’ n

‘ \ !
‘ ;{ Oq OSBORNE/McGraw-Hill
"

| |

? | | ;

" interfacing to

' $-100/1E 5696
mlcmcompu ers

;{
i et SIOC/IEEE 6961
f C 300 ERE ~ microcompute

intémC"ing 1O |
- S-1OO/IEEE 696

S Aoh M prCOmPUTQI S
’ - micr

SO Sol Libes
Mark Garetz

. P
e btk PO B e .

Interfacing to

S-100/ [EEE 626
microcomputers

Sol Libes
Mark Garetz

OSBORNE/McGraw-Hill
Berkeley, California

Published by
OSBORNE/McGraw-Hill
630 Bancroft Way
Berkeley, California 94710
US.A.

For information on translations and book distributors outside of the U.S.A,
please write OSBORNE/McGraw-Hill at the above address.

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Copyright © 1981 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

1234567890 DODO 8987654321
ISBN 0-931988-37-3

Technical editor for this book was Curtis A. Ingraham.
Copy editor was Erfert Nielson.
A technical review was completed by Lee Felsenstein.

Cover design by Marc Miyashiro.

Mine of Information Lid.,
1 Francis Averue,

St. Albans AL3 &BL
ENGLAND

Telepho - ~~"7 50804

acknowledgements

Mark Garetz wishes to thank Richard Frank of Sorcim for midnight software
advice, Bill Godbout and the engineering staff of the CompuPro Division of Bill
Godbout Electronics for many design ideas, and Howard Fullmer and George Mor-
row for starting the S-100/IEEE 696 Standard effort.

Sol Libes gratefully acknowledges the assistance of the following individuals:
Dr. Alan Katz of Trenton State College; Dr. Robert Stewart, Chairman of the IEEE
Computer Committee; Howard Fullmer, Chairman of the IEEE 696/S-100 Stan-
dard Committee; Lee Felsenstein of Osborne Computer Corporation; Curtis
Ingraham and Denise Penrose of Osborne/McGraw-Hill.

contents

PREFACE «xi
INTRODUCTION xiii

HOW TO USE THIS BOOK 1

What This Book is About 1. What We Assume You Know 1. A Word About
Software 2. Logical and Electrical State Relationships 2. The Pitfalls of Building Your Own
Circuits 3. Useful Equipment to Have 4. Prototyping Boards 4

A Brief History of the S-100 Bus 5. The IEEE Standard for the S-100 Bus 6. Mechanical
Description 7. The Motherboard 8. Bus Masters and Slaves 9. S-100 Signal
Groups 10. Power Supply Interfacing 15

2 THES-100BUS 5

3 THE S-100 BUS SIGNALS IN DETAIL 19

The Address Bus 19. The Data Bus 20. The Status Bus 21. The Control Output
Bus 24. The interrupt Bus 28. The TMA Bus 29. Utility Signals 30. Power and
Ground 33. NDEF Lines 33. RFU Lines 33. Old S-100 Signals 34

4 $-100 BUS TIMING RELATIONSHIPS 39

Interfacing to S-100 Computers 39. Bus States and Bus Cycles 39. The Basic Bus
Cycle 40. The Read Cycle 43. The Write Cycle 44. The Interrupt Acknowledge

Cycle 45. Why TMA Timing Won't Be Explained Yet 45. The Basic Bus Cycle with Wait
States 45. sXTRQ= and SIXTN= Timing: 16-Bit Data Transfers 47

vii

DECODING AND BUFFERING 51

Interfacing to S-100 Computers 51. Buffering 51. Open Collector
Drivers 56. Decoding 57. Strobe Qualifiers 77. Data Bus Buffering 80. Wait State
Generators 83. How to Apply this Chapter to the Rest of the Book 85

Some Common RAMs and their Arrays 90. Bank Select 104

I/0 PORTS, AN INTRODUCTION 107

The Concept of a Port 107. Handshaking — Strobes and
Status 111. Channels 112. Latching the Data 113. Programmable I/O PortICs 115
Other Programmable Port ICs 119

PARALLEL INTERFACING 123

Simple Parallel Output and Input Interfaces 123. Handshaking Interfacing 125.
Memory-Mapped I/0 131

6 MEMORY INTERFACING 89
9 INTERFACING TO THE REAL WORLD — INPUT 135

Inputting from Switches 135. Debouncing Switches 141.. Interfacing to Keyboards and
Switch Arrays 144. Interfacing to Encoded Keyboards 148. Light Sensors 148. Other
Types of Sensors 151. Isolating Inputs 153. Isolating Logic Systems 156

lo INTERFACING TO THE REAL WORLD — OUTPUT 159

Interfacing to LEDs and Lamps 159. Driving Relays 163. Control of DC Power
Devices 163. Control of AC Power Devices 165. Control of Motors 168. Driving Stepper
Motors 170. Generating Sound 172

INTERFACING TO SERIAL PORTS 175
The UART 177. Programmable Baud Rate Clocks 184. Peripheral Serial Interfaces 185

2 DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 193
Digital-to-Analog Conversion 193. Analog-to-Digital Conversion 201

INTERRUPTS 217
Advantages and Disadvantages of Interrupts 220. The S-100 Interrupt Lines 220.
Microprocessor Interrupt Characteristics 221. 8080 Interrupt System 221. 8085 Interrupt
System 233. Z80 Interrupt System 234. Polled Interrupts 234. Making Use of
Interrupts 237. Power Failure Interrupt 238

Programmable Counter/Interval Timers 240. Applications of Programmable

14 PROGRAMMABLE TIMER/COUNTERS 239
Timer/Counters 246

MASTERS 255

TMA Techniques 258. Multimasters 259. S-100 TMA Controller Circuit 262. Dummy
Mastering 272. Multiprocessing 272. Multiprocessing Systems 274

l TEMPORARY MASTER ACCESS AND TEMPORARY BUS

CONTENTS I'x

l SOME USEFUL CIRCUITS 275

Adding LEDs to Monitor S-100 Signals 275. A Single Stepper 276. A Hardware
Breakpoint Trap 277. An ERROR= Trap Circuit 279. A Jump-on-Reset Circuit 279

17 CIRCUITS NOT COVERED IN THIS BOOK 283

APPENDICES

ASCIll Character Codes 285

Hex, Decimal, Octal, Binary Conversion 286
Memory Addressing, Hexadecimal/Decimal 287
8080/8085 Instructions 288

280 Instructions 290

S-100 Bus Electrical Specifications 292

IEEE S-100 Standard 293

OMmMmogO®m>

INDEX 319

preface

SCHEMATIC SYMBOLS

The schematic symbols shown on the left in the following diagram are the ones
used in this book.

+5V
ic1 c2 1c1 D7 07 1c2
8 06 D6
07-00 07-DO means o5 05 —) means 51k()
0a D4
03 03
D2 D2
D1 D1
DO DO

means

L

A2 A1 AO A2 AY AQ A2 A1 AO

——{A2-A0 —< A2-A0 74— A2-A0 means

Xi

XJi INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

BACKGROUND

For an in-depth discussion of the 8080, 8085, and Z80 microprocessors,
hardware, timing, peripheral ICs, etc., it is recommended that the reader consuit
An Introduction to Microcomputers: Volume 2 — Some Real Microprocessors and
Volume 3 — Some Real Support Devices, by Adam Osborne (Berkeley: Osborne/
McGraw-Hill, 1980).

For an in-depth discussion of the 8080A/8085 and Z80 instruction sets and
programming techniques, the reader should consult 8080A/8085 Assembly
Language Programming and Z80 Assembly Language Programming, by Lance
Leventhal (Berkeley: Osborne/McGraw-Hill, 1979).

The purpose of this volume is to build on the foundation presented in those
books and show numerous examples of actual interfaces to the S-100 Bus.

A word of caution: The hardware and software examples shown are for
illustrative purposes only and are not intended to necessarily be the most efficient
or practical for any given application.

Ntroduction

In early 1975 MITS Inc., an Albuquerque, New Mexico electronics manufac-
turer (since purchased by Pertec Computer Corporation), introduced the ALTAIR-
8800 microcomputer, using the 8080 microprocessor. The unit was an immedi-
ate success and many manufacturers subsequently used the Altair Bus in their
computers. These manufacturers renamed the bus the S-100 Bus, since it used
100 signal lines. Today there are over 200,000 S-100 systems in operation.

S-100 systems are so popular because of the many advantages they offer
users. Here are some of those advantages:

1. Processor independence. There are presently manufacturers of eight
different 8-bit CPU boards (8080A, 8085, 280, 2650, 6502, 6800,
6802, and 6809) and seven different 16-bit CPU boards (9900,
LSI-11-like, 8086, 8088, Z8000, 68000, and Pascal Microengine)
for S-100 systems. No other computer system offers such a variety
of CPU architectures.

2. More software available. There are several times as many languages,
operating systems, and applications packages for S-100 based
systems as there are for any other computer system.

3. Greater hardware support. There are close to 100 different
manufacturers of about 400 different plug-in boards for S-100
systems. This is far greater than for any other computer system.

4. Greater computer power. S-100 systems offer the greatest computer
power of any microcomputer system. No other microcomputer
system has direct addressing of up to 16 Mbytes of memory (24
address lines) and 64 K I/0 ports (16 address lines), up to 10 vectored

xiii

XiV INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

interrupt lines, up to 16 masters on the bus (with priority), up to 23
plug-in slots on the motherboard, up to 10 MHz data transfer rate,
plug-in operator front panel, and more.

5. Standardization. The S-100 Bus most likely will be standardized by
publication date. This assures a very high degree of compatibility
among future plug-in circuit boards from different manufacturers.

The S-100 Bus thus offers a combination of hardware and software power,
flexibility, and economy far greater than any other system currently available. This
book is written to assist S-100 system users in expanding the power and utility of
their systems.

how 1o use this boock

WHAT THIS BOOK IS ABOUT

This book exists for two distinct purposes. One is to give the user of S-100
systems an understanding of how S-100 hardware systems function. This we
hope to accomplish by explaining in simple terms exactly what is happening on
the bus — what the signals mean and their relationships to one another. We will
also present a large number of circuits and explain their operation. Similar circuits
can be found in all S-100 systems.

Secondly, this book gives the builder a set of tools with which to design and
build custom S-100 circuits. To do so, the builder must be able to understand all
the things mentioned above. We will present a lot of ““cookbook’’ type circuits
that may be combined to form simple and complex S-100 interfaces. We will also
explain why certain things need to be done in certain ways, due to the nature of
the S-100 Bus.

This book does not attempt to show you how to build your own computer from
the ground up. We assume that you already own an S-100 system (or are thinking
of purchasing one) and wish to expand the system internally or externally via
interfaces.

WHAT WE ASSUME YOU KNOW

This book would have to be several volumes if we had to explain everything
about digital logic, computers, programming, and construction techniques.
Therefore we are going to assume that you aiready possess certain knowledge. If

7

2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

you don’t possess that knowledge, then we will recommend texts that you may
consult.
In order to make full use of this book, we assume —

1. you understand standard logic functions such as AND, NAND, OR,
NOR, XOR and the like. As a corollary to this we assume you know
how to find these functions in standard TTL family gate packages,
such as 74LS00, 74LS08, etc.

2. you understand some basic electronic concepts. For example, the
term “‘signal line’’ shouldn’t throw you. We will also assume that you
know how to read a schematic diagram.

3. you have some basic knowledge of computers and programming. We
expect you to be able to follow the flow of a program. We also
assume you are familiar with assembly language programming, at
least to the point of knowing what a label is and being able to look up
machine codes in a table of op-code mnemonics (especially if you're
going to attempt hand assembly).

4. you have the technical skills to build any of the circuits in this book, if
you intend to do so. If you still haven’t figured out how the pins on an
IC are numbered, you'd better buy all your S-100 boards from a
manufacturer that has already done the designing and building for
you. We will also assume that you are capable of taking two different
functional blocks, presented in schematic form, and combining them
to perform a more complex function.

A WORD ABOUT SOFTWARE

Very little computer hardware is useful without some software to go with it. In
this book, we will give you software routines to go with the hardware. They will be
written in 8080 assembler code. Many other processors are available for the
S-100 bus, and not all of them execute 8080 code. Therefore we will also pre-
sent a flowchart for each non-trivial program so that you may readily convert the
code for your particular processor.

LOGICAL AND ELECTRICAL STATE RELATIONSHIPS

The IEEE standard uses a new notation for logical and electrical state relation-
ships which is convenient with word processors. The overbar is no longer used to
indicate an active low signal state because it is difficult for many word processors
to type it. The suffix ““#’" is used instead to designate that an electrical signal is

Chapter 1: HOW TO USE THIS BOOK 3

active low. For example, the S-100 signal “sWO#"’ is the status signal that indi-
cates a write cycle, and is active (true) when the sSWO# line is low. The presence
or absence of the asterisk suffix describes the electrical implementation of a
signal.

The minus sign () prefix is used in logic equations to indicate the logical
(Boolean) negation operator. It is equivalent to the use of an overbar. For example,
"—sOUT" indicates that the logical signal sOUT is negated (inverted), irrespective
of the electrically active state of the sOUT signal line. —sOUT would therefore
indicate that the S-100 Bus is not in an sOUT state.

The """ is pronounced *“star’” and ‘-’ is pronounced ‘‘not."”

THE PITFALLS OF BUILDING YOUR OWN CIRCUITS

A word or two of caution is needed here if you intend to construct some of the
circuits presented in this book. Most, if not all, of the functions that we will pre-
sent are obtainable on products already commercially available. Therefore, it is not
always necessary to build the circuit yourself.

There are many reasons people choose to build their own circuits: money,
experience, and pride, to name a few. It is more than likely you won’t save much
money by building your own. The components cost is often higher for a home-
made project than for a commercially available one.

Then there is the problem of debugging. There is always the chance that you
will make an error in construction that will cause you to spend many long and
frustrating hours trying to figure out why your circuitry doesn’t work, and of
course there's no warranty or manufacturer to help you.

There is also the problem of time. If you have lots of free time to tinker with cir-
cuits, then time may not be a problem for you. But if you are like most of us,
chances are your spouse thinks you spend too much time with the computer
already. We don’t want to be responsible for breaking up any marriages. (Imagine
how much time it would take to wire-wrap a 32 K memory board — that’'s 64
chips, each with 18 pins, each of which needs a wire, which makes 1152 con-
nections; and then there’s the support circuitry, connections to the bus. . . Get the
picture?)

If you're the kind of person who just can’t be satisfied unless you can proudly
say, "l built it all myself!” or if you are looking to gain some valuable hands-on
experience with computer hardware, then start warming up your soldering iron.

The last reason that you may wish to build your own hardware is that you may
need just one little circuit, but a manufacturer’s product gives you 16 of the same
or throws in a lot of extra features you don’t need. Then, by all means, build just
what you need.

Please don't be put off by this lecture, but having been through it ourselves, we
thought we owed you the warning. Good luck!

4 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

USEFUL EQUIPMENT TO HAVE

You will need the basics: soldering iron, wire-wrap tool, pliers, screwdrivers,
multi-meter, and the like. But some other equipment might be useful to have
around.

There is nothing like having access to a multiple trace oscilloscope with at least
10 MHz bandwidth, but you may be able to get by with a logic probe. Having an
S-100 extender board (something that elevates the board under test above the
level of the rest of the boards, while still leaving it connected to the bus) will be
invaluable. Mullen Computer Products makes an extender board that also has a
built-in logic probe. This is probably one of the most valued possessions of the
avid hardware type and is a great timesaver.

One of the most useful products on the market is a calculator called the Tl Pro-
grammer. It is manufactured by Texas Instruments and can do arithmetic not only
in decimal, but in hexadecimal and octal too. It's worth the price just to be able to
convert a decimal number to hex with a single keystroke. Not only does it perform
the four standard arithmetic functions, but it also does ANDs, ORs, XORs, shifts,
and one’s and two’'s complements. It's really a handy device to have around.

PROTOTYPING BOARDS

If you intend to construct any of the circuits in this book, you will have to do it
on a product known as a “‘prototyping board’’ (proto board). There are many
manufacturers of S-100 proto boards and each proto board is different. Some
have etched areas for voltage regulators (some even have some bus interface cir-
cuitry), some have power and ground traces gridding the board, some have no
traces at all, and some are just plain copper laminate so you can etch your own
traces. Choose the board design you like best by comparing them to one another.
If you have no way of doing that, Vector Electronics makes a complete range of
S-100 proto boards.

the S-100 bus

A BRIEF HISTORY OF THE S-100 BUS

This whole thing got started in late 1974 when the Mark 8 series of computer
construction articles appeared in Radio-Electronics magazine. It was the first time
a computer had been put within reach of anyone but a large company. The Mark 8
was based on the Intel 8008 and was not an S-100 Bus computer. The response
to the articles was tremendous.

Not wanting to fall behind the competition, Les Solomon, an editor of Popular
Electronics, decided that it too should have a computer article. He suggested to Ed
Roberts, then the president of a small company called MITS, that they come up
with a computer kit. Ed agreed, but they decided to base the computer on Intel’s
new 8080 chip. Thus the MITS Altair was born. The first Altair article appeared in
the January 1975 issue of Popular Electronics. It had a bus that used a 100-pin
edge connector (it was chosen because MITS made a good surplus buy on them).
It was called the Altair Bus.

