block processor warm boot
CP/M. The trick is that this program
must leave the 8088 executing at a
known address so that, if CP/M-86 is
restarted, the 8085 can write a restart
vector into memory. As mentioned in
the text box of page 28, 1 have used
the convention that the 8088 will al-
ways start executing again at absolute
address 10 (hex). It seems obvious
that the way to leave the 8088 exe-
cuting at address 10 is to put at
address OE a 2-byte IN instruction
which swaps processors back to the
8085. However, the 8088 hardware
has a feature which is called a fetch
ahead queue (also called instruction
pipeline) for its instructions. This fea-
ture allows the 8088 to look ahead in
memory and ready some future in-
structions for execution, during the

execution of another instruction. This
means that, if an [N instruction were
executed at address OE, the 8088
would already have decoded the in-
struction at location 10. The 8085 will
want to write a different instruction at
location 10, but can’t because the
8088 won't look at it. The way to
solve this problem is to place several
NOP instructions between the IN
instruction and location 10. That way,
the fetch ahead queue fills up with
the NOP instructions, and the 8088
does not decode the instruction at
location 10 until the 8085 has had a
chance to write something there. This
was one of the trickier problems to
figure out when debugging these
programs.

SYSTEM REQUIREMENTS
FOR INSTALLING
THESE PROGRAMS

e CP/M 2.2 computer system.

You must have CP/M 2.2 working in
your computer using the CompuPro
CPU 8085/88 (or Macrotech MI-286
— see the text box on page 13) as a

processor board. The BIOS code
must not use any interrupt-driven
code because the 8085 will not be
available to handle interrupts when
the 8088 is in control.

® CP/M-86 1.1 distribution disk from
Digital Research.

® CompuPro CPU 8085/88 (or
Macro-tech MI-286) Dual-Processor
board.

The CompuPro CPU board must be
strapped so that both the 8085 and
8088 reset-on-swap switches (labelled
5RS and 8RS on the circuit board)
are OFF, and the extended address
clear-on-reset switch (labelled XAC)
should be ON.

® Recommended minimum 48K
CP/M System.

You will rapidly discover that CP/M-
86 programs tend to eat up core, and
many programs probably will not run
without additional memory boards
(beyond 64K). If you plan to add
memory past 64K, you may need to
upgrade your current memory to
respond to all 24 bits of the IEEE 696
(S-100) bus.

® Prouvision for an 8088 Reset Vector.
5 bytes of Global RAM Memory
(memory which responds to CPU
requests without checking the upper
12 S-100 address bits) at address
FFFO, or, alternatively, an EPROM
installed at address FFFFOQ (or FFFO
if FFFO is global memory) which con-
tains a 5-byte 8088 instruction to
execute a far jump to absolute ad-
dress 0:0. This memory requirement
is necessary to provide a restart vec-
tor for the 8088 on initial power-up
(as discussed in the text box on page
28).

INSTALLATION
INSTRUCTIONS

Installation of these programs (once
you get them typed inl) is fairly simple.
Usually, the only customization that
will be necessary for your system is
to determine where the task block
will reside in memory.

Examine the three source files
(BOOT86.ASM, CBIOS86.ASM, and
BOOT80.ASM). Near the beginning
of each of the files, there is an equate
called IFAREA. In the listings, there is
a constant 0D000OH as part of the

26

calculation of IFAREA. There may be
other terms involved in the calcula-
tion, but the 0DOOOH term is what
you will need to change in order to
make these programs run on your
system.

In each of the source files, the term
0ODO00H should be changed (using
your favorite editor) to become the
base of your CP/M BIOS minus at
least 200 (hex). If you do not know

the base of your BIOS, use the DDT
program to list (L command) the
code at 0 in your system. Take the
address of the jump listed at 0, sub-
tract 3, and you have the base of your
BIOS. Now subtract 200 (hex), and
edit the resulting number into the
source files where it now has 0D000H
in the IFAREA equate. Note that all
three source files must be set exactly
the same!

GLOSSARY

This article contains some of the jargon with which all computer
articles seem afilicted. To help explain some buzzwords, here is a
short glossary.

CP/M (also called CP/M-80)

Control Program for Microcomputers. This is a widely used oper-
ating system provided by Digital Research. It runs on 8080, 280, and
8085 microprocessors.