Being one of the first microcomputers out, the MITS Altair had many
shortcomings. A company called IMS Associates, Incorporated (IMSAI) decided
that they could do a much better job than MITS had done, and thus the IMSAI
8080 was born. Luckily, IMSAI decided to ‘‘second source’’ the Altair and
designed their computer with the same bus.

Many other companies sprang up advertising add-on boards for both com-
puters, so the bus became known as the Altair/IMSAI Bus. More companies
decided to jump on the bandwagon with bus-compatible computers, but each
wanted to tack its name onto the bus name as well. The situation was getting out
of hand.

5

6 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

|

Roger Mellen, one of the principals of a then small company named Cro-
memco, decided that a generic name was needed for the bus. His idea was to call
it the “*Standard 100" Bus, or S-100 for short, because it had 100 pins. The
name caught on.

THE IEEE STANDARD FOR THE S-100 BUS

All the various S-100 manufacturers had adhered to the bus pinout fairly well,
with only minor variations. Although the signal names were the same, the timing
relationships varied from manufacturer to manufacturer. This created lots of
problems for people trying to get Brand X board to work with Brand Y board, etc.
Something had to be done.

A few S-100 designers decided to write up a proposed standard and submit it
to the Institute of Electrical and Electronic Engineers, Inc. (IEEE) standards com-
mittee for approval. They wrote up a proposed standard and passed it around to a
number of S-100 manufacturers for comments. Many were made and many were
incorporated into the proposal. The IEEE agreed to the proposal for a standard and
an S-100 Standard Committee was formed.

The S-100 committee made several significant additions to their draft stan-
dard for the S-100 Bus, which we will cover in detail later. But their most impor-
tant accomplishment was that there now existed a reference that not only defined
the signals present on the bus, but also specified their timing relationships to one
another. A draft of the proposed standard, ‘“Standard Specification for S-100
Bus Interface Devices,” |EEE Task 696.1/D2, was published in the July 1979
issue of Computermagazine. The document which the |EEE uitimately approves is
certain to contain changes. As this book goes to press (May 1981) the |IEEE 696/
S$-100 standard has still not been approved. The final meeting of the standard
committee will take place on June 30, 1981. This book will follow the draft stan-
dard, but incorporate changes in terminology (such as DMA to TMA) that have
met with no resistance from committee members and are likely to be included in
the final version of the standard.

One of the main criteria of the committee was that any change or upgrade they
niade to the S-100 Bus should not make obsolete any existing S-100 boards.
However, they did make a few changes, and we will explain the differences be-
tween the old and the new as we encounter them.

By now the standard is becoming known by its IEEE task number — 696. The
phrase “IEEE 696 compatible’’ may soon replace the phrase “S-100 compati-
ble.”

Please note that throughout this text we use the terms “‘the |IEEE Standard,”
“‘the IEEE S-100 Standard,” ‘‘the S-100 Standard,”” and ‘‘the standard.”” By all
these names we mean the same thing: the proposed standard.

Chapter 2: THE S-100 BUS 7

MECHANICAL DESCRIPTION

The standard S-100 circuit board is 10 inches wide, typically 5.3 inches high
and 0.062 inches thick. A typical board is shown in Figure 2-1. It connects to the
motherboard via a 100-pin edge connector. The pins are spaced on 0.125 inch
centers. The connector is offset so that with the connector down and the compo-
nent side of the board facing you, the edge connector is to the left of center, as
shown. This helps to prevent the card from being inserted backwards into the bus
connector.

Note that connections 1 through 50 are on the component side of the board
{(with pin 1 on the left) and pins 51 through 100 are on the solder side of the
board {with pin 51 directly behind pin 1).

0.080
0 M — —_—
5.125 Max 500 Max ™ 5071

0125

] 0245 Min 0125 Max le— 0.740 Min
0255 l L

2120
= Dia ikt
0170
2130 0.005 Max

Misalignment of
4495
3505 7_ N
Center Line 50 positions
of Pin 60 0.125 spacing

=}
j=}
(=]

o
~
&
@
o
f=3

o
N
o
a

card guides
relative to
connector
center line

0995 Component Side e
Toos P 6368 10000
\ 6375
T Clear 0.125
Area Chamfer
Fingers
0015 - 45”
10020 Break all sharp
9980 0126 Corners
0135

0245
0.100
025% mﬂla
R "“:’j¥ R Ty T o T
0125
0300 Board - 0 75 nominal

0245 —_—] e
0255 0325 Thickness
0062
nominai
General Ci (o] Backp!
Dimensions {Top View) Dimensions

Note: All dimensions are in inches

FIGURE 2-1. S-100 Plug-In Board Mechanical Specifications
(Courtesy Computer Magazine)

8 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

FIGURE 2-2. Typical S-100 Motherboards and Card Frames
(Courtesy Cromemco)

THE MOTHERBOARD

The 100 pins of the S-100 boards are interconnected by plugging the boards
into a ““motherboard.” In its simplest form, an S-100 motherboard is a printed cir-
cuit board consisting of 100 parallel traces connected to any number of 100-pin
connectors. The connectors are soldered to the motherboard and the S-100
boards plug into the connectors. A typical S-1 00 motherboard is shown in Figure
2-2.

More advanced motherboards contain ground traces that are interleaved be-
tween the signal traces to minimize noise and crosstalk. Crosstalk is a signal
induced on one trace by a signal in a nearby trace. Most newer motherboards also
contain ““termination circuitry’’ on all lines except power and ground, which helps
to eliminate ringing. Ringing is a fluctuating signal amplitude which occurs when a
signal is reflected from one end of the motherboard to the other. The termination
circuitry also ensures that any line left unconnected will always be in an

Chapter 2: THE S-100 BUS 9

Bus Line £180 + /o6 v\~

a. f— A A4 + 0.2V, I
+ 59 u

Open Collector
Bus Line

FIGURE 2-3. S-100 Bus Termination Circuits

electrically high state, rather than a random one. A block diagram of recom-
mended termination circuitry is shown in Figure 2-3.

Note that the term ‘“‘motherboard’’ is actually a misnomer. As used in S-100
Bus systems, the motherboard should actually be called a “‘backplane,”” but since
everyone calls it a motherboard, we will too.

BUS MASTERS AND SLAVES

The IEEE Standard has divided the types of S-100 devices into two different
groups: bus masters and bus slaves. Basically, a master is a device that is in con-
trol of the bus (such as a CPU board) and a slave is a device that a master controls
{such as a memory board).

Bus masters can be either of two types: the permanent bus master or a tem-
porary bus master. Every $S-100 system must have a permanent bus master. The
permanent bus master always provides certain signals to the bus (this will be dis-
cussed in more detail in the next chapter).

In addition, an $-100 system may have up to 16 temporary bus masters. A
temporary bus master (such as a TMA controller) can request control of the bus
from the permanent master. If the permanent master grants control, the tempo-
rary master can then access bus slaves. When the temporary master has com-
pleted its task, it will pass control back to the permanent master.

This whole process of transferring control is quite involved, so for now just
assume your system has only a permanent bus master. We will explain the whole
process in Chapter 15 under Direct Memory Access.

10 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

In most S-100 systems the permanent master is the CPU board.

The other type of S-100 device is the slave. Slaves generally accept data from
and send data to the bus master. What they do with the data or what kind of data
they have collected is up to your imagination. Typical bus slaves would be
memory boards, serial 1/0O interfaces, parallel I/O interfaces, etc. In fact, most of
the circuits presented in this book will be bus slaves.

S$-100 SIGNAL GROUPS

Now we will begin to explain the different groups of S-100 signals. We have
divided them up by function. This is intended to be a brief overview, so we will not
be giving you exact specifications such as pin numbers, instantaneous maximum
power requirements, etc. These will be covered in detail in the next chapter.

These signals are grouped by the standard into eight categories. In this book,
our groupings of the signals will be essentially the same as that of the standard,
but will have a few minor variations. This is because the standard groups the sig-
nals from a purely technical standpoint, and assumes the reader already
understands their basic functions. We have grouped them differently to make
them easier for you to understand.

There are eight bus groups:

Function No. of Lines Used

1. Address 16 or 24

2. Data 16

3. Status 9

4. Control Output 5

5. Control Input 6

6. Interrupt 10

7. TMA Control 8

8. Utility 22

The Address Bus

The address bus, shown in Figure 2-4, is used by the system to determine
where memory and I/O devices are located in the ‘address space.”

The old S-100 Bus had 16 address lines for memory (AO-A15). The standard
specifies eight additional memory address lines, bringing the total to 24 (AO-
A23). With 16 address lines, the maximum amount of directly addressable

Chapter 2: THE S-100 BUS 7 7

Bus Master Pin No.

A23 F— 64
A22 p——8 63
A21 p——=_f>» 52
A20 b—® 61
A19 pb——» 59
A18 F—®» 15
A17 17
Al16 [————: 16
A15 f—— 32
A14:: 86
At3 85
A12 — 33

A1 :: 87
A10 37

Extended
Address Bus

Address Bus

FIGURE 2-4. The S-100 Address and Extended Address Bus

memory was 65,536 bytes. Now the total is 16,777,216 bytes, or approximately
16 megabytes. Upper-case K is often used in the computer field to represent the
number 270 = 1024. Thus 65,5636 is equivalent to 64 K, because 65,536 = 216
= 26 X 210 = 64 K. Do not confuse upper-case K (210) with lower-case k, which
always means 103.

The old S-100 Bus also used only eight lines for /O addresses (AO-A7), and
therefore could address only 256 I/0 ports. The standard states that a system
may utilize 16 1/O address lines (AO-A15), bringing the number of ports to
65,536. The address lines originate from the current bus master.

The Data Bus

The S-100 Bus has two 8-bit data paths, as shown in Figure 2-5. One is called
the data output bus and the other is called the data input bus. The direction of
data flow is always relative to the current master. Therefore, the data output bus
would carry data going from the master to a slave (as while writing to memory),
and the data input bus would contain data going to a master from a slave (as while
reading from memory).

12 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

a. Bus Master S-100 Bus b. Bus Master $-100 Bus
Pin No. Pin No.

DI7 F‘__. 43 D15 f-l—» 43
é’ DI6 fuggq—— 93 (014 Lag— 93
@ DI5 jeag—— 92 D13 fet—p» 92
2/ D4 lt—— o1 D12 jag—p 91
£ D3 pag—— 42 D11 fag— 42
e Di2 ’q— 41 D10 jgt—p 41
S8 { DI feg—— 94 D9 fg— 94

DIO j¢——— 95 D8 j-t—p» 95

Bidirectional
Data Bus
N

» ¢DO7hH—® 90 D7 j-@—d» S0
3 DO6 ——#» 40 D6 jeag—p» 40
] DO5 —» 39 D5 j-—8» 39
2) DO4 — 38 D4 -—P 38
3) DO3 }——m 89 D3 jeg—» 89
g DO2 —#» 88 D2 j=@—p 88

DO1 ——® 35 D1 35
o

DOO ——i» 36 \ DO ﬁ‘—» 36

Control

{SXTRQ“ ——8 53
SIXTN+* fag—— 60

non

Control

a. 8-bit unidirectional buses when sXTRQ#* = 1 and SIXTN* = 1
b. 16-bit bidirectional bus when sXTRQ#* = 0 and SIXTN* =0

FIGURE 2-5. The S-100 Data Bus

When the S-100 Bus was first designed, only 8-bit CPUs were envisioned. But
the standard now provides for 16-bit CPUs. In this case, the data input and data
output buses are combined to form a 16-bit data bus that is bidirectional. That
means that data can flow in either direction on the bus (the direction depends on
the type of cycle being executed). Two new signals were defined to tell slaves and
masters whether to use 8- or 16-bit data buses. These two new signals are
SIXTN# and sXTRQ#*. We will talk more about them later.

The Status Bus

There are eight status lines on the S-100 Bus. From the information contained
on these lines, any device in the system may determine what kind of bus cycle the
master is currently in. For example, the line SMEMR is a status signal that says the
current cycle is a memory read cycle. Bus cycles will be discussed in later chap-
ters.

A slave device can look at the address and status lines to determine if it should
respond.

The mnemonics for status lines begin with a lower-case s. Since the S-100

Chapter 2: THE S-100 BUS 73

Bus was originally used with the Intel 8080 microprocessor, many of the status
and control line mnemonics come from the Intel data sheet. The status lines are:

sMEMR Memory read

sM1 Op-code fetch

sOUT Output

sINP Input

sWO# Memory or output write
sINTA Interrupt acknowledge
sHLTA Halt acknowledge

sXTRQ#» 16-bit data transfer request

The Control Qutput Bus

The control output bus is a group of signals that tell the system when to do
things. They are also known as “‘strobes.”” They differ from the previous signals
(address, data, status) in that these other signals contain what information. For
example, during a memory read cycle the address bus contains an address that
specifies what memory board, the status bus contains information saying that it's
a memory read cycle (what kind of cycle), but the control output bus line pDBIN
tells the memory board when to place the data on the bus.

There are five control output signals with the mnemonics all beginning with a
lower-case p. They are:

pSYNC Indicates start of new bus cycle
pDBIN Read strobe

pWR# Write strobe

pHLDA Hold acknowledge

pSTVAL# Address and status stable on bus

All the signals are generated by the current bus master with the exception of
MWRT. MWRT is generated from pWR#* and sOUT, usually by a circuit on the
permanent master card.

The control output bus lines originate from the current master.

The Control Input Bus

The six signals on the control input bus are generated by slave devices to tell
the current master to do something — wait, for example. Two signals, RDY and
XRDY, do just that. They tell the master to extend the current bus cycle.

The HOLD # signal tells the permanent master to stop what it's doing and relin-
quish the bus to another master. The INT# signal is an interrupt request to the
master from a slave, while NMI# is a similar, but non-maskable, interrupt request.

1 4 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

The last control input signal is SIXTN#. This signal tells the current master that
the current slave is capable of accepting 16-bit data. The control input bus signals
originate from the various slave devices on the bus.

The Interrupt Bus

There are 10 lines on the S-100 Bus used to interrupt the master’s current task
and cause it to do another task — look at the keyboard of a terminal, for example.
They are used mainly in multi-user environments or in critical real-time applica-
tions. The interrupts may originate from any slave device.

The device that wants to look at the interrupts can usually ignore them by a
technique known as ‘‘masking,”’ but there is one interrupt that can’t be masked.
It's called NMi* (for Non-Maskable Interrupt). NMl# is usually used to signal
impending doom, such as an imminent power failure.

The TMA Control Bus

The TMA control signals control the transfer of the bus from the permanent
master to a temporary master and vice versa. The timing relationships and con-
cepts behind the operation of the TMA lines are difficult to understand uniess you
fully understand how the rest of the bus signals work. Therefore, we are not going
to explain them until Chapter 15.

Note: TMA means Temporary Master Access. It is the process whereby an
S-100 temporary master can access a slave (such as a memory board) without
having to use the permanent master’s program. Thus it gains direct access to the
slave, as opposed to the permanent master accessing the slave via a program.

The Utility Bus

The power supply lines and all the other signals on the bus that don’t really fit
into any other single category are all lumped together at the end. However, these
signals are very important to the operation of the system. RESET # is one of these
signals, along with SLAVE CLR+ and POC# (Power-On-Clear).

Also included is the system clock (®) signal. All the S-100 Bus timing is relative
to this master clock signal. Other signals are CLOCK, a 2 MHz clock; MWRT, a
memory write strobe; and PHANTOM«, a line used for bootstrapping.

S-100 computers all require three unregulated voltages. They are +8V +16 V,
and —16 V. They are all referenced to a common ground. Note that these voltages
are nominal values.

All of these lines and signals will be discussed in detail in the next chapter.

Chapter 2: THE S-100 BUS 1 5

POWER SUPPLY INTERFACING

DC power is distributed on the S-100 Bus system as unregulated +8V, +16 V,
and -16 V with respect to ground. Voltage regulator circuitry is generally
employed on each S-100 plug-in card to provide the specific voltages required
and to provide regulation of the voltages. For example, the +5 V required for the
TTL logic ICs is derived from the +8 V bus lines. This is typically done using fixed
voltage IC regulators. For lower current applications that do not require critical
regulation a zener diode type regulator circuit may be employed. The following are
considerations, guidelines, and examples for building these regulator circuits.

Fixed Voltage IC Regulators

The most popular families of regulator ICs currently in use are the 78XX (posi-
tive voltage) and 79XX (negative voltage) families and their LM family equivalents.
The “XX"" in the device number represents the characters used to denote the out-
put voltage rating of the device. For example, the 7805 and LM340-05 are +5 V
regulators.