CP/M-86

This is a version of the CP/M operating system which runs on the
8086 family of microprocessors (8086, 8088, 80186, 80286). Data
files are stored in the same format as CP/M, allowing disk com-
patibility between the two operating systems.

CCP

Console Command Processor. This is the first of three parts of the
CP/M family of operating systems. The CCP is responsible for
processing keyboard input and generating the appropriate calls on
the other parts of CP/M.

BDOS

Basic Disk Operating System. This is the second of three parts of the
CP/M family of operating systems. The BDOS is primarily respon-
sible for maintaining all of the disk structures (directories and files)
and allowing an easy, structured access to the disks. The BDOS will
also make appropriate calls to the BIOS.

BIOS

Basic Input Output System. This is the third of three parts of the
CP/M family of operating systems. The BIOS contains all the drivers
for any hardware devices in a CP/M system. All the machine
dependent code in the CP/M operating system is isolated in the
BIOS. When CP/M is ported (moved) to a new machine, only the
BIOS needs to be rewritten.

DDT

Dynamic Debugging Tool. This is a program supplied with CP/M
which allows users to examine memory and interactively debug
programs.

STAT

Another program supplied with CP/M which allows the user to
configure the current active devices, control some disk parameters,
and generally report system status.

Warm Boot
When CP/M (the 8080 version only) is running, the CCP and BDOS
may be destroyed by a running program in order to gain more useful

$-100 JOURNAL, VOL. 1T NO. 2

If your dual CPU board is set so
that the processor swap port is not
the standard value of OFD (hex), you
will also need to change the equate
for SWAP found near the front of
each source file, No other changes
should be necessary to customize
these programs for your system. You
may want to change some of the
messages (the logon banner is a good
example) in CBIOS86.A86. If you

have more than 64K of memory in
your system, you will want to even-
tually change the segtable memory
table entries in CBIOS86.A86. Seg-
table entries were briefly discussed
above in the description of the CP/M-
86 BIOS. The CP/M-86 Operating
System Guide, provided by Digital
Research with CP/M-86, contains
complete information on how to
change the segtable entries.

Warm Boot Vector

zero.
IOBYTE

CDISK

accessed by CP/M.
DPH

DPB

Sector Translation Table

DMA Address

operation.

memory space for running the program. A special BIOS function,
called the Warm Boot, may be called by the program to cause the
CCP and BDOS to be reloaded into memory from the disk.

A special jump stored at address O in the 8080 version of CP/M
which is used to activate the Warm Boot routine in the BIOS. A
program wishing to cause a Warm Boot need only jump to address

A byte of memory which contains the current active device mappings
for CP/M. There are four logical devices in CP/M, the console, the
reader, the punch, and the list device. The IOBYTE allows each of
the four logical devices to be mapped to one of four physical devices
controlled by the BIOS. The STAT program is used to examine or
change the setting of the IOBYTE.

A byte of memory which contains the current default disk being

Disk Parameter Header. A table of information about the disk which
is stored in the BIOS and used by the BDOS. The disk parameter
header contains pointers to a sector translation table, a DPB, and
scratchpad areas for use by the BDOS.

Disk Parameter Block. Another table of information about the disk
which is also stored in the BIOS and used by the BDOS. The DPB
contains several fields which determine the storage capacity of the
disk, how many directory entries the disk can contain (and therefore
how many files), and some other information which allows disks of
varying capacities and capabilities to be used by CP/M.

A table which is used by CP/M to convert logical disk sector
numbers into physical disk sector numbers. The physical sectors of
a disk are usually numbered consecutively on each track. In order to
minimize rotational delays when accessing disks, it is usually
necessary to avoid accessing physical sectors consecutively.
Consecutive logical sectors in a file (as maintained by the BDOS) are
therefore rarely stored as consecutive physical sectors on the disk.
Given a logical sector number, the sector translation table tells how
to find the physical sector on the disk.