Most of the IC regulators have internal thermal protection and current limiting
circuits. Each IC regulator is specified for a given output voltage, minimum input-
to-output voltage drop, and maximum output current. Table 2-1 gives the
specifications of the more popular devices. For example, the 78XX series is a
positive voltage regulator capable of handling up to 1 amp with a minimum
voltage drop of 2 V from input to output. The 78XX series is available in either the
TO-3,TO-39, TO-92, or TO-220 packages, as shown in Figure 2-6. Furthermore,
the 78XX series is availablein +5V, +6V, +8V, +12V, +15V, +18 Vor +24 V

TABLE 2-1. Positive and Negative Voltage IC Regulators

Maximum
Type Output Voltages Output Case
Current
78XXCK/LM340K-XX 5.6,8,12,15,18,24 15A TO-3
78XXUC/LM340T-XX 5,6,8,12,15,18,24 1A T0-220
78MXXHC/LM34 1H-XX 5,6,8,12,15,18,24 500 mA TO-39
Positive Voltage 78MXXUC/LM341P-XX 5,6,8,12,15,18,24 500 mA T0-220
Regulators 78LXXHC/LM78LXXCH 5,6,12,15 100 mA TO-39
78LXXWS/LM78LXXCZ 5,6,12,15 100 mA T0-92
78LXXAHC/LM78LXXACH 5,6,12,15 100 mA T0-39
78LXXAWC/LM78LXXACZ | 5.6,12,15 100 mA T0-92
79XXCK/LM320K-XX 2,5,5.2,6,8,12,15,18,24 1A TO-3
. 79XXUC/LM320T-XX 2,5,5.2,6,8,12,15,18,24 1A T0-220
:::jl';;’:rsw"age 7OMHXX 5.6.8,12,15,18,24 500mA | TO-39
79LWXX 5,12,15,18,24 100 mA T0-92
7ILHXX 5.12,15.18,24 100 mA TO-39

7 6 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

TO-3 TO-39 TO-92 TO-220
13 2

Function ” ”
Case 3 Pin
Positive Regulator | Negative Regulator 1.3 2
1 In Common
2 Out Out
3 Common In

FIGURE 2-6. Pin Diagrams for Regulator Packages

output voltage ratings. Hence, the 7805UC or LM340T-05is a +5 V, 1 amp
voltage regulator, in a TO-220 package.

For the +5 V power supply the typical practice is to use one 7805UC IC regula-
tor circuit for each circuit drawing up to 750 mA of current. Therefore, on a plug-
in card where 3 amps are drawn from the +8 V supply, four regulator circuits
would be used with the loads divided equally among them (but five regulators
would be a more conservative design).

A typical +5 V, 1 amp regulator circuit is shown in Figure 2-7. Capacitors C1
and C2 are Tantalum capacitors used to reduce noise. Capacitor C3 improves the
transient response of the circuit under high current changes. C3 is typically
selected to have 100 uF per output ampere. Therefore, in this case a 100 uF,
10 V capacitor was chosen for a 1 amp supply. These capacitors should be
located near the regulator for optimum regulation.

A typical +12 V and —12 V regulator circuit is shown in Figure 2-8. Note that
pins 1 and 3 of the negative voltage regulator, LM320K-12, are opposite that of
the pins of the positive voltage regulator, LM340K-12.

For reliable operation it is important that the regulators remain cool. The +5 V
regulators passing 1 amp of current must dissipate 3 watts each. This requires an
adequate heat sink to conduct the heat away from the regulator IC. The TO-3
case has the lower thermal resistance, transferring more heat to the heat sink
than the TO-220 case. Therefore, in applications where the regulator is operated
at or near its maximum current rating, the TO-3 case is to be preferred over the
TO-220. In addition, the use of silicon grease between the regulator and heat sink
increases the heat transfer by a factor of 2, cooling the regulator further.

Chapter 2: THE S-100 BUS 7 7

$-100 Bus
1 1
IN ouT +5V, 1A
+8 Volts 51 +
i
50 =11-2 uF 7805
D;—* 5V
GND { >——
100 GND
(= 3

FIGURE 2-7. Typical +5 Volt, 1 A Regulator Circuit

$-100 Bus
2 1
+16 Volits E> & IN ouT| +12V, 1A
c1 :L 1-2 uF
=T 3V LM340K—12
C 50
53 GND 100 uf
GND { [>—+ = B =15v
}100 o —O O
- - -
1-2 #FI4 F PP COC
6 35 v =—C GND |, 15V = 15V -
3 I l
—16 Volts D———I—-w out -12V, 1A
LM320K—-12

FIGURE 2-8. Typical +12 Volt and —12 Volt Regulator Circuits

Zener Diode Voltage Regulators

A simple circuit to drop the voltage of the +8, +16 or ~16 V supplies to a
desired lower voltage level may be accomplished with a zener diode, as shown in
Figure 2-9. This circuit shows a positive voltage regulator. For a negative voltage
regulator reverse the polarity of the zener diode and the capacitors.

This circuit can be used effectively in applications where the regulation of the
current is not critical. The zener diode’s voltage rating should equal V¢ The

1 8 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Voltage

Input +V

out

-.l'l—ZIIF —|'IOO/IF

FIGURE 2-9. Typical Positive Voltage Regulator Circuit

value of R is determined as follows.
Vin - Vout
l + load

For example, if we were to use this circuit to provide +12 V at 10 mA, we
would proceed as follows. V;, would be taken from the +16 V supply. We can
figure that 5 mA of zener current will keep the diode operating in the zener region.
Thus:

Vin = Vout _(16—12)V 4V

l, + lhoag 5+ 10)mA 15 mA

=267 ohms

PR=E X1=4 X 15 mA = 60 mW
Pz=E X1=12 X 15 mA = 180 mW

Thus, a 270 ohm, 0.25 watt resistor and a 12 V, 0.4 watt zener diode should
be selected.

Bypassing the +5 V Supply

On each S-100 card it is important to provide sufficient transient bypassing of
the +5 V supply to the logic circuitry. This is usually accomplished by connecting
0.01-0.1 uF ceramic disk capacitors from the +5 V line to the ground line at regu-
lar intervals on the card. Typically one bypass capacitor is used for every two logic
ICs.

the 5100 bus
signals in detail

This chapter describes the function of every S-100 signal. For each signal we
will give you the signal name, the pin number, and a description of its function.
This chapter will serve as the main reference for the signals themselves. The next
chapter will deal with the signals’ timing relationships to one another.

As in the previous chapter, we have divided the S-100 signals into functional
groups or buses.

When you have read this chapter you still will not understand how an S-100
system functions; you will need to correlate the information in this chapter with
the information in the following chapter.

THE ADDRESS BUS

The address bus contains 24 signals, AO-A23. The address bus is used to
select a slave device or specify a certain memory location. This bus is driven by
tri-state logic and originates on the current bus master. The entire address bus
can be placed in the high-impedance state by asserting a single line called ADSB#,
which is not part of the address bus.

The eight address lines A16-A23 are new signals added by the standard. The
eight new signals were placed on unused S-100 Bus pins. Also, a permanent bus
master must drive only AO-A15, but a temporary master must drive AO-A23.

Each slave device contains a circuit called an ““address decoder,”” so that only
one memory location or |/O port responds to a given address. In pre-696 standard
systems, only 16 address bits were used to address memory, allowing a max-

19

20 INTERFACING TO S-100/lIEEE 696 MICROCOMPUTERS

imum of 65,536 memory locations to be addressed. Eight-bit systems used only
eight address bits for /0 addresses, allowing only 256 |/0 ports.

Some newer CPU (permanent master) cards, and some older CPU (permanent
master) cards with memory management capability, use all 24 address bits,
allowing access to 16,777,216 memory locations. The |EEE standard also states
that 16 bits (AO-A15) may now be used to address I/O ports, allowing a total of
65,536 I/0 ports.

Table 3-1 lists all of the address lines and their S-100 pin numbers. AO is the
least significant bit and A23 is the most significant bit.

THE DATA BUS

There are two different data buses possible on the S-100 Bus. The buses have
different meanings depending on whether an 8-bit or 16-bit data transfer is
occurring. We will describe the 8-bit transfer first.

If an 8-bit transfer is occurring, the data lines are grouped as two unidirectional

TABLE 3-1. The Address Bus Signals

Address S$-100 Comments
Bit Pin Number
AO 79 Address line O,

least significant bit
Al 80 Address line 1
A2 81 Address line 2
A3 31 Address line 3
A4 30 Address line 4
A5 29 Address line 5
A6 82 Address line 6
A7 83 Address line 7
A8 84 Address line 8
A9 34 Address fine 9
A10 37 Address line 10
A11 87 Address line 11
A12 33 Address line 12
A13 85 Address line 13
Al4 86 Address line 14
A15 32 Address line 15
A16 16 Address line 16
A7 17 Address line 17
A18 15 Address line 18
A19 59 Address line 19
A20 61 Address line 20
A21 62 Address line 21
A22 63 Address line 22
A23 64 Address line 23,
most significant bit

Chapter 3: THE S-100 BUS SIGNALS IN DETAIL 2 7

8-bit buses: the data output (DO) bus and the data input (DI} bus. The “input’’ and
“output’’ refer to the direction of data flow, relative to the current master. Thus,
the DI bus is used to send data to the master from a slave and the DO bus is used
to send data from the master to a slave.

The DO bus consists of eight lines, DOO-DO7, with DOO being the least signifi-
cant bit. This bus is implemented in tri-state logic and originates on the current
master. The DO bus can be floated by asserting the single signal DODSB+.
DODSB+ itself is not part of the DO bus.

The DI bus consists of eight lines, DIO-DI7, with DIO being the least significant
bit. This bus is implemented in tri-state logic and originates on slave devices. This
bus should be floated (placed in the high-impedance state) until the slave deter-
mines from other S-100 signals that it is time to ‘“turn on’’ the DI bus and place
data onto the lines. Otherwise, all slaves would try and drive this bus at once,
causing chaos. Exactly how a slave determines the correct time to drive the DI bus
will be covered in the next chapter.

The foregoing describes how the two data buses work during 8-bit data
transfers. But the IEEE standard provides for 16-bit transfers as well as 8-bit
transfers, and the two may be intermixed in a system. Two new signals were
defined to accomplish this. Although they are not part of the data buses them-
selves, we will describe them briefly so that you will understand the 8- and 16-bit
data transfers.

The first new signal is sSXTRQ#+ (sixteen request). This signal is asserted by a
master that wants to do a 16-bit data transfer. If the slave is capable of doing the
16-bit transfer, it will assert a signal called SIXTN# (sixteen acknowledge). When
the master sees SIXTN#, it will gang the DI and DO buses together into a single
16-bit bidirectional bus and perform the transfer. The direction of the transfer
depends on the type of cycle.

When the two buses are ganged, DOO becomes the least significant data bit of
the even addressed byte and DIO becomes the least significant data bit of the odd
addressed byte. Not only do the functions of the data buses change, but so do the
signal names. DOO becomes DATAOQO, DO7 becomes DATA7, DIO becomes
DATAS, and DI7 becomes DATA15.

The exact timing of the data transfers will be described in the next chapter.

Table 3-2 shows the signal name for an 8-bit transfer, the signal name for a
16-bit transfer, and the S-100 pin number for all the data lines.

THE STATUS BUS

The information contained on the status bus is used by all devices on the bus to
determine the state of the bus. The state depends on the type of cycle the current
master is running. It follows that these lines are driven by the current master.

2 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

TABLE 3-2. The Data Bus Signals

8-Bit 16-Bit $-100
Signal Name Signal Name Pin Number
DOO DATAO 36
DO1 DATA1 35
DO2 DATA2 88
DO3 DATA3 89
D04 DATA4 38
DO5 DATAS 39
D06 DATA6 40
DO7 DATA7 90
DIO DATAS 95
Di1 DATAS 94
DI2 DATA10 41
DI3 DATA11 42
Di4 DATA12 91
DIS DATA13 92
DI6 DATA14 93
DI7 DATA15 43

Examples of bus cycles are memory read, memory write, 1/0 read, I/O write, etc.
Each status signal name begins with a lower-case s. The status bus is imple-
mented in tri-state logic and may be floated by asserting the single control line
SDSB#+ (status disable). SDSB# is not itself a status bus signal.
The status signals are listed below.

Name: sM1 (status Machine cycle 1) Active: High Pin Number: 44

Description: The name M1 comes from the old 8080 designation for an op-code
fetch cycle. This status line signifies that the master is fetching an instruction
from the bus. Depending on the implementation of a particular master, this line
may also be active during an interrupt acknowledge cycle.

Name: sMEMR {status MEMory Read) Active: High Pin Number: 47
Description: This status line is active when the master is reading from a memory

address. It will go high for all memory reads, including an op-code fetch.

Name: sINP (status INPut) Active: High Pin Number: 46

Description: This status line is active when the master is executing an input cycle
and reading data from an I/O port address.

Name: sOUT (status OUTput) Active: High Pin Number: 45

Description: This status line is active when the master is executing an output
cycle and writing data to an /O port address.

Chapter 3: THE §-100 BUS SIGNALS IN DETAIL 23

Name: sWO+# (status Write or Output) Active: Low Pin Number: 97

Description: This status line is active when the master is currently executing a
memory write or an output write cycle.

Name: sINTA (status INTerrupt Acknowledge) Active: High Pin Number: 96

Description: This status line is active when the master is responding to an inter-
rupt request and expects the interrupting device or interrupt controller to place
data on the DI bus during this cycle.

Name: sHLTA (status HaLT Acknowledge) Active: High Pin Number: 48

Description: This status line is active when the master enters a Halt state. An
8080, 8085, or Z80 microprocessor enters the Halt state by executing a HALT
instruction. An interrupt request or reset is the only way to get out of a halted
state, so this instruction is usually used to wait for an interrupt to occur. This
instruction may have no equivalent in other processors. In that case, the processor
would never enter the Halt state, and therefore sHLTA would never become
active.

Name: sXTRQ# (status siXTeen ReQuest) Active: Low Pin Number: 58

Description: This is a new status line that is asserted by the master to request that
a 16-bit data transfer occur during the current bus cycle. If this line is not asserted
(if high) then an 8-bit transfer will be requested by default.

That covers all the status lines that have been assigned pin numbers, but there
are some possible bus states that must be determined from a combination of
status lines.

The most obvious of these missing status signals would indicate when a
memory write cycle is occurring. (Remember that sWO# is active for both
memory and output write cycles.) This condition can be determined by the
expression sSMW (status memory write) = sWO-—sOUT. A circuit for generating
the sMW signal is shown in Figure 3-1. This signal should not be placed on the
bus, but is intended to be used as an internal signal on a slave device.

.
o|5
3133

45 74LS02

souT - sMW (Active High) L] L]H

SWOs i
H oL
HiH|L

FIGURE 3-1. Circuit to Generate Status Memory Write Signal

24 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

A master may have an idle state, when it is performing no action on the bus at
all. The combination of status lines that indicates such an idle state is when none
of the status lines is asserted true. The S-100 standard does not provide an idle
state in its chart of possible bus cycles, but we have included it in Table 3-3. Table
3-3 shows the status bits as they should be asserted during the various types of
bus cycles.

THE CONTROL OUTPUT BUS

The address and status buses are used to identify memory and 1/O locations
and the type of bus cycle currently in progress. None of this information should be
used to control when things happen on the bus. Timing is the job of the control
output bus.

The term ‘“‘strobe’” is commonly applied to the class of signals to which the
control output bus belongs. The origin of the term strobe is unclear, but basically a
strobe tells a device when some other set of inputs to the device is in a certain
state.

For example, a write strobe would tell a slave that the data on the data output
bus is now valid, and that the slave can proceed to use it. Without the strobe, the
slave would not be able to tell the difference between valid and invalid data.
Similarly, a read strobe would tell a slave when to place the data onto the data
input bus. Without the read strobe, the slave might put data on the bus when
some other device is putting data there, or at a time when the master is not ready
to accept it.

TABLE 3-3. Bus Cycles and Status Signals

Status Signals
Bus Cycle Type
sM1 sMEMR sINP sOUT sWO+ SINTA | sHLTA | sXTRQ+
Op-code Fetch H H L L H L L Y
Memory Read L H L L H L L Y
Memory Write L L L L L L L Y
1/0 Read L L H L H L L Y
1/0 Write L L L H L L L Y
Interrupt Acknowledge X L L L H H L Y
Halt Acknowledge X X L L H L H X
Idle L L L L H L L X
L = Low State
H = High State
X = Don't Care
Y = H for 8-bit data path operations
Y = L for 16-bit data path operations

Chapter 3: THE S-100 BUS SIGNALS IN DETAIL 2 5

Other strobes may inform devices that a new cycle is starting, that the address
and status buses contain valid information, that the master has relinquished the
bus, etc.

The control output bus is implemented in tri-state logic, and originates on the
current master. The entire control output bus may be disabled by asserting a
single line called CDSB#* (control output disable), which is not a control output bus
signal.

All control output bus lines begin with a lower-case p prefix. The p stands for
“processor”’ and is a holdover from the pre-696 standard, before the term
"“master’’ was conceived. The control output bus lines are described below.

Name: pSYNC {processor SYNChronize) Active: High Pin Number: 76

Description: This is a strobe that indicates the start of every bus cycle. It becomes
active very near the begining of every bus cycle, and remains active for approx-
imately one cycle of ®.

Name: pSTVAL#* (processor STatus VALid) Active: Low Pin Number: 25

Description: This is a strobe that indicates that the information on the address and
status buses is valid. Note that pSTVAL# is meaningful only when it occurs in
conjunction with pSYNC. This is because before the |IEEE standard was adapted
pin 25 was used as the $1 clock signal. @1 was commonly gated with pSYNC to
perform the same function as pSTVAL# in the days before pSTVAL#* existed. Not
wanting to make older boards obsolete, the old ©1 signal meets the requirements
of pSTVAL«*.

pSTVAL=+ is required to have one, and only one, negative-going edge during
pSYNC, but may have other negative-going edges during other parts of the bus
cycle (as @1 did). Therefore, pSTVAL#* must be gated with pSYNC in order to be
useful.

Why was ®1 replaced with pSTVAL#* if you still have to gate it with pSYNC?
Most of the newer processors use a single-phase clock, as opposed to the old
8080 which used a two-phase clock. It was deemed by the standard committee
that it was too difficult to synthesize ®1 with the newer processors.

A circuit that correctly gates pSTVAL# with pSYNC is shown in Figure 3-2.

Name: pDBIN (processor Data Bus IN) Active: High Pin Number: 78

Description: This signal is the generalized read strobe for the S-100 Bus. It is
asserted for memory read, I/0 read, and interrupt acknowledge cycles. It is used
by a slave device to turn on its data bus drivers so that the data to be read is gated
onto the bus at the proper time. The master should sample the data near the end
of this read strobe.

Name: pWR#* {processor WRite) Active: Low Pin Number: 77
Description: This signal is the generalized write strobe for the S-100 Bus. It is

2 6 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

«
-l
<
2

¥l

g|3|8

76 74L500 glz|e

[]]

pSYNC " (Gated pSTVAL#*) 2al2l©o
pSTVAL#® LIL]|H
74LS04 L|H}H

H|L L

Active low; use AND gate for active high HliHIH

FIGURE 3-2. Circuit That Gates pSTVAL* with pSYNC

asserted for memory and I/O write cycles. It is used by the slave device to tell
when the data output bus contains valid data.

Name: pHLDA (processor HoLD Acknowledge) Active: High Pin Number: 26

Description: This is a signal that indicates that the master has relinquished control
of the S-100 Bus to another master.

There is one other strobe on the S-100 Bus that should be considered as part
of the control output bus, but generally is not. The signal is MWRT (memory write)
and is a strobe like pWR#, except that it occurs only during memory write cycles.
The reason it is not included with the other signals is that it is not disabled by the
CDSB+* signal, as are all the others. In fact, it is never disabled.

Name: MWRT (Memory WRiTe) Active: High Pin Number: 68

Description: MWRT is a memory write strobe that is not disabled along with the
other control output bus signals. MWRT is derived from the following equation:
MWRT=pWR.-—-sOUT. In other words, when pWR=# is true and sOUT is false, a
memory write cycle is occurring.

The standard specifies that MWRT be generated by only one device in any
system. It may originate on the permanent master, a front panel, or on any other
device that is permanently in the system.

Note that MWRT should be generated by the actual bus signals pWR#* and
sOUT. This ensures that any master will be able to write into memory which uses
MWRT. A circuit that may be used to generate MWRT is shown in Figure 3-3.

THE CONTROL INPUT BUS

The control input bus consists of four lines that are asserted by bus slaves to

Chapter 3: THE S-100 BUS SIGNALS IN DETAIL 2]

« | &
Slelz
CAERE
45 74LS02 74LS367A 68
sOUT MWRT LI L|H
77
pWR* L|lH]L
- HlL]|L
HlH]|L

FIGURE 3-3. Circuit to Generate MWRT

signal the master to alter its operation — for example, to wait until data is ready
from a slow memory, to relinquish the bus to another master, etc.

All of the control input bus lines are implemented in open collector logic so that
more than one device may drive them at one time without conflicts. The control
input bus lines are described below.

Name: RDY (ReaDY) Active: High Pin Number: 72

Description: RDY is a signal that is asserted by a slave to tell the master that it is
ready to complete the current bus cycle. The slave may drive RDY low to tell the
master that it is not ready to complete the operation. This will cause the master to
wait until RDY goes high again, in effect extending the current bus cycle.

It may be less confusing to think about RDY in the negative sense. Then RDY
would become a “‘wait request’’ line telling the CPU to wait when it goes low.

RDY is used by some slaves to synchronize the master to an external event,
such as a rotating floppy disk. It may also be used to “’single step’’ the master by
pulling RDY low during each cycle. This is a common technique used by front
panels.

Name: XRDY (auXiliary ReaDY) Active: High Pin Number: 3

Description: This is another ready signal originally used only by front panels. Now
any device may use either RDY or XRDY. XRDY functions exactly the same as
RDY.

Name: HOLD# (HOLD request) Active: Low Pin Number: 74

Description: HOLD # is a signal asserted by a temporary master to request that the
permanent master relinquish the bus to the temporary master. The temporary
master should continue to assert HOLD # until it determines that it is either done
with the bus or will not be granted access. HOLD # may be masked at any time by
the permanent master.

2 8 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Name: SIXTN# (SIXTeeN acknowledge) Active: Low Pin Number: 60

Description: SIXTN# is a signal that is asserted by a slave device if it is capable of
a 16-bit data transfer. If the master asserts sXTRQ# and SIXTN# is asserted by
the addressed slave within a short period of time, then the master may proceed
with a 16-bit data transfer. If SIXTN# is not asserted by the slave, then the master
should perform the transfer as two 8-bit transfers. If the master is not capable of
performing the 16-bit transfer as two 8-bit transfers, an error condition will result
immediately, with ERROR# asserted.

Note that SIXTN# is a new S-100 signal, but it has been implemented in a way
that makes it compatible with existing systems — an 8-bit memory board would
never assert SIXTN#*.

THE INTERRUPT BUS

The S-100 Bus contains 10 interrupt lines that may be used by slave devices
to interrupt the master’'s current task and cause another task to be executed
instead. An example is an interrupt that occurs once a second, causing the normal
program flow to call a subroutine to update a memory location that keeps track of
the time of day. The subroutine then returns control to the interrupted program,
which continues as if nothing had happened.

There are two general interrupt request inputs to the permanent master: INT#,
which is usually software maskable, and NMi#, which is non-maskable. There are
eight lines called VIO* to VI7#. These lines are the vectored interrupt lines and
may be assigned priorities. This means that if two or more interrupts occur
simultaneously, the one with the highest priority will be serviced first. Usually
VIO #+ has the highest priority, while VI7 # has the lowest.

The VI lines may be used to cause interrupts directly to the master, but they
are usually connected to an interrupt controller that will then assert INT #. Refer to
Chapter 13 for more information on interrupts.

All the interrupt lines are implemented in open collector logic and originate on
slave devices. They are listed below. :

Name: INT# (INTerrupt) Active: Low Pin Number: 73

Description: This is the general purpose interrupt request line for the S-100 Bus. It
is usually maskable by a software instruction. When asserted by a slave, assuming
the master has not masked interrupts, after completing the current cycle the
master will enter an interrupt acknowledge cycle or cycles. Usually the interrupt-
ing device will send some kind of information to the master during the interrupt
acknowledge cycle. ‘

Note that INT # should be asserted as a level, meaning that INT # should remain
low until the interrupting device has been serviced.

Chapter 3: THE S-100 BUS SIGNALS IN DETAIL 29

Name: NMI* (Non Maskable Interrupt) Active: Low Pin Number: 12

Description: As the name implies, NMI* is an interrupt line that may not be
masked by the master. It should always respond to the NMI+ line. For this reason,
NMI# is usually reserved to signal some catastrophic event, such as loss of
system power.

Note that an interrupt acknowledge cycle need not be generated in response to
an NMI+. Also note that NMI+ is asserted as a negative-going edge and not as a
level.

The vectored interrupt bus consists of eight lines that are all active low. They
are called “'vectored” because asserting a certain line could cause the master to
vector to a routine that is specifically associated with that line. The VI#* lines may
have a fixed priority, with VIO* usually having the highest priority. All of the lines
are active low. Table 3-4 shows the pin positioning of the VI#+ lines.

THE TMA BUS

TMA stands for Temporary Master Access. The bus signals associated with
the TMA bus are used to allow temporary masters to request and receive control
of the bus from the permanent master. In the pre-696 standard days the term
used to describe this was DMA, which stood for Direct Memory Access. The term
DMA was really a misnomer, since the temporary master can perform any kind of
bus cycle (not just memory) when it gains control of the bus. Therefore the term
TMA has been substituted to better reflect the process that is occurring.

The old S-100 Bus provided for only one TMA device (temporary master) to
exist in a system. The IEEE standard has made provisions for up to 16 such
devices to exist in one system. To do this, the standard defines four new lines that
contain a code corresponding to the highest priority temporary master that is cur-
rently requesting the bus. This allows the temporary masters to arbitrate among
themselves for control of the bus. The four new lines are called TMAQO#-TMA3 .

TABLE 3-4. The Vectored Interrupt Bus Signals

Vectored Interrupt Pin Number
VIO#* 4
Vile 5
VI2# 6
VI3= 7
Vigs 8
VIS# 9
Vig* 10
VI7+ 1

30 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

In addition, there are four signals that are asserted by the temporary master to
disable the various output buses that are normally driven by the permanent
master.

The whole process of TMA is quite involved, and you need to thoroughly
understand how all the signals on the S-100 Bus work before you can understand
TMA. The signal definitions in this chapter may be used as a reference in the
future. The TMA process will be explained in detail in Chapter 15.

The four lines for TMA arbitration are used to resolve simultaneous requests
for the bus by temporary masters. The encoded priority of all the requesters is
asserted on these lines, and after settling the lines contain a number that corres-
ponds to the highest priority requester. That temporary master is now granted
access to the bus. All the lines are open collector and are active low. The following
table shows their S-100 Bus pin assignments.

Signal Name Pin Number

TMAO* 55
TMA1 # 56
TMA2# 57

TMA3#* 14

The other TMA bus signals are listed below.

Name: ADSB* (Address DiSaBle) Active: Low Pin Number: 22

bescfiption: When ADSB+* is asserted, all address bits (AO-A23) are floated on
the permanent master.

Name: DODSB# (Data Out DiSaBle) Active: Low Pin Number: 23

Description: When DODSB# is asserted, the data output bits (DOO-DQ7) are
floated on the permanent master.

Name: SDSB# (Status DiSaBle) Active: Low Pin Number: 18

Description: When SDSB# is asserted, the status bus (SMEMR, sWO+, sM1,
sINP, sOUT, sHLTA, sINTA, and sXTRQ#) is floated on the permanent master.

Name: CDSB# (Control output DiSaBle) Active: Low Pin Number: 19

Description: When CDSB# is asserted, the control output bus (pSYNC, pSTVAL *,
pDBIN, pWR#, and pHLDA) is floated on the permanent master.
MWRT is not affected by CDSB«+.

UTILITY SIGNALS

The following signals do not fit into any of the previous specific categories.

Chapter 3: THE S-100 BUS SIGNALS IN DETAIL 3 7

Name: @ or System Clock Active: N/A Pin Number: 24

Description: & is the master system clock signal that controls timing of all bus
cycles for permanent and temporary masters and slaves. It is generated by the
permanent master, and there is no provision for floating the system clock signal.

Name: CLOCK Active: N/A Pin Number: 49

Description: This is a 2 MHz clock signal that does not have to be synchronous
with the system clock. The frequency tolerance is + or — 0.5% and the duty cycle
is between 40% and 60%. This signal is used as a timing reference for baud rate
generators, real-time clocks, and interval timers.

Name: PHANTOM#* Logic: Open collector Active: Low Pin Number: 67

Description: This signal is provided so that slave devices may exist in the same
address space by overlaying one another. One device (the phantom device) is
inactive if PHANTOM# is inactive and a normal device is active. When PHAN-
TOM# is asserted, the phantom device becomes active and the normal device
becomes inactive. PHANTOM# may originate anywhere on the bus.

Name: POC#+ (Power On Clear) Active: Low Pin Number: 99

Description: POC# must start out low when the system powers up, and remain
low for at least 10 milliseconds after power is stable. POC# must be active only at
power-on. POC* must also assert RESET# and SLAVE CLR+. A circuit for gener-
ating POC » that also asserts RESET# and SLAVE CLR# is shown in Figure 3-4.

Name: RESET# Logic: Open collector Active: Low Pin Number: 75

Description: RESET # is a signal that resets all bus masters to a known condition.
Any bus slave that needs to start in a known condition relative to the master may
also be reset by RESET#. RESET* is often connected to a pushbutton switch
located somewhere on the machine.

Name: SLAVE CLR+ Logic: Open collector Active: Low Pin Number: 54

Description: SLAVE CLR+ is a signal that resets all bus slaves to a known condi-
tion. Note that SLAVE CLR# used to be called EXT CLR+, for external clear. The
function is still the same, but the name was changed to be consistent with the ter-
minology of the standard.

Name: ERROR# Logic: Open collector Active: Low Pin Number: 98

Description: This is a generalized error signal line that can be used to inform the
master that some kind of error has occurred. This can be a memory parity error,
an attempt to write into a protected memory location, an attempt to perform a
16-bit transfer to an 8-bit device, etc.

ERROR# should be implemented as a trap, in that it should cause address and
status information on the bus to be latched so that an error handling routine can

3 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

a. Open Collector

2.7 k(2

AAA
\A A4

4.7 k()
270 O 741.8367A

99
»——E {> poc
39 uF

. 75
0——D—D RESET»

+

nll

7407
. 54
—| »>———{"> SLAVECLR#
*Open collector 7407
b. Tri-state +5V
27k
A
AA A
47k
270
99
AN~ N D POC»
L 9
39 uF
- 75
L r L™ RESETe
)
',_K__MD SLAVE CLR*
e
- 74LS367A

FIGURE 3-4. Two Circuits That Correctly Generate POC+

determine the source of the error and take corrective action. A circuit to imple-
ment this will be presented in Chapter 16.

Name: PWRFAIL*® Logic: Open collector Active: Low Pin Number: 13

Description: This is a signal line that goes low to indicate an impending power
failure. It will probably cause a non-maskable interrupt in most systems so that the
permanent master can save the current machine status information.

This line goes low and remains low until power is restored and POC+ is true.

Chapter 3: THE S-100 BUS SIGNALS IN DETAIL 33

POWER AND GROUND

The S-100 Bus uses three voltages: +8 volts, +16 volts, and — 16 volts. These
are all with respect to a common ground, and all are unregulated. Regulation of
the voltages occurs on the individual S-100 cards.

Name: +8 Volts Pin Numbers: 1 and 51

Description: This is the primary logic supply for S-100 systems. It is specified as
having an instantaneous minimum value of +7 V and an instantaneous maximum
value of +25 V. The average maximum must be less than +11 V.

Name: +16 Volts Pin Number: 2

Description: The +16 volt line is specified as having an instantaneous minimum
value of +14.5 V and an instantaneous maximum value of +35 V. The average
maximum value must be less than +21.5 V.

Name: —16 Volts Pin Number: 52

Description: The —16 volt line is specified as having an instantaneous maximum
value of —14.5 V and an instantaneous minimum value of —35 V. The average
minimum value must be greater (more positive) than -21.5 V.

Name: GND (GrouND) Pin Numbers: 20, 50, 563, 70, and 100

Description: These are the primary ground reference for the system. All voltage
levels are measured with respect to this ground.

Three of the old S-100 signals have been deleted by the standard and replaced
by ground lines. These new ground lines are on S-100 Bus pins 20, 563, and 70.

NDEF LINES

There are three lines that are called NDEF, for Not to be DEfined. These are
intended to be used by various manufacturers for their own use. If a manufacturer
does so, it must fully document how the lines are used and provide disconnecting
jumpers. One of these signals was the old front panel signal Single Step. The
other two have been used for a variety of purposes.

The three NDEF lines are on S-100 Bus pins 21, 65, and 66.

RFU LINES

There are four lines on the S-100 Bus that are specified as RFU, for Reserved

34 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

for Future Use. The standard states that they may not be used for any purpose.
The RFU lines are on S-100 Bus pins 27, 28, 69, and 71.

OLD S-100 SIGNALS

A few signals that were commonly used by a number of manufacturers have
been eliminated from the |IEEE standard. However, in keeping with the philosophy
that the standard should not make older boards obsolete, most of the signals have
been changed in such a way that the older boards are compatible with the stan-
dard.

We will explain some of the old signals and their replacements.

Old Name: ®1 Replaced by: pSTVAL#* Active: N/A Pin Number 25

Description: This was the opposite phase of the clock signal to ®2 on pin 24
(which used to be called ®2, but is now just calld ®). It was generally considered
to be non-overlapping with ®2. Many of the newer microprocessors use a single-
phase clock, and the standard committee felt that it was too difficult to ’synthe-
size”" a ®1 whose high portion would not overlap with the high portion of ®2, so
pSTVAL+* was substituted. Boards that still provide ®1 may still meet the require-
ments for pSTVAL#* (see the section on pSTVAL# in this and the next chapter).

Old Name: RUN Replaced by: RFU Active: High Pin Number: 71

Description: This signal was generated by front panels and was high when the
machine was running and low when the front panel had stopped the machine. It
was not widely used, except by some dynamic RAM boards to continue refresh
operations when the front panel had stopped the machine. It was also used by
some manufacturers of CPU boards to slow down the CPU speed when the front
panel was in control, because the front panels were not designed to run faster
than 2 MHz.

This signal line has now been designated RFU, which means it is not to be used.
But older systems with front panels should still be able to drive this line without
any compatibility problems, unless it is assigned a new function.

Old Name: SS (Single Step) Replaced by: NDEF Active: Low Pin Number: 21

Description: This signal was also generated by front panels. The front panel
generally had a cable that connected to the CPU board. This cable carried eight
data lines and was generally connected to the CPU’s internal bidirectional data
bus. Instructions were ‘‘jammed’’ over this cable to cause the front panel to oper-
ate. However, the CPU’s data input bus drivers would also be turned on, causing a
conflict on the internal data bus. SS would go low momentarily while the front

Chapter 3: THE S-100 BUS SIGNALS IN DETAIL 3 5

panel was jamming the data on the cable. SS was then used by the CPU to disable
the data input bus drivers so that no conflict would exist.

This line has now been specified as NDEF, which means that any manufacturer
can use it for any purpose, as long as it is documented and jumpered. Older S-100
systems can therefore still use SS on pin 21.