Disk Memory Address. The address of a 128-byte buffer which is
used to contain one disk sector on any disk read or disk write

FALL 1985

Assuming that the address equates
are now correctly set for your system,
it is time to assemble the sources.
BOOTB86.ASM is compatible with the
standard Digital Research 8080
assembler (ASM); CBIOS86.A86 and
BOOT80.A86 are compatible with the
8086 assembler distributed on Digital
Research’s CP/M-86 distribution
disks (ASMB86). To assemble and link
the set of programs, perform the
following steps:

ASM BOOTS86

LOAD BOOT86

ASMB86 CBIOS86

PIP CPMX H86=CPM.H86,CBIOS86.H86
GENCMD CPMX 8080 CODE[A40]
ASMB86 BOOT80

GENCMD BOOT80 8080

CPM.H86, ASM86.COM, and
GENCMD.COM will be found on the
CP/M-86 distribution disk.
ASM.COM and LOAD.COM will be
found on the CP/M distribution disk.
Note that the above entire sequence
can be performed while running
under CP/M because Digital Re-
search thoughtfully provides both
CP/M and CP/M-86 versions of
ASMB6 and GENCMD. It would be
inconvenient, to say the least, to
require running ASM86 and
GENCMD under CP/M-86 to bring
up CP/M-86. The filename CPMX in
the above sequence is an arbitrary
choice; you may call it anything you
like. All of the other filenames are
fixed.

Lastly, make sure that your system
is providing for the restart vector
needed by the 8088. Reread now the
system requirements section and the
text box of page 28 to determine how
to provide for the restart vector. If
you will be providing an EPROM with
an 8088 far jump to 0:0, note that the
codes to program into your EPROM
(in hexadecimal) are EA,00,00,00,00.

Your system should now be com-
pletely configured to run CP/M-86.

OPERATING
INSTRUCTIONS

Booting your CP/M-86 system is very
simple with the provided programs.
Under CP/M, execute the command:

27

BOOT86 CPMX.CMD

The CPMX.CMD file is the CP/M-86
system file which you generated using
ASM86 and GENCMD. Note that
since BOOT86 accepts a filename
input, you may command BOOT86
to pick between multiple CP/M-86
versions on a single disk.

After some disk access time, you
will see the CP/M-86 sign-on mes-
sage, followed by a familiar-looking
CCP prompt. You are now running
CP/M-86. Pat yourself on the back,
and play with CP/M-86 for a while.

To return to CP/M-80 at any time,
execute (under CP/M-86) the follow-
ing command:

BOOTS&0

This will warm boot your CP/M-80
system back into memory {make sure
that a disk with your CP/M system
on the system tracks is inserted in
drive A:). You may use BOOT86 and
BOOT80 to swap back and forth
between operating systems as often
as you wish. There is no need to reset
your computer between operating
system swaps.

These programs are set up in a
way that preserves the currently
logged disk across operating system
swaps. This means that if your system
is displaying a B> prompt under
CP/M, it will also display B> after

booting in CP/M-86. The logged disk
is again preserved when using
BOOTS&0 to return to CP/M.

The programs will also preserve
[OBYTE changes across operating
system swaps. If you use STAT to
change the IOBYTE assignments
while running CP/M-86, you will find
that the CP/M IOBYTE also reflects
the change you made.

If you are using another package
besides CBIOS86 to run your 8088, it
will be necessary to reboot (front
panel reset) your computer if the
other package has been executed
since the last reset. This is necessary
so that the 8083 will be in a known
state at the start of BOOT86 execu-
tion. Most likely, it will also be neces-
sary to reset your computer if you
want to run another 8088 application
after running these programs.

TIPS IF YOU
HAVE PROBLEMS

This section is intended to give some
additional guidelines in case these
programs do not work
immediately.

1. Have you ever executed code
on your 8088 before? It is possible
that your 8088 does not work.

Many CPU 8085/88 boards are
shipped with the 8088 set up to run at
8 MHz, and this may be too fast for
your memory boards or other system
components. This could be your
problem. It may be corrected by re-
placing the 8088 crystal on your pro-
cessor board with a slower crystal
(remember that the 8088 uses a crys-
stal three times the desired operating
frequency).

2. Make certain that the IFAREA
equates in all of the source files are
exactly the same!

3. Be sure the switches on your
CPU 8085/88 are set the way that the
above system-requirements section
specifies.

4. These programs have to main-
tain a low-memory (0-100 hex) en-
vironment for CP/M. For almost all
users, this means rebuilding the
IOBYTE and CDISK areas after
every processor swap between the
8085 and the 8088 (since CP/M is not
running, it is not necessary to rebuild
the BDOS jump or the BIOS warm-
boot jump). If your BIOS for the 8085
is using any of the low memory areas,
other than IOBYTE and CDISK, you
will probably have problems. To verify
if this is the case, edit your
CBIOS86.A86 file to change the

e e e e e UL e R S .]
r—

equate for SAVLOWMEM to “true.”
This will cause the CP/M-86 BIOS to
save and restore all 256 bytes of the
low-memory area. Now go through
the installation steps again and try
running the system. You will notice a
substantial reduction in the operating
speed of your system. But, if the
problems go away, then they are
caused by your 8085 BIOS using
some of the low-memory areas.

The reduction in operating speed
makes saving all 256 bytes an undesir-
able long-term solution. The best
solution is to rewrite the 8085 BIOS,
so that it does not use any low-mem-
ory areas except the IOBYTE and
CDISK. Another possible solution is,
first, to determine the addresses that
need saving and restoring. Second,
edit the BOOT86.ASM file to save
and restore those locations in a man-
ner similar to the way that the
IOBYTE and CDISK are handled
(this requires some skill with 8080
assembly language).

5. Have you correctly provided for
an initial starting vector for the 8088
as detailed in the system require-
ments?

6. If you have created a very large
version of your CP/M-86 BIOS, you
may need to change the ORG 6000H
statement in BOOT86.ASM.
BOOT86 assumes that the last ad-
dress of the CP/M-86 BIOS will be
less than 6000H. If it is more than
6000H, then a portion of the BOOT86
program will get clobbered when
CP/M-86 is loaded in. If the last
address of the CP/M-86 BIOS is
greater than 6000H then change the
ORG 6000H statement in BOOTS6.
ASM to be anything greater than the
last address of the CP/M-86 BIOS.
But, it should still be small enough for
your CP/M loader to be willing to
load it (small enough so that it loads
below the BDOS in your system).

SUGGESTION FOR
ENHANCEMENT

You may notice that your newly-
running CP/M-86 system is slower
than your CP/M system. This is large-
ly due to the CP/M-86 BDOS which

30

runs a lot more slowly than the CP/M
BDOS. Swapping microprocessors
back and forth to do [/O operations
does cause some additional overhead
processing which may further slow
down CP/M-86. To eliminate some of
the swapping overhead, you can
begin to rewrite portions of your
BIOS in 8088 assembler and to incor-
porate them directly into the
CBIOS86.ASM file. One easy change,
likely to have a noticeable effect, is to
rewrite your console output driver.
Typically the console output driver is
a very easy portion of the BIOS to
rewrite.

APPLICABILITY TO
OTHER MACHINES

While the programs presented here
are specifically tailored to the Compu-
Pro Dual CPU, the idea of using a
BIOS task block interface should be
generally useful with any dual-proces-
sor board. For example, the same
approach could be taken to bring up
CP/M-68K on the Z80/68000 dual-
processor board made by Cromem-
co. This approach might also be use-
ful to someone running a Zenith Z-100
which uses an 8085 and an 8088.
Operating systems like MP/M 816
(furnished by CompuPro) use similar
techniques in reverse — the 8088 is
used as an [/O processor for the
8085. Using the 8088 as an [/O pro-
cessor has an additional advantage
because the 8085 BIOS becomes very
small, allowing a larger CP/M tran-
sient program area.

CONCLUSION

This article has shown a way to
bring up CP/M-86 on older S-100
computers. The method presented
can result in considerable savings in
cost, time, and effort over alternative
methods of getting into 16-bit proces-
sing. The running system generated
with this method is suitable for long-
term use. It is also suitable for use as
a bootstrap to other implementations
of 16-bit operating systems. The most

difficult part of upgrading to a 16-bit
operating system — getting the initial
systemn to work — has been greatly
simplified. -

References

1. Bray, David W. Upgrading Older
S-100 Computers to the CompuPro
Dual Processor. Microsystems, Vol.
4 No. 9, September 1983; page 80.

2. Ratoff, Bruce R. The Godbout Dual
Processor Board and CP/M-86.
Microsystemns, July/August 1981,

3. Kalish, Richard L. Upgarade Problems
and Solutions. CompuPro Product
Users Manuals, Vol. 2, January/
September 1981; page 4.