Old Name: SSWDSB#+ (Sense SWitch DiSaBle) Replaced by: GND
Active: Low Pin Number: 53

Description: This is another signal that was generated by front panels. The front
panel usually had a set of switches called the sense switches connected to an I/0O
port. The data from the switches were sent over the data cable described above,
instead of over the S-100 data input bus. As described above, another conflict
would exist between the S-100 Bus and the on-board data buses. SSWDSB#
would go low to float the CPU’s S-100 Bus data input driver whenever an access
to the sense switches was made.

This signal has been replaced by ground, which is not in keeping with the com-
patibilty philosophy of the standard. With an older CPU, grounding this line will
keep its data input buffers permanently disabled, never allowing any data from the
bus to get to the CPU. Of course, this will keep the system from operating. Some
pressure has been put on the standard committee to change this line to NDEF, but
they feel there is a need for a GND signal on that side of the bus. It is recom-
mended that new masters which must work with older front panels provide an
option jumper on this pin.

Old Name: UNPROT (UNPROTect) Replaced by: GND Active: High
Pin Number: 20

Description: This signal was pulsed high to cause a memory board to unprotect
itself (allow data to be written into it). The source of this signal was usually a
switch on the front panel. Memory protection has been abandoned by most
manufacturers, so this signal was replaced by GND.

Old Name: PROT (PROTect) Replaced by: GND Active: High Pin Number: 70

Description: This signal performed the opposite function of UNPROT; it was used
to protect a memory board (keep data from being written into it). The source of
this signal was usually a switch on the front panel. As mentioned above, memory
protection has generally been abandoned by manufacturers, so this signal has
also been replaced by GND.

Old Name: PS (Protect Status) Replaced by: RFU Logic: Open collector
Active: Low Pin Number: 69

Description: This signal was generally connected to an indicator on a front panel
to show that the currently addressed memory board was protected. This line went
low if the board was protected and remained high if it was not protected. Since

36 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

-)
TABLE 3-5. $5-100 Bus Layout — Quick Reference yd ,V
e

Pin 1 +8 Volts (B) Pin 51 -8 Volts (B}

Pin 2 +16 Volts (B) Pin 52 16 Volts (B)

Pin 3 XRDY (S) H Pin 563 GND

Pin 4 VIO*(S) L Pin 54 SLAVECLR* (B) L
Pin 6 VI1*(S) L Pin 55 DMAO* (M) L
Pin 6 Vi2*(S) L Pin 56 DMAT* (M) L
Pin 7 VI3=(S) L Pin 57 DMA2+ (M) L
Pin 8 Vid=(S) L Pin 58 sXTRQ* (M) L
Pin 9 VI5#(S) L Pin 59 A19 H
Pin 10 VI6*(S) L Pin 60 SIXTN=(S) L
Pin 11 VI7*(S) L Pin 61 A20 (M) H
Pin 12 NMI* (S) L Pin 62 A21 (M) H
Pin 13 PWRFAIL* (8) L Pin 83 A22 (M) H
Pin 14 DMA3+ (M) L Pin 64 A23 (M) H
Pin 15 A18(M) H Pin 65 NDEF

Pin 16 A16 (M) H Pin 66 NDEF

Pin 17 A17 (M) H Pin 67 PHANTOM=+ (M/S) L
Pin 18 SDSB* (M) L Pin 68 MWRT (B) H
Pin 19 CDSB* (M) L Pin 69 RFU

Pin 20 GND Pin 70 GND

Pin 21 NDEF Pin 71 RFU

Pin 22 ADSB* (M) L Pin 72 RDY (S) H
Pin 23 DODSB=* (M) L Pin 73 INT#{(S) L
Pin 24 @ (B) H Pin 74 HOLD* (M) L
Pin 25 pSTVAL* (M) L Pin 75 RESET* (B) L
Pin 26 pHLDA (M) H Pin 76 pSYNC (M) H
Pin 27 RFU Pin 77 pWR* (M) L
Pin 28 RFU Pin 78 pDBIN (M) H
Pin 29 A5 (M) H Pin 79 A0 (M) H
Pin 30 A4(M) H Pin 80 A1 (M) H
Pin 31 A3 (M) H Pin 81 A2 (M) H
Pin 32 A15(m) H Pin 82 A6 (M) H
Pin 33 A12(M) H Pin 83 A7 (M H
Pin 34 A9 (M) H Pin 84 A8 (M H
Pin 35 DOT1 (M)/DATA 1 (M/S) H Pin 85 A13(M) H
Pin 36 DOO (M)/DATAO (M/S) H Pin 86 A14(M) H
Pin 37 A10(M) H Pin 87 A11 (M) H
Pin 38 DOA4 (M)/DATA 4 (M/S) H Pin 88 DO2 (M)/DATA 2 (M/S) H
Pin 39 DOS5 (M)/DATA 5 (M/S) H Pin 89 DO3 (M)/DATA 3 (M/S) H
Pin 40 DO6 (M)/DATA 6 (M/S) H Pin 90 DO7 (M)/DATA 7 (M/S) H
Pin 41 DI2 (S)/DATA 10 (M/S) H Pin 91 DI4 (S)/DATA 12 (M/S) H
Pin 42 DI3 (S)/DATA 11 (M/S) H Pin 92 DI5 (S)/DATA 13 (M/S) H
Pin 43 DI7 (S)/DATA 15 (M/S) H Pin 93 DI6 (S)/DATA 14 (M/S) H
Pin 44 sM1 (M) H Pin 94 DI1 (S)/DATA 9 (M/S) H
Pin 45 sOUT (M) H Pin 95 DIO (S)/DATA 8 (M/S) H
Pin 46 sINP (M) H Pin 96 sINTA (M) H
Pin 47 sMEMR (M) H Pin 97 sWO+ (M) L
Pin 48 sHLTA (M) H Pin 98 ERROR® (S) L
Pin 49 CLOCK (B) Pin 99 POC* (B) L
Pin 50 GND Pin 100 GND

Slave generated signal

Master generated signal

Master or slave generated signal

Bus signal from power supply or front panel
Signal is true when line is low

Active high

Active low

£
FrTIsDHI O

Chapter 3: THE S-100 BUS SIGNALS IN DETAIL 3 7

memory protection has been generally abandoned by manufacturers, this line has
been designated RFU.

Old Name: SSTACK (Status STACK) Replaced by: ERROR#*
Logic: Tri-state driver Active: High Pin Number: 98

Description: This was a status signal from older CPU boards to indicate that a
stack operation was occurring. The 8080 is the only processor where this status
is easily determined, and this line was abandoned by most manufacturers well
before the standard was formulated. It has been replaced by the ERROR# signal,
which is not an equivalent function, but we can’t find a single S-100 board that
ever used SSTACK, so there should not be any compatibility problems here.

Old Name: PINTE {Processor INTerrupts Enabled) Replaced by: RFU

Logic: Tri-state driver Active: High Pin Number: 28

Description: This was a control output signal from older CPU boards that indi-
cated that the processor’s interrupts were enabled. As with SSTACK, the 8080
was the only processor where it was easy to determine this condition. This signal
was hardly ever used, so it has been replaced by an RFU line.

Table 3-5 is a numerically ordered reference chart of all the S-100 signal lines.

S>-1O0 bus
Hming relationships

INTERFACING TO S-100 COMPUTERS

In the previous chapter we discussed all of the S-100 signals in detail, but most
of those signals are meaningless unless you understand how they all interact.
Interaction is what this chapter will explain. We will discuss the timing relation-
ships between the various S-100 signals. When you have read Chapter 3 and this
chapter, you will have a good idea of what's going on on the S-100 Bus.

BUS STATES AND BUS CYCLES

The System Clock signal is called “®.”" It is the master clock signal that
governs all of the timing on the S-100 Bus. Most of the signal timing on the
S-100 Bus is measured relative to a rising or falling edge of ®. ® is generated by
the permanent bus master, usually a CPU board. @ is usually the CPU clock. It is
generally a square wave with a frequency between 1 and 6 megahertz.

& is shown in Figure 4-1. Approximately three ‘’clock cycles’” are shown. A
clock cycle is defined as one complete high and low period of the clock. In the
figure, one clock cycle is shown from the beginning of a rising edge to the begin-
ning of the next rising edge ((A) in the figure).

You will also notice that in Figure 4-1 there are other division marks that are
one clock cycle wide ((B)); these divisions are called ““bus states.”” Each
transfer of data or any other transaction on the S-100 Bus takes place in at least

39

40 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

©

One Bus Cycle ———————— > Start of next
BS1

End of previous BS1 BS2 BS3
BS3 First Bus State Second Bus State Third Bus State

T LU

One Clock Cycle

®

FIGURE 4-1. Bus States and Bus Cycles

three bus states, and different things should occur during the different bus states.

It is easy to confuse ‘“‘clock cycle’”” with ‘bus cycle.”” A bus cycle (©) may
contain three or more clock cycles. Every S-100 bus cycle contains at least three
clock cycles and therefore three bus states. A slave may request that the bus
cycle be extended by causing a ‘‘wait state.”” When a bus cycle is extended, it is
done by adding more bus states. This will be discussed in detail later in the
chapter.

To recap, an S-100 “‘bus cycle’’ has at least three “‘bus states,”” and each bus
state is one “‘clock cycle’” wide.

THE BASIC BUS CYCLE

Figure 4-2 is a flowchart of the basic S-100 bus cycle. The bus cycle begins
with Bus State 1 (BS1). As BS1 begins, the master asserts its status and address
buses and pSYNC signal (pSYNC signifies the beginning of a bus cycle). After a
few nanoseconds the address and status buses ‘’settle,”” meaning that the infor-
mation on the buses is stable and valid. The master then asserts the pSTVAL#*
signal, informing slaves that the status and address buses contain valid informa-
tion.

The master then enters Bus State 2 (BS2). The address and status buses con-
tinue to be asserted. The master switches pSYNC false. From this point on, the
cycle will have two different sequences of events depending on whether this is a
read cycle or a write cycle (this is why the flowchart splits). First we will examine a
read cycle (see Figure 4-3).

After pSYNC goes false, the master asserts the read strobe pDBIN. The
addressed slave device uses pDBIN to turn on its data bus drivers so that the
master can read the data via the data input bus. Now the master enters Bus
State 3.

Chapter 4: S-100 BUS TIMING RELATIONSHIPS 4 7

Begin Bus State 1

Master asserts
pPSYNC,
Address Bus
and Status Bus

3

Master asserts
pSTVAL+*

v

Enter Bus State 2

[

Master switches
pSYNC false

Read Cycle]

Write Cycle

Y

Ki

Master asserts
pDBIN, slave drives
the Data Input Bus

Master agsserts
data on Data
Output Bus

v

Enter Bus State 3

Master asserts
PWR* (and MWRT
if memory cycle)

Y

(]

Data input Bus
becomes vald

Enter Bus State 3

'

v

Master reads data

Slave can latch
data any time now

¥

Y

Master switches
pDBIN false

Master raises pWR*
{lowers MWRT if
memory cycle)

1

(]

End BS3. Address
and Status Buses
begin to change

End BS3. Address.

Status. and Data

Buses begin to
change

L

]

i

Enter next
bus cycle

and so on

FIGURE 4-2. Basic S-100 Bus Cycle Flowchart

42 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

I BS1 BS2 BS3 BS1

S \ _
pSYNC ’ \ [\
pSTVAL* u \ ,
Address Bus :x Address Stable x
Status Bus_x Status Stable x

pDBIN ’ \

Data Input Bus Hi-Z XLow-Zx Data Stable x Hi-z

FIGURE 4-3. S-100 Bus Read Cycle

The data that the slave wishes to send to the master may not be valid yet, but
will now start to become valid and stable. The master then reads the data and
switches pDBIN false. The address and status buses must remain stable for a
while after pDBIN switches false. BS3 now ends, ending the bus cycle. The next
BS1 begins with the new status and address information for the next bus cycle.

Now we will examine what happens during a write cycle (see Figure 4-4). The
first four operations are the same as a read cycle, with the master having just
switched pSYNC false. The master now places the data to be written on the data
output bus. After the data has settled, the master asserts the write strobe pWR#
(MWRT will also be asserted if the cycle is a memory write cycle).

Now the master enters BS3. The slave device looks at the data during this time
and will usually ““latch” the data on either edge of the write strobe. Then the
master switches pWR# false (MWRT will also switch false if it was a memory
write). The data, address, and status buses must remain valid for a period of time
after the trailing edge of the write strobe(s), as shown in Figure 4-4. Now BS3
ends, ending the bus cycle. The address, status, and data buses will start to be
asserted for the next cycle.

These two similar sequences of events are shown in Figures 4-3 and 4-4 as
’timing diagrams.”” They show the relationships of the signals to one another in
parallel rather than the serial representation of the flowchart. The timing diagrams

Chapter 4: S-100 BUS TIMING RELATIONSHIPS 43

} BS1 BS2 BS3 | BS1

N e W e U el el
pSTVAL» __I _J

Address Bus I Address Stable x

Status Bus I Status Stable x

pPWR+ ‘ I

Data Output Bus x Data Stable x

MWRT ’ \

FIGURE 4-4. S-100 Bus Write Cycle

also show the relationship of @ to the signals. Next we will discuss the read and
write cycles using these timing diagrams.

THE READ CYCLE

A read cycle on the S-100 Bus is one in which the slave transfers the data to
the master. The master is “reading’’ the data. The two types of read cycles are
memory read and I/O read. The two bus cycles are virtually identical. The only
difference is that during a memory read cycle the address bus may contain 16 or
24 bits of information and the status bus information would reflect a memory
read, while during an I/0 read cycle the address bus may contain 8 or 16 bits of
information and the status bus information would reflect an I/0 read.

At the beginning of BS1 the master asserts the address and status buses, as
shown in Figure 4-3. After the rising edge of ® in BS1, pSYNC will be asserted
high. During this time pSTVAL#* should be high. As soon as the address and
status buses have settled, and pSYNC has been high for at least 20 nanoseconds,
the master will assert pSTVAL#* low. Note that the master may assert pSTVAL#
low only once during pSYNC.

44 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

pSYNC must remain asserted until the rising edge of ® in BS2. pSTVAL#*
should return high at this time as well. When pSYNC falls (just after the rising
edge of ® in BS2), the master will assert the read strobe pDBIN. Up until now the
data input bus has been in a high-impedance state. When pDBIN is asserted, the
addressed slave turns on its data bus drivers, causing the data input bus to be in
the low-impedance state (the data on the bus may not be valid). Later (depending
on the access time of the slave), the data from the slave will become stable. Most
masters then sample this data at the falling edge of & during BS3. Very shortly
thereafter, the master will drop pDBIN, causing the slave’s data bus drivers to turn
off, putting the data input bus in a high-impedance state. The master must con-
tinue to assert valid addresses and status for at least 50 nanoseconds after pDBIN
falls. Then BS3 will end and the next bus cycle will begin.

For timing parameters of the read cycle, complete with timing marks and data
showing the minimum and maximum timing variations, refer to Figure 11a and
Table 4 in the copy of the S-100 standard in the appendix.

THE WRITE CYCLE

During the write cycle the master transfers data to an addressed slave device.
The master is “‘writing”’ the data to the slave. The two types of write cycles are
memory write and /O write, and they appear virtually identical on the bus. The
differences are that during a memory write cycle the address bus may contain 16
or 24 bits of information and the status bus would reflect a memory write cycle,
while during a I/O write cycle the address bus may contain either 8 or 16 bits of
information and the status bus would reflect an 1/0 write cycle. In addition, the
strobe MWRT wil! also be asserted during a memory cycle, but not during an I/0O
cycle.

At the begining of BS1 the master will begin to assert the address and status
buses, as shown in Figure 4-4. After the rising edge of @ in BS1, pSYNC will be
asserted high. During this time pSTVAL#* should be high. As soon as the address
and status buses have stabilized and pSYNC has been high for at least 20
nanoseconds, the master will assert pSTVAL#* low. Note that the master may
assert pSTVAL#* low only once during pSYNC.

pSYNC must remain asserted until the rising edge of ® in BS2. pSTVAL#* will
probably return high at this time as well. About the time that pSYNC falls (just
after the rising edge of @ in BS2), the master will start to assert the data to be
written on the data output bus. After the data becomes valid, the master will
assert the write strobe(s) (pWR# and MWRT for a memory write, or just pWR#*
for an I/0 write). The slave may then sample or latch the data at any time during
the write strobe. Most slaves do this on the trailing edge of the write strobe.

Sometime around the falling edge of @ in BS3, the master will stop asserting

Chapter 4: S-100 BUS TIMING RELATIONSHIPS 4 5

the write strobe(s). The master must hold the data, address, and status buses
valid for at least two-tenths of a cycle after the write strobes are no longer
asserted. Then the data, address, and status buses may begin to change, signify-
ing the end of BS3 and the begining of the next bus cycle.

For timing parameters of the write cycle, complete with timing marks and data
showing the minimum and maximum timing variations, refer to Figure 1156 and
Table 4 in the copy of the S-100 standard in the appendix.

THE INTERRUPT ACKNOWLEDGE CYCLE

When the master has been interrupted (by a device asserting one of the inter-
rupt request lines), and assuming that the master's interrupts have not been
masked, it will respond by executing an interrupt acknowledge cycle or cycles.
During an interrupt acknowledge cycle the interrupting device is expected to put
some kind of information on the data input bus that the master can use to deter-
mine what device has caused the interrupt, or where to go to find the interrupt
service routine. This is usually accomplished by having the slave send a restart or
call instruction during the interrupt acknowledge cycle.

The interrupt acknowledge cycle looks just like a normal read cycle, except that
the status bus reflects an interrupt acknowledge status and the address bus is not
defined {can contain any information, valid or not). The read strobe pDBIN will still
be asserted and should be used by the interrupting device to gate the data onto
the data input bus.

WHY TMA CYCLE TIMING WON'T BE EXPLAINED YET

As we have mentioned before, TMA timing is very involved, and to try and ex-
plain it now might confuse you. Therefore we will wait until Chapter 15 to explain
it in detail.

THE BASIC BUS CYCLE WITH WAIT STATES

Up until now we have assumed that the slave can respond fast enough to latch
the data or provide it to the bus before the master decides to take the read and
write strobes away. This is an ideal condition, but there are times when a slave
may have to cause the master to wait for it to respond. It does this by causing the
master to insert one or more “‘wait states’’ into the basic bus cycle. The slave tells

46 INTERFACING TO S-100/[EEE 696 MICROCOMPUTERS

the master to wait by pulling one of the ready lines low (saying ““I'm not ready”’).

The timing diagram in Figure 4-5 and the flowchart in Figure 4-6 show the
basic bus cycle with wait states (a read cycle is used as the example). The cycle
starts out the same as a normal bus cycle. After pSYNC is asserted high, the slave
will determine that it has been addressed. It should then pull either the RDY or
XRDY line low. At the rising edge of ® in BS2, the master samples the RDY and
XRDY lines. If either ready line is low, the master will not enter BS3, but will
instead enter BSW (Bus State Wait). The read or write strobes were asserted dur-
ing BS2, and will be extended during BSW. The address and status lines also
remain stable.

At the rising edge of ®, during BSW, the master again samples the RDY and
XRDY lines. If either line is still low, the master executes another BSW. It will again
sample the RDY and XRDY lines at the rising edge of ®. The process will repeat
until both the RDY and XRDY lines return high. The master then enters BS3 and
completes the cycle normally.

Circuits for generating wait states will be shown in the next chapter.

l BS2 l BSW Ibi BS3

=<}
D
I

(8]

pSYNC

|
|

pSTVAL*

I<——-— Can stay low longer for
more wait states

\

Address Stable x

RDY or XRDY

AP~

pDBIN

Address Bus

Status Bus

it -

Status Stable x

FIGURE 4-5. S-100 Bus Read Cycle with Wait States

Begin Bus State 1

Chapter 4: S-100 BUS TIMING RELATIONSHIPS 4 7

3

Assert pSYNC,
Address Bus, and

Enter BSW, sample
RDY or XRDY again

Status Bus

1

Slave Asserts
RDY or XRDY

Y

Begin Bus State 2.
Master asserts
read or write strobe

]

Master samples

RDY

or XRDY still

asserted
?

Enter BS3

Y

Stop asserting
strobes, Address

RDY or XRDY Bus, and
Status Bus
End BS3. Begin

next bus cycle

FIGURE 4-6. Bus Cycle with Wait State Flowchart

sXTRQ#* AND SIXTN+* TIMING: 16-BIT DATA TRANSFERS

Up until now we have assumed that all the data transfers have been only eight
bits wide. The IEEE standard has provided a mechanism for transferring 16 data
bits at once. Two new signals, sXTRQ# and SIXTN#, have been defined for that
purpose. Refer to the timing diagram in Figure 4-7 and the flowchart in Figure 4-8.

If a 16-bit transfer is needed the status signal sXTRQ# is asserted by the
master at the same time as the other status lines. This will be very near the begin-
ning of the cycle in BS1.

If the addressed slave is capable of a 16-bit transfer, it will assert SIXTN#* low.
At the rising edge of ® in BS2, the master samples the SIXTN# line. If it is low, the
master will then gang the two 8-bit data buses together as one 16-bit bus and
perform the transfer.

If the slave is not capable of a 16-bit transfer, it will not assert SIXTN#. When
the master samples SIXTN# at the rising edge of ® during BS2, it will find that the
slave cannot perform the 16-bit transfer.

48 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

BS1 I BS2 BS3 BS1—

\ \ \ \ _J

o

]

pSYNC

—

pSTVAL+

4
P

sXTRQ#* ‘
A
SIXTN+
Address Bus x Address Stable x
Other Status x
Bus Signals x Status Stable

FIGURE 4-7. sXTRQ-* and SIXTN+ Timing.

If the master is smart enough, it can then perform the transfer as two consecu-
tive 8-bit transfers. This is known as a “‘byte serial”’ transfer, because the infor-
mation will be sent as two bytes of data, serially. If the master is not capable of a
byte serial transfer, it must immediately cause an error condition, with ERROR+
asserted. It will probably also cause an interrupt that causes a branch to an error
handling routine. Hardware that saves the pertinent machine status during BS2
should be triggered by the ERROR# line, because the failed transfer will probably
cause all kinds of havoc on the bus. A circuit for this will be presented in Chap-
ter 16.

Chapter 4: S-100 BUS TIMING RELATIONSHIPS 4 9

Begin Bus State 1

Assert pSYNC,
Address and
Status Buses,
and sXTRQ+

Slave does not Slave asserts
assert SIXTN# SIXTN#+
Enter Bus Enter Bus
State 2 State 2
Master samples Master samples
SIXTN= SIXTN+

Master completes
bus cycle

Is
master
Zapable of byteay, NO
senal transfe
Master transfers Master asserts
- t
fwo 8-bit bytes ERROR* and causes
to consecutive interrupt
addresses
End bus cycle Error circuitry
fatches address
and status
information

Branch to error
handler routine

FIGURE 4-8. Sixteen-Bit Data Transfer Flowchart

decoding and
buffering

INTERFACING TO S-100 COMPUTERS

In this chapter we will begin to explain how to connect circuits to the S-100
Bus. We are going to explain the basic circuitry that must be used to interface
anything to the signals on the bus: how to determine when a slave is accessed,
how to buffer the signals, what problems to look out for, etc.

We are going to show you how to decode all the relevant states that the S-100
Bus can be in, and explain why that is necessary. We will also explain what
"buffering’’ is, and how to do it.

BUFFERING

Buffering is used to isolate an output signal on the bus from the many inputs
that may be attached to it. These inputs are referred to as “‘loads.” Every load that
is placed on a signal line degrades the ability of the signal line to maintain proper
logic levels. The term buffering means that the signal is isolated from the many
loads that a board might require.

The term buffering is also used to describe the amplifying or strengthening of a
signal which must drive many loads. ICs which drive large loads are called buffers
or drivers.

Buffering is used in a third sense to describe the ability of a slave to float its
output signals so that another slave’s signals will not conflict. This is usually
accomplished by the use of tri-state buffers or drivers. The term buffering in this
instance means that one slave’s outputs are buffered (isolated) from another’s.

51

5 2 INTERFACING TO S-100//EEE 696 MICROCOMPUTERS

Incoming Signal Buffering

A slave that is plugged into the S-100 Bus will have signals coming into the
board and signals going out from the board. A slave usually needs to input the
address and status buses to determine if it is being addressed, input the incoming
data bus, and input the bus strobes to determine when it may do things like drive
the data bus.

The S-100 standard states that an S-100 card may not source more than 0.5
mA at +0.5 V nor sink more than 80 pA at +2.4 V on most signal lines. Hence,
one should never connect any incoming S-100 signal line to more than one LS-
TTL input. Two LS-TTL inputs will not meet the ““‘worst case’’ specification. For
example, the circuits in Figure 5-1aand Figure 5-1 b do not comply with the stan-
dard. A non-inverting buffer of some type is needed between AO and the inputs of
the gates (Figure 5-1c¢). The buffer may be as simple as an unused non-inverting
gate, such as an AND or OR gate, as shown in Figure 5-23, or a tri-state buffer
section that has its output permanently enabled, as shown in Figure 5-2b.

The output of a standard LS-TTL gate can drive the inputs of 20 other LS-TTL
gates, or as it is commonly referred to, 20 LS-TTL loads. Another term for this is
“fan-out.”” The fan-out would be 20 LS-TTL loads.

On the other hand, the fan-out of a tri-state driver is usually much higher (that
is why it is called a driver). The 74LS367 shown in Figure 5-2bis capable of driv-
ing 40 LS-TTL loads. The type of buffer that you choose will depend on how
many loads it has to drive.

Sometimes a slave may need the complement of an incoming signal. In this
case it is acceptable to use an inverting gate or driver to do the buffering. Figure
5-3 shows some examples.

+5V
79 79 79 ’_Do‘—"l
AO A0 »-Do—-z AO
[[
— —
a. Not acceptable b. Not acceptable c. Acceptable

FIGURE 5-1. Meeting the ““Worst-Case’’ Bus Loading Specification

Chapter 5: DECODING AND BUFFERING 5 3

a. +5V
74LS125 or
740508 7415367
79
A0 79 Buffered AQ AO Buffered AO
or -
79 741832
A0 Buffered AQ
FIGURE 5-2. Non-Inverting Gates and Buffers
+5V
74LS00
79
A0 Buffered and Inverted AO

79 74LS02

AO Buffered and Inverted AO

or

74LS04

79
AO D—Do——» Buffered and Inverted AO

74LS366

AO I3 Buffered and Inverted AO

FIGURE 5-3. Inverting Gates and Buffers

5 4 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Data Bus Buffering

The S-100 data input (DI) bus is implemented as a tri-state bus, where only
one slave may drive the lines at a time. The strobe pDBIN is used to control when
the slave may drive the bus. If the slave is being addressed and pDBIN is true, then
the data output buffers on the slave may go from the high-impedance state to a
low-impedance state, allowing the data out onto the bus. Slaves usually contain a
signal {commonly known as “‘board select”’) that is true when the board has been
addressed. {(When we say addressed we mean that the address bus contains an
address that the slave occupies, and that the status bus contains the proper infor-
mation that distinguishes the slave’s type of cycle from another type. For exam-
ple, a memory status and address should not cause an 1/0 board to be selected.)

This board select signal (BDSEL) can be either active high or low, depending on
the design of the decoder circuitry (we will discuss that later), but for purposes of
this book we will always assume an active low BDSEL#. BDSEL# is used in con-
junction with pDBIN to turn on a slave’s data input bus drivers. BDSEL # is referred
to as the ’qualifier’’ because it qualifies a particular pDBIN pulse as being the one
for this slave. A circuit that shows how to turn on a tri-state bus driver is shown in
Figure 5-4. When BDSEL* is low and pDBIN is high, the output of the NAND gate
will go low, causing the outputs of the 74LS244 to be enabled.

D7 >— 43 D17
93
D6 >-— "> DI6
D5 >—— 22 o
91
Slave's J D4 >— JaLs244 ——{> 014\ 5.100 Data

Data Bus D3 > 42 D DI3 Input Bus
(7)) S ——241 > o
N\ N 94
D1) o > on
po»>—— | —r>00
ENABLE

L

pDBIN

74LS00
BDSEL*

74LS04

FIGURE 5-4. Enabling Tri-State Bus Drivers

Chapter 5: DECODING AND BUFFERING 5 5

The IEEE standard requires that any device that drives the bus must have an
adequate fan-out. Fan-out is expressed by IC manufacturers as the amount of
current sinking and sourcing capability that an output has. A standard LS-TTL
gate can typically sink up to 8 mA, while some tri-state buffers can sink up to 50
mA. The standard states that the minimum amount of current sinking capability of
any driven line must be at least 24 mA at +0.5 V. Drivers (except open collector
drivers) must source at least 2 mA at +2.4 V. That rules out driving the bus with
standard gates. Some common buffers that are capable of meeting the standard
are 74LS125A, 74LS367A, 74LS244, and their inverting counterparts.
Diagrams of these and other buffers are shown in Figures 5-5 through 5-8.

FIGURE 5-5. 74LS125A Quadruple Bus Drivers with
Tri-State Outputs

o=
3
z

2A 2y 3A 3y GND G1 1A 1Y 2A 2y 3A 3y GND

741.8365A 74LS366A
Non-Inverted Outputs Inverted Outputs

FIGURE 5-6. Hex Bus Drivers with Tri-State Outputs
and Gated Enable Inputs

5 6 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Vee G2 6A 6Y 5A 5Y aA ay

4 13 12 11 10 9
| 3 l 4 l 5 6 7 I 8
Y 2 2y 3A 3y GND

1 2
9] 1A) G1 1A 1y 24 o 1A 3y GNOD
74LS367A 74153684
Non Inverted Outputs laverted Outputs

FIGURE 5-7. Hex Bus Drivers with Tri-State Outputs

Vee 26 1Y) 2A4 1Y2 2A3 1¥Y3 2A2 1Y4 2A1 Ve 2G 1Y1 244 1¥Z 2ZA3 1v3 2A2 1v4 2A1
2 1ol _fis}l {7} _[ie] _frs] |1 [.) . [> 1 (5 T [W 1 Wy B B B

ahdidnal [&ﬁ? vandl
I | e

1 2 3 4 5 6 7 8 9 10 1 2 3 a 5 6 7 8 39 10]
G 1A1 2Y4 A2 2Y3 1A3 2¥2 A4 2Y1 GND TG 1A1 2v4a VA2 2Y3 1A3 2Y2 tA4 271 GND
7415240 7415244
Inveited Ouiputs Non lnverted Outputs

FIGURE 5-8. Octal Bus Drivers with Tri-State Outputs

OPEN COLLECTOR DRIVERS

Some of the signals on the S-100 Bus are specified as open collector lines. In a
standard LS-TTL gate, the output is pulled up to a high logic level by a transistor.
This is known as an active pull-up. In an open collector device, the output is not
pulled up at all. The job is left to an external resistor.

This allows more than one open collector device to drive the same signal line It
any device is pulling the line low, the others will have no effect Uniy if all device
outputs are high will the line be high.

Some non-inverting and inverting open collector devices that meet the stan-
dard’s drive requirements are shown in Figures 5-9 and 5-10. These figures show
our convention for drawing an open collector gate. A diagonal line near the output
end of the logic symbol is used in this book to identify an open collector output.

Chapter 5: DECODING AND BUFFERING 5 7

Vee BA 6Y 5A 5Y aa ay vee A 6Y 5A 5Y 4A ay

14 13 12 1 10 9 8 14

-l e I

1A 1Y 2A 2y 3A 3y GND 1A 1y 2A 2y

7407

7406
Non-Inverted Qutputs

Inverted Outputs

FIGURE 5-9. Hex Inverter Buffers/Drivers with
Open Collector Outputs

Vee a8 aa ay 3B 3A 3y
14 13 12 1 10 9 8
1 2 3 4 5 & 7
1A 18 1Y 24 28 2Y GND

FIGURE 5-10. 74L.S38 Quadruple 2-Input NAND Buffers with
Open Collector Outputs

DECODING

A decoder is a circuit whose output or outputs relate to the ‘‘code’’ presented
at its inputs. An address decoder might have three binary encoded address lines
(AO-A2) as inputs and produce eight separate outputs, with an active level at each
output corresponding to an individual code on the address inputs. Therefore each
address would be decoded. A decoder might also have certain status lines as
inputs and produce an output only when a certain cycle occurs.

5 8 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

The two most common types of decoders used on the S-100 Bus are address
and status decoders. The following sections will show you how to build all kinds
of decoders for S-100 Bus slaves. In fact, most of the remaining circuits in this
book will use one or more of the following decoder circuits.

Status Decoder Circuits

There are three kinds of S-100 cycles that we will need to decode: memory
cycles, I/0 cycles, and interrupt acknowledge cycles. These can be further broken
down into five subdivisions: memory read, memory write, input (I/O read), output
(/0 write), and interrupt acknowledge.

All of the following circuits will produce a high logic level output when the type
of cycle they decode is occurring. The circuits also meet the loading requirements
of the standard.

Figure 5-11 shows a circuit that will decode a memory cycle. It will produce an
active output for both memory reads and writes. If SMEMR is high, a memory read
cycle is occurring, and this high will force the output of the OR gate high. If sWO#»
is low and sOUT is low, a write cycle is occurring, but not to an I/0 port. Therefore
the cycle must be a memory write. The two lows will also cause the output of the
OR gate to go high.

A circuit is not really needed to decode a memory read cycle, since a status line
already exists that indicates that a memory read is occurring. This line is SMEMR.

A portion of the circuit in Figure 5-11 is used to decode memory write status,
and is shown in Figure 5-12. If sWO# is low and sOUT is low, a write cycle is
occurring that is not to an I/0 port, and therefore must be a memory write cycle.

A circuit that decodes an 1/0 cycle is shown in Figure 5-13. If either sINP or
sOUT is high (meaning the cycle is either an I/0 write or /0 read) then the output
of the OR gate will also be high. When both inputs are low, the output of the OR
gate will be low.

As with a memory read cycle, no circuitry is required to decode |/O reads or |/0
writes, because the lines sINP and sOUT do this. The same is also true of interrupt
acknowledge cycles because the line sINTA wilt go high only during an interrupt
acknowledge cycle.

sMEMR D“

sWO*

Memory Cycle
74L832

741502

sOUT

FIGURE 5-11. A Memory Cycle Decoding Circuit

Chapter 5: DECODING AND BUFFERING 5 9

There is one important thing to take note of here. The status decoders and
status lines are status indicators and should not be used as strobes. This is
because the status lines may be in an unknown state between cycles and cause
the outputs or lines to show an invalid state (glitch). Strobes, on the other hand,
are never allowed to glitch. Therefore, you should never use the “‘edge,’”’ or transi-
tion, of a status line or status decoder output, because false edges may occur
before the lines have settled.