4. Heywood, Stephen A. The 8086 —
An Architecture for the Future.
BYTE, Vol. 8, No. 6, June 1983;
page 450 (part 1). BYTE, Vol. 8, No.
7, July 1983; page 299 (part 2).
BYTE, Vol. 8, No. 8, August 1983;
page 404 (part 3).

$-100 JOURNAL, VOL. 1 NO. 2

The Macrotech MI-286 Dual Processor Board

Although this article was originally written with
the CompuPro 8085/88 Dual Processor in mind,
through the good will of S-100 Journal and
Macrotech | recently had the opportunity to test
my program for a few hours with the Macrotech
Mi-286 Dual Processor. (The Macrotech Ml-286
uses an Intel 80286 and a Zilog Z80 combination
and is advertised as a direct plug replacement for
the CompuPro Dual Processor.)

Since the MI-286 manual said that it came pre-
configured as a CompuPro replacement, | pulled
out my CompuPro board, put the Macrotech
board in, and hit the power button. | was gratified
to see the system boot CP/M 2.2 as usual. Next |
tried running the BOOT86 program to fire up
CP/M-86. My system crashed. | hit the reset
button and tried it again, and this time CP/M-86
booted up and ran! A few more tries showed me
that the system was a littie flaky. | had been afraid
of this because my memory boards are older 8-
bit-only boards and | thought they might not be
fast enough for the 80286. However, Macrotech
had the foresight to also lend me the V-RAM, a
512K-byte static RAM board. | flipped through the
V-RAM manual, configured the V-RAM board for
512K of system memory at address zero, yanked
out my RAM boards, and put in the V-RAM.
Power on, run BOOT86, and I've got a reliably
running system!

| spent a little bit of time playing around with
CP/M-86 and marvelling at the extra speed of the
Macrotech board. The MI-286 has LEDs which
show which processor is active. It was really fun
to try different things and watch the relative
brightness of the Z80 and 80286 LEDs shift back
and forth.

| then ran BOOT8O0 to switch back to CP/M and
decided to run BOOTB86 again to make sure that
the restart vector worked. Oops, crashed again. A
couple of retries convinced me that this was a
software failure. A little more thinking and the
answer came to me — I'd been bitten by the fetch-
ahead queue again. The 80286 has a much larger

Dear Macrotech,

fetch-ahead queue than an 8088, and the 80286
was reading the restart vector before the Z80
could write it. The fix is simple and is left “as an
exercise for the reader.” For the time being, |
decided to just live with having to reset the
computer every time before booting CP/M-86.

About this time, | decided to read the MI-286
manual more thoroughly, and discovered that |
could enable memory wait states. This sounded
like just the thing | needed to use my older
memory boards. A quick jumper change and a
couple of board swaps later | had a reliable sys-
tem using my older memory boards.

| also wanted to get some idea of how much
faster the MI-286 was than the 8085/88. For a
simple test, | put both CBIOS86.A86 and
ASM86.CMD on my Digital Research RAM disk
and assembled the BIOS. | got the following
results (hand timed with a stopwatch):

MI-286 with Macrotech 16-bit memory 15 seconds

MI-286 with my 8-bit memory 28 seconds
(1 wait state)

Mi-286 with my 8-bit memory 21 seconds
(O wait states)

CompuPro CPU 8085/88 27 seconds

The above table shows that the system RAM has
an enormous effect upon the system perform-
ance. To use the Mi-286 effectively, you should
plan on using it with 16-bit memory boards.

| also became curious about how much per-
formance degradation was incurred by using the
Z80 to drive the BIOS routines as opposed to
having true CP/M-86 BIOS routines. Recently, |
broke down and bought and installed CP/M-816
from Viasyn. | tried booting CP/M-816 using the
MI-286 with the Macrotech memory board and it
worked perfectly. | then tried the above timing
test and found that the assembly took 14.5
seconds. This is only slightly faster than the
CBIOS86 approach and may in fact be within the
error limits of hand timing.

Your boards were wonderful to use and very fast. | truly hated to ship them back to
S-100 Journal. Since they are technically used equipment now, would you consider
selling them to me inexpensively? Pretty please?

Howard Spindel

FALL 1985

13