The signal pSTVAL#+ may be used to create a proper edge in conjunction with
any status line or decoder. A suitable circuit is shown in Figure 5-14. When
pSYNC is high and the inversion of pSTVAL=# is high, the output of AND gate A
will also go high. By this time, the status line (which is assumed to be active high)
will have settled and will be true. The two highs at the inputs to AND gate B will
cause its output to go high. Note that the output of the gate will only stay high for
the duration of pSTVAL#* during pSYNC; but since it is the leading edge we want,
the duration does not matter. If a negative-going edge is required, an inverter may
be added to the output of gate B, or a NAND gate may be substituted.

The reason that pSYNC needs to be included in the logic is that pSTVAL * may
have many other edges during the cycle, but the only one that indicates valid
status is the one during pSYNC.

97 74L502
sWos 45 Memory Write Cycle

sOUT

FIGURE 5-12. A Memory Write Status Decoding Circuit

45 74LS32
sOUT 1/0 cycle
46
sINP

FIGURE 5-13. An I/O Cycle Decoding Circuit

76 741508

Strobe

Note that the strobe will last for the
duration of pSTVAL#* low during pSYNC
high. For a negative strobe, add an
inverter or use a NAND gate at B.

N\
Status

FIGURE 5-14. Circuit for Developing a Glitch-Free Strobe Signal

6‘0 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Address Decoder Circuits

Address decoders are used to tell a slave device that its particular memory
location or I/O port is being addressed, rather than another’s. The address bus
contains binary coded information which needs to be decoded. It is necessary to
determine two things when designing address decoders: the number of signifi-
cant address inputs, and the number of locations that need to be decoded.

The number of significant address bits will vary, depending on whether the
cycle is a memory or I/O reference, and whether or not extended addressing is
being used. Remember that most current 8-bit masters have only 16 address
lines. All 16 are used for memory addressing, but only eight are used for I/O
addressing. But the standard has extended the number of address bits on the bus
to 24 so that the newer masters that have up to 24 address lines may address
more memory. Also, the newer masters may use 16 lines for /O addresses.

So a memory decoder may have 16 or 24 address bits as inputs and an |/O
decoder may have 8 or 16 address bits as inputs. We will show you how to design
all four kinds of address decoders.

The second criterion is the number of addresses that need to be decoded. If we
were making a memory board that contained 1 Kbyte of RAM, 1024 unique loca-
tions out of 65,5636 would need to be decoded. However, if we used 1K memory
chips, they would contain built-in decoders, so that we would simply have to pre-
sent the 10 least significant address lines to the chips, which would take care of
decoding the 1024 individual locations for us. The problem arises in distinguish-
ing this 1K block from another 1K block. We would still need to decode the six
most significant address bits to select which 1K memory chip block out of the
possible 64 is to be used.

We would probably want to put more than one set of 1K chips on the board. If
four sets were used, then we would need to decode four 1K blocks. We could do
it with four separate 6-bit decoder circuits, and this would allow each 1K block to
be addressed as any of the 64 possible blocks. However, most applications
require that RAM reside in consecutive blocks. Now we may use two decoders,
one that decodes the 4K block and one that decodes the individual 1K blocks
within the 4K block. When these two circuits are combined, we call the result a
decoder that decodes a 4K block into 1K segments or blocks.

Also needed is some convenient method to change the specific set of
addresses decoded. This is commonly called selecting the starting address of a
board. This is usually done with jumpers or DIP switches. All of our decoder exam-
ples will show switches, but you may use any method you prefer to implement the
switch. DIP switches are usually chosen, because of their small size and conve-
nience. Instead, you may elect to use full-size switches or encoded hexadecimal
rotary switches, or you may simply hardwire a particular setting. The method is up
to you, as long as you keep the function the same.

Chapter 5: DECODING AND BUFFERING 6 1

By decoding the proper address bits, decoders of any size and block size can
be created. The following section will show memory address decoders for popular
block sizes.

First we will discuss a few popular devices that are used to do decoding. The
first is the 74L.S266 quad exclusive NOR (XNOR) gate with open collector out-
puts. The connection diagram is shown in Figure 5-15. Any number of these
gates may be combined to decode any number of bits. A circuit to decode four
bits with a 74LS266 is shown in Figure 5-16. It works as follows. When the two
inputs of a gate match (that is, when the address line matches the switch setting),

7415266 7418136

FIGURE 5-15. Quad Exclusive-NOR and -OR Gates with
Open Collector Outputs

+5V

1kQ

A5 2 AT

86 BDSEL (Active High)
Ata> A 9

Al 3E>85 A O = Pull-up resistor

33
A2> A
| G 0-0J74L8266
-
-~ *Slash indicates open collector output

FIGURE 5-16. Circuit for Decoding Four Address Bits
Using the 74L.S266

6 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

the output of that gate will be high. If the two inputs don’t match, the output will
be low. Since all the outputs are tied together, any low gate output will win (hold
the others low as well). So the output of the array (BDSEL) will go high only when
all the inputs of the various gates match. This will only occur when the address
lines are the same as the switch settings, so we have decoded that address. Note
that a closed switch represents a binary O and an open switch represents a 1.

The same circuit may be built using a 74LS136 quad two-input exclusive OR
(XOR) gate with open collector outputs (the connection diagram is shown in
Figure 5-15). The difference is that now the output of any gate will go high only
when the two inputs are opposite. We could invert the address lines to exactly
duplicate the previous circuit, but why not just invert the switch function? Now a
closed switch would represent a binary 1 on the address line, and an open switch
would be a binary O. In fact, this is more “logical’’ to the user. A switch that is off
(open) is a 0 and an on (closed) switch is a 1. The circuit is shown in Figure 5-17.

The two previous circuits may be expanded simply by adding more sections
and tying together the outputs. If fewer bits need to be decoded, gates can be
deleted.

Notice that the circuits shown in Figures 5-16 and 5-17 contain diamond-
shaped symbols in some of the signal lines. This is the symbol we will use to
represent a pullup resistor. This symbol means that a resistor is to be connected
between the +5 volt supply and the signal line in which the symbol appears;
5100 ohms is an appropriate value for the resistor.

Another IC that is useful in building decoders is the 74LS138, itself called a

+5V
2 k0
32 1
A1s > —tD |
86 \ @——®» BDSEL (Active High)

Aaao— ‘ ’D—“’ & = Pull-up resistor
Das \
A13 ‘ ’D'—“

33
A2 gD_d
1'—0/0"O'|_7)4LS136

i

FIGURE 5-17. Circuit for Decoding Four Address Bits
Using the 74LS136

Chapter 5: DECODING AND BUFFERING 6 3

decoder. It is a three- to eight-line decoder which activates one of eight outputs;
the output that is activated depends on the bit pattern or code at the three binary
encoded inputs. It also contains three “‘enable’ inputs. These inputs must be at
the proper logic level in order for any output to be active. A connection diagram,
function diagram, and truth table for the 74LS138 are shown in Figure 5-18a.

Similar to the 74LS138 is the 74LS139, a dual two- to four-line decoder. It
has two identical sections that decode two binary inputs to one of four possible
outputs. Each section has only one enable input. A connection diagram, function
diagram, and truth table for the 74LS139 are shown in Figure 5-186.

With these four ICs, and assorted other gates, it is possible to build almost any
kind of decoder. We will now show you some typical address decoders with
various numbers of inputs and outputs. Each of the decoder schematics will have
a circled letter in the upper left-hand corner. The reason for this is that you will
need to use one or more of these circuits in conjunction with every other circuit in
this book. Rather than redraw all the decoder circuits each time, we will show a
block with the same circled letter in it. This represents the decoder circuit with the
matching letter.

Connection Diagram

fo————————0ata Outputs—————————=| Truth Table
vee \G i vz v3 ¥a 5 76 o
16 15 14 13 12 1" 10 9 Output
Enable Select
l l l l l 61 Gz c B A Yo Y1 VZ V3 V4 Vs Vé V7
Yo Y \Z] ¥3 Y4 5 X H X X X H H H H H H H H
Lox X X X H H H H H H H H
HoL Lot L H H H H H H H
A Y6 H L L L H H L H H H H H H
H oL LH L H H L H H H H H
H L L H H H H H L H H H H
B C Ga G2 G L HoL HoL L H H H H L H H H
H oL H L H H H H H H L H H
H L H H L H H H H H H L H
HoL H HH H H H H H H H L
1 2 3 4 5 6 7 8
ZA G =3 32 =G2A - G28
A 8 ¢ 2 628 o1 D‘;ZA N H = high fevel, L = low fevel. X = urelevant
F—Selecl—ol FEnabbe———l Output
Function Diagram
18) o5 T
¥ (14) &5
o) 5
Enable T Y2y
p 8
nputs) GZA 1 1
528
12 o5
Data
Outputs
— GRS
81} - l‘OlT5
A o <> O
Setect) g2 OS> —] S
Do >
inputs
@3 1 255
¢ Po———o>— —_

FIGURE 5-18a. 74LS138 3- to 8-Line Decoder

6 4 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Connection Diagram Function Diagram

Enablet !-—Se\ccx—-I I-o—Da!a Oumu|s——-1

Vee 26 28 28 v V1 vz I3 P v
9

() $—

Fnable 1G 1 (8) —or
D =2
T
) SR
2
1A
o | 1220 gl
Inputs — - iv3
" I 18 204>
Data
Output
——— 12 5o
5= 118)
— - Enable 26 2> —
i 1 ' o o Ivi vz iV GND ook - ————— 7*‘D>L‘)z i
tnavte Le—seiecis] e Data Outputs——+

Truth Table nap
2228 > >4
{Each Decoder/Demultiplexer! Select s — QL
Inputs ‘ 28 [13] E 2Y3

Inputs

OQutputs
Enable Select

3
bl
|
b

B
X
L
L
H

cerez o
T-TEx |B
Trzrx
Ir-xx
Irzzz
~IzrI

H

H = tugh level, L = low level. X = iwrelevant

FIGURE 5-18b. Dual 2- to 4-Line Decoder

Memory Address Decoder Circuits

The circuits shown in Figures 5-19 to 5-28 are used to decode memory
addresses. All the decoders are designed primarily for 16 bits of memory addres-
sing, but they all contain a ““hook’’ to add in an extended address term. This hook
is always a section of a 74LS136, and may be eliminated entirely if extended
addressing is not required.

We will show you decoders for 1K, 2K, and 4K blocks of memory. Some will
decode one block, some four blocks, and some eight blocks. These combinations
can be used to construct almost any type of memory array.

You will notice a great similarity between all of the different decoder circuits; in
fact, they are almost identical. About the only thing that changes is the number of
address bits that are decoded — the fewer bits that are decoded, the larger the
block size.

The first is a decoder that can decode one 1K block of memory. It is shown in
Figure 5-19. It works exactly like the circuit in Figure 5-17; in fact, it is the same
circuit with more sections. When the information on the address inputs is exactly
the opposite of the setting on the switches, and if PHANTOM# is not asserted,
the output BDSEL# will go low. Because the upper six address bits are being
decoded, there are 64 possible addresses that may be set on the switches (26 =
64). Therefore the circuit will decode one of 64 possible 1K blocks.

Chapter 5: DECODING AND BUFFERING 6 5

@ |_Th\5 section optional, use if extended —l

memory addressing is required

)

l EXMEMADR

I LD—
| it

BOSEL+

74LS00

= Pull-up resistor

pHANTOMe 87

FIGURE 5-19. Memory Address Decoder for One 1K Block

The setting on the switches will determine which 1K block the decoder will
decode. The switch setting is in binary.

Note that the section of the schematic in dotted lines is required only if you
intend to decode the full extended address available on the S-100 Bus. The signal
EXMEMADR originates on the schematic in Figure 5-28; you should combine the
two schematics to make the full decoder. If you do not require the extended
address, the section of the schematic in the dotted lines may be omitted entirely.

The circuit in Figure 5-20 is almost the same as the previous one, except that it
has one less address bit connected to it. Therefore it will decode one 2K block, out
of a possible 32, because it has five address lines going in (2% = 32). The circuit is
addressable on any 2K boundary by the setting on the switches.

The circuit in Figure 5-21 is again almost the same as the previous two. This
time, only four address bits are decoded. This will decode one 4K block out of a
possible 16 (24 = 16). The circuit is addressable on any 16K boundary by the set-
ting on the switches.

The circuit in Figure 5-22 is used to decode one to four 1K blocks. The
74LS136 array is used to decode the 4K block, and the 74LS139 is used to
decode the individual 1K blocks within the 4K block. The signal BDSEL+ (board
select) will be active when any of the 1K blocks is selected, and one of the
SELA#-SELD+* outputs will be active to indicate which of the 1K blocks it is.

66

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

® M

This section optional; use if extended

memory addressing is required

L

AlS 32
. ;)D—'

A14

E)(MEMADR)?D

86

1kQ

741500

INE] s - "i})—» BOSEL*

A2 I >_33 ._/ D—"
g seeers

PHANTOM« I >67

O = Pull-up resistor

FIGURE 5-20. Memory Address Decoder for One 2K Block

—_——— —— ———— —
© I_Thss section optional, use f extended l

l memory addressing is required

ExMEMADR)PD_

1k

BDSEL*

74LS00

PrANTOM» 32

b

O = Pull-up resistor

FIGURE 5-21. Memory Address Decoder for One 4K Block

Chapter 5: DECODING AND BUFFERING 6 7

®© l This section optional, use if extended I

addressing 15 required

x
ES
2
>
]
3

L _______ _J‘sv

g B

ISE D——WD—H & = Puli-up resistor

33
a2 [\D
— o-<>—J74LS|36
BDSEL»
G ¥3 p——w sELD-
87 -
an > 8 Y7 p——seiCs
37 7415139 __
ato > A Y1 f—= seis-
o _
pranToMs O | 6 b——m SFIAS

FIGURE 5-22. Memory Address Decoder for
One to Four 1K Blocks

Here is how it works. The signal BDSEL# will be high if the address lines do not
“match” the settings on the switches, or if PHANTOM# is asserted. This is
applied to the enable (gate) input of the 74L.S139. When this enable input is high,
none of the outputs will be active; they will all be high.

When the address lines A12-A15 match the settings on the switches, the sig-
nal BDSEL# will go low and cause the enable input on the 74LS139 to go low.
This will allow one output of the 74LS139 to go low also. The output that goes
low will depend on the state of address lines A10 and A11. If they are both low,
SELA#+ will go low; if A10 is high and A11 is low then SELB#+ will go low; if A10Q s
fow and A11 is high then SELC+ will go low; and if they are both high then SELD*
will go low.

The circuits in Figures 5-23 and 5-24 work in exactly the same fashion, except
that one decodes up to four 2K blocks and the other up to four 4K blocks. The cir-
cuit in Figure 5-23 is addressable on any 8K boundary and the circuit in Figure 5-
24 is addressable on any 16K boundary.

Do you begin to see the pattern here?

The circuit in Figure 5-25 is an extension of the one in Figure 5-22, except that
the 74LS139 has been replaced with a 74LS138. This provides four more 1K

68 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

| memory addressing s requrred

As 2
ITY o -

o 7418136

lXMEMADR)—PD__

& = Puli-up resistor

BDSEL*
G Y3l SELD
741500

33 —

Az > B Y2 fromi SELC
7415139

87 —
an > A Y1 SELB®

U _
PHANTOM* [YO p—— = SELA-

FIGURE 5-23. Memory Address Decoder for One to Four 2K Blocks

® [Tz section optional: use 1 ext

| memory addressing is required

ended -|

Ald 56
7418136 > = Pull-up resistor
BOSEL*
G Y3 p—= SELD»
741800
85 -
A3 > B Y2 p—= SELCe
74L5139
33 7
a2 S A Y1 p— SELBs

67

PHANTOM* [

YO e SELAS

FIGURE 5-24. Memory Address Decoder for One to Four 4K Blocks

Chapter 5: DECODING AND BUFFERING 6 9

© | This section optanal. use f extended |

mermory addressng s required

|

l EXMEMADR D_
|

| =

85
A13 D__—_O—O_F—)D_' O = Pull up resistor
O 7415136

BOSEL*

74LS00

G2A Y7 p—— StiHe
33 —
anz{T> c Y6 f——= sELGe
87 =
Al > B Y5 - SELF*
37 _
A10 - A Y4 $——g SELEe
57 7415138 _
pHanTOMs C—nr—] L5V Y3 f— sFiO-

Y2 f— seLce
G1 V1 g SELES

YO f——= SELA®

.”jo l__o

FIGURE 5-25. Memory Address Decoder for One
to Eight 1K Blocks

blocks, and therefore takes an extra address bit into the 74LS138. This bit moves
down from the 74LS 136 array to the 74LS138, because we are now decoding a
bigger block {8K), and that takes fewer address bits to decode, but the eight
individual selects take one more. Notice that all the 1K address decoders input the
same number of address bits, but their position in the decoder “tree’’ is different.
Is that pattern starting to make itself evident?

The following two circuits are extensions of the previous one, but the circuit in
Figure 5-26 decodes up to eight 2K blocks and the circuit in Figure 5-33 decodes
up to eight 4K blocks.

The circuit in Figure 5-26 is addressable on any 16K boundary, and the circuit
in Figure 5-27 is addressable on any 32K boundary (but in a 64K system there are
only two).

The signal PHANTOM# has been included in the logic of all the previously de-
scribed memory address decoders. PHANTOM# is a signal that is used to disable
a memory block so that another block may temporarily exist in the same address

70 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

| memory addressing is required

| E)(MEMADR)-?D_‘
|

A13DBS

74L8136

it~}

® I This section optional, use if extended

74LS00

i

O = Pull-up resistor

1kQ

BDSEL*

33
a3
87
A >

67

PHANTOM" >

4
L

G7A |~ SELHe
8 SELG*
——= SELFe
——= SELEe
7415138

G1
GzB

|8 SELD+
f— SELCe

joe—= SE{Be

RN

|— sclAs

FIGURE 5-26. Memory Address Decoder for One

to Eight 2K Blocks

-—————
® I_Tms section optional, use f extended

memory addressing is required

_|
|

| |
I EXMEMADR)?D_ |
I |
J

32

_E/ 74L5136

+5V

!

74LS00

AmDBG
A|3§'5

A12 |:>33
67

PHANTOM* [(C—eerm———————]

7418138

G1

G28B

O = Full-up resistor

kiy

BDSEL*

SELH=
SELG*
SELFe

Y4 p——fi~ SELE®
p——8 SELO*
p——t SELCe
— SELB*

33 S

p——t~ SELA®

FIGURE 5-27. Memory Address Decoder for One

to Eight 4K Blocks

Chapter 5: DECODING AND BUFFERING 71

+5V
<
1 ki
64 b3

N

6.

, —oc

S D
S
A20 D—WD__‘ O = pull-up resistor
S A
A'IBD_F-O/ D_‘

16

A16 [b_o/—gz%s__

p—— EXMEMADR

|
|

FIGURE 5-28. Extended Memory Address Decoder Circuit -

space (see Chapter 3 for a more technical description of PHANTOM#). If PHAN-
TOM# is asserted, the address decoder circuitry will be effectively disabled, caus-
ing the memory to disappear. If the address decoder must not respond to PHAN-
TOM+, replace the 74LS00 with a 74LS04.

The circuit in Figure 5-28 may be added to any of the previous decoder circuits
to give them extended addressing ability. It is the basic 74LS 136 circuit, but the
address inputs are the new extended address lines A16-A23. The output,
EXMEMADR, is connected to the EXMEMADR input in any of the previous
decoder schematics. This will allow any of the previous circuits to reside in any of
the 256 possible 64K ““pages.”

I/0 Address Decoder Circuits

The circuits shown in Figures 5-29 to 5-37 are basically the same as the
memory address decoders described in the preceding section. Only a few things
are different, so rather than go through all the explanations again, we will only dis-
cuss the differences.

If you look at the circuit in Figure 5-29, you will notice the familiar 74LS136
array. But notice that A7, rather than A15, is now the most significant bit (not
counting the address extension, which we will discuss later). That is because only

e

72 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

) 1O addressing is required

|
EXIOADR ?D_

A6 D——w[p_*
>—</ Q = Pull-up resistor

BDSEL*

A3C>3|—WD—::E;—.

AoD———wD
o 7415136

.

FIGURE 5-29. |/0 Address Decoder for One I/O Port

256 1/0 ports are addressed by most masters, and that only takes eight bits.

Now that we are dealing with 1/0 addresses, the block size is vastly different
from that of memory addresses. Now the biggest block size is two ports (two
unique addresses), whereas with memory our biggest block size was 4K (4096
unique addresses). The decoders remain the same, but the range is shifted down
towards the least significant address bits.

The only new wrinkle we have introduced in this section is the addition of a
decoder for two ports or two blocks of ports. (Before, we had decoders for one,
four, and eight blocks. Now we have decoders for one, two, four, and eight
blocks.) This is because many of the LS! I/O chips take up a block of two port
addresses.

An example of this new circuit is shown in Figure 5-30. Instead of using a
“"decoder’’ IC, we have “‘built’”" a small decoder out of two NAND gates and an
inverter. Here is how it works. When the address matches the switch settings, the
output of the 74LS136s (BDSEL) will go high. This will cause one input to each of
the NAND gates to go high. When address bit AO is low, NAND gate B will have a
high and a low at its inputs and therefore its output (IOSELB#) will be high. AO will
be inverted by the 74LS04 and therefore NAND gate A will have two highs at its
inputs, so its output IOSELA #) will go low.

Chapter 5: DECODING AND BUFFERING 7 3

® This section optional. use if extended 1
memory addressing is required

|

! |
EXIOADR

1 > ﬁ Z>— |

| |

L _J +5V

>

a4 D‘—WD—‘ & = Puil-up resistor

" "‘J;; i D_“’_%—DBDSELO
N SO Ve

—

A0 79 [>o TS0 So |osn.a.
3

74L500

FIGURE 5-30. /O Address Decoder for Two I/O Ports

I o ddressing s requn red '

| EXIOADR D_ !
!
= |

a8 D—WD—‘
I 0N L B
“a E?—WD—‘
A E»——WD—‘

Azbs'_—w
F—-O/ 7!25_‘

e~ 8DSEL

7aLs0a
G V3 p——= (0SELDs
80 o
A [D— B YZp——=a= 10SELCe
7415138 __
Yip—®~ I0SELBe
79
ao > A 70| I0SELAS

FIGURE 5-31. /O Address Decoder for One to Four Single 1/0 Ports

74

INTERFACING TO S-100/lEEE 696 MICROCOMPUTERS

®

I This section opbional, use 1f extended

1 0 addressing s required

29
s >

EXIOADR>?[D_‘

|
_J&sv

;lk!l

O = Pult-up resistor

————————— el - N1

G2A

c V6
8 Vs
A ¥4

gl

7415138

p——= 0SELHe
= (0SELGe
8~ JOSELF*

——— I0SELE®

Y3 f——= 10SELD>

2 p——= |OSELC*

8 JOSELB

—— I0SELAs

FIGURE 5-32.

®

S D

‘ This section optional, use if extended
10 addressing 1s required

ExlOADR)?D_

& = Pull-up resistor

>—Do—-> BDSELS

74LS04

D

7415136

indl

FIGURE 5-33. I/0 Address Decoder for One Block of Two I/O Ports

Chapter 5: DECODING AND BUFFERING 75

| 10 addressing 1s required

EX|0ADR>?%

30 Q = Pull-up resistor

- w—Do—-» BDSEL®

Az }-—M—QD_‘ 74L504

74L8136
—
80 .
Al i))—» IOSELB:
741504 74L504
I0SELA=

74LS00

FIGURE 5-34. /0 Address Decoder for Two Blocks of Two I/O Ports

' 1 O addressing is required

l EXIOADR D_
|
| =

|
| _J +sv

83

82

e

29 O = Pull-up resistor

e

30

e

31

g e Vey

® [he section optonal. use 1 extenged _l

e BDSEL*

74LS04
G ¥3 p~— (0SELD®
81
Az [B V2 et 10SELC
7415139

Y7 p——= (0SELE*

80 —
A A YO p—p iOSELAS

FIGURE 5-35. I/0 Address Decoder for One to Four Blocks
of Two I/0 Ports

76 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

© This section optional, use if extended
| 1 0 addressing is required

)
I

|
| EXIOADR D |
| oo
J

& = Puli-up resistor

-
= ’____._.___> BDSEL
741508
G2A Y7 p——t 10SELHe
s 31 N Y6 L-.. I0SELG»
a2 c 81 s Y5 feei (OSELF
N - 80 A Y4l — e 0sELES
= 7418138 y3 1 gm |OSELD®
+5V
Y2 et 10SELC
i 61 Y1 f— (0SELB
G268 YO f—a 10SELAS

FIGURE 5-36.

/0 Address Decoder for One to Eight
Blocks of Two I/O Ports

+5V
o
4: 1kt
32
e

-
m%m%
arz D—m% O = Puliug resstor
Al D—WD_‘
VT oD
ASD—WD_‘

=

p—— - EXIOADR

FIGURE 5-37.

Extended I/0 Address Decoder Circuit

Chapter 5: DECODING AND BUFFERING 7 7

When AQ is high, the whole process is reversed, causing IOSELB* to go low
and IOSELA+ to remain high. When the address does not match the switch set-
tings, the output of the 74LS136s (BDSEL) will be low and therefore IOSELA #
and IOSELB#* will both be high (inactive).

The last difference is that the extended I/O address bits are A8-A15, rather
than A16-A23 as in the memory section. The extended I/O address decoder
shown in Figure 5-37 is used in conjunction with all of the other I/O address
decoders, just as the extended memory address decoder was used with the
memory decoders. If you want extended I/O addressing, just connect the
EXIOADR output to the EXIOADR input of a decoder circuit, and if you do not
want extended I/O addressing, just leave the associated circuitry out.

Figures 5-30 through 5-36 show 1/0 address decoders for various block sizes
and numbers of blocks.

STROBE QUALIFIERS

Strobes are the signals that tell the system when to do something, or when
some information on one of the buses is valid.

The strobes we are concerned with in this section are the strobes that qualify
the data buses. They are pDBIN, pWR#, and MWRT. A complete description of
these signals and their timing relationships to the rest of the system is contained
in Chapters 3 and 4.

A “'strobe qualifier’” is a circuit that allows a strobe to affect another circuit
only if that circuit is addressed. Otherwise the strobe is ‘“masked’’ from the cir-
cuit. For example, the strobe pDBIN is used by a slave to gate its data onto the
data input bus. The same strobe is used by all slaves, be they memory or I/0, and
of course a normal system generally has more than one memory board and more-
than one I/O board. A pDBIN strobe qualifier circuit allows pDBIN to affect only
the addressed slave. So pDBIN would have to be qualified with the status and
address bus decoder outputs. A circuit that does this is called a strobe qualifier.

A strobe qualifier for memory read cycles is shown in Figure 5-38. When the
signal BDSEL* is low (signifying that a memory location on the board is being
addressed), SMEMR is high (signifying a memory read cycle), and pDBIN is high
{the active state of the read strobe), the output of the NAND gate will go low. This
will enable the outputs of the tri-state buffer, allowing the data from the
addressed memory location to be gated onto the bus. When pDBIN goes low, the
output of the NAND gate will return high, disabling the outputs of the buffer.

A similar circuit for 1/0 read cycles is shown in Figure 5-39. When BDSEL* is
low (signifying that an 1/0 port on the board has been addressed), sINP is high
(signifying an I/0 read cycle), and pDBIN is high, the output of the NAND gate will

78 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

D7 > 43 o1z
D6 \ﬁ ﬂo D6
D5) L 92~ pis
lave’ N\ 91 O
Ons-;;aerz D4 / Tri-State D4
Data Bus D3 > Buffer _‘I_Z_D DI3
D2 \ﬁ _ﬂD DI2
D1) J>— ﬂD DI1
DO Y- 2> o0
ENABLE
47 L_‘P
SMEMR >
>
pDBIN
74LS10
BDSEL=
740504
FIGURE 5-38. Memory Read Strobe Qualifier Circuit
/D7) o> o
D6 > [93~ pis
D5) L 92 15
\ 91
Slave's On-Board< D4) Tri-state p—1L> D14
Buffer
Data Bus D3> 4ZD DI3
D2 p— oS o
D1 > D—— [94~ bt
Do) L 95~ bio
ENABLE
46]—4»
sine 2> :
78
pDBIND—-——[74L810

8DSELe Yo >—
74LS04

FIGURE 5-39. I/0 Read Strobe Qualifier Circuit

S-100 DI Bus

S-100 DI Bus

Chapter 5: DECODING AND BUFFERING 7 9

go low, enabling the buffer. When pDBIN goes low, the output of the buffer will
return to the high-impedance state.

The circuits in Figure 5-40 show three different memory write strobe qualifiers.
All accomplish the same thing. Gate A has sWO# and sOUT applied to its inputs.
It will produce a high at its output only when both inputs are low, signifying a write
cycle that is not to an I/O port. (You may remember this as the status memory
write decoder presented earlier) When the output of gate A is high, and pWR
(PWR+ that is inverted by the 74LS04) is high, then the output of the NAND gate
will go low.

The second circuit in Figure 5-40 inverts sOUT and pWR# and applies them to
the input of a NAND gate. This is the same as the circuit above except that the
sWO#+ term has been eliminated. This is because there are only two types of write
cycles allowed on the bus: memory and I/0. If sOUT is low, the present cycle is
not an I/0O cycle, and if pWR# occurs, then it must be a memory write cycle.

The last circuit is the simplest of them all. It just inverts the MWRT strobe. This
may be used reliably, assuming MWRT is generated correctly in your system (see
Figure 3-3 for a proper MWRT generator).

None of these circuits includes the term BDSEL, as the other strobe qualifiers
do. This is because all memory chips have a “’chip select”” signal that must be
asserted before the write strobe will affect the chip. Therefore, the memory chip
itself qualifies the write strobe with the BDSEL # signal.

The circuit in Figure 5-41 shows a write strobe qualifier for an output port. If
sOUT is high (signifying an I/O write cycle), BDSEL#+ is low (signifying that this

Memory Write Strobe+

souT > 74LS00

74LS04
or

Memory Write Strobe*

74LS04
74LS00

or

68
MWRT D D(% # Memory Write Strobe*

74LS04

FIGURE 5-40. Memory Write Strobe Qualifier Circuits

80 INTERFACING TO S-100/lEEE 696 MICROCOMPUTERS

particular port has been addressed), and the inversion of pWR# is high, the output
of the NAND gate will go low. This would qualify pWR#* for an I/O port access.

The circuit in Figure 5-42 shows a strobe qualifier for an interrupt
acknowledge cycle. When sINTA is high (signifying an interrupt acknowledge
cycle) and pDBIN is high, the output of the NAND gate will go low. This signal,
INTA#, would usually be applied to the INTA# input of an interrupt controller IC
and also be used to gate the “‘interrupt vector’’ onto the data input bus. Refer to
Chapter 13 for more information about interrupts.

DATA BUS BUFFERING

Most slaves transfer information over the S-100 data buses. In most cases
these data lines must be buffered. The incoming data bus will usually need to be
buffered so that the slave does not present too great a load to the data output
lines. Data lines from the slave must be buffered with sufficient drive for the data
input bus. Also, the slave must enable its tri-state data input bus buffers only at
the appropriate times. The following circuits show some typical data bus buffer
arrangements.

The circuits in Figure 5-43 are for those slaves that have one bus for incoming

741510

77
souT >~

)} = 1/0 Write Strobe*
45
pWR*HJ
BDSEL >———c{>—

74LS04

FIGURE 5-41. I/0O Write Strobe Qualifier Circuit
06 741500
S'NTAS&—’ NTAs
78
pDBIN

. FIGURE 5-42. interrupt Acknowledge Strobe Qualifier Circuit

Chapter 5: DECODING AND BUFFERING 8 1

data and one bus for outgoing data. These are called “‘unidirectional,” because
the data flows in one direction only. The DI and DO buses are both unidirectional.

The circuit in Figure 5-43a would be used for gating data out onto the Dl lines
during a qualified read strobe (RD#). This strobe is assumed to be active low. Any
of the previous read strobe qualifier circuits will provide a proper strobe.

The circuit in Figure 5-43b is used for buffering incoming data from the DO
bus. Since this data will be strobed into the circuitry on the slave by a proper write
strobe, the outputs of the buffer are left enabled all the time by tying the active
low enable inputs to ground.

The circuit in Figure 5-44 is the most common data bus buffer arrangement.
Most slaves will have a bidirectional data bus on-board (there are many reasons
for this; among them are that most peripheral ICs have a bidirectional data bus,
and that it takes up eight fewer lines). The S-100 data bus normally uses two
unidirectional buses, but this circuit turns them into an on-board bidirectional bus.
Here is how it works. Assume for the moment that a qualified read strobe signal
(that is active low) is not asserted. This high level will be inverted by the 74LS04
whose low output will enable the tri-state driver that is buffering the DO bus. The
other buffer will be in a high-impedance state. This will allow data on the DO bus
to flow into the slave’s bidirectional data bus, and the slave will not be driving the
S-100 DI bus. When a qualified read strobe occurs, the data on the slave’s
bidirectional bus will be gated onto the S-100 DI bus. This happens because the

RD,)_j-_l S$-100 DI Bus

FIGURE 5-43. Data Bus Buffers for Unidirectional Buses

I— $-100 DO Bus

a | b.
® @
(P7 1istate _— e | (o7 e ‘_g'oo DO7
pgp——i Buffer —ﬂg'D DI6 | D6 w@—] Buffer --_400 DO6
T D5 p— 22~ 01 ' H D5 ~— 3% oos
°§ g] oad— 21> 014 | “E ki D4 -— »—3-80 DO4
zg‘? D3 P—r oo : Eé«: < D3 -— ———890003
2 02— FHooe 2 D2 ~— L 8% 002
m)——D—iDDH I D1<——<——35° D01
DOY—r 9%~ pi0 : DO ~a— 2000
ENABLE | ENABLE
|
I

8 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

©

(DB7

Tri-State 43D
Buffer 93 o7
—{> D06
_?ﬁo DO5
L 91> 004
_‘QD DO3
41
—{> po2

AI >——|94 > DO1

95
—{> poo

11

DB6
DB5S

DB4
DB3

Slave’s On Board
Bidirectional Data Bus

T

DB2

DB1

DBO

ENABLE

Qualified \ I

Read Strobe® ¢/

Tri-State

90
— Buffer ___G D17
40
——<J D6
39
] DI5
38
——J D4
_BQG DI3
—<J Di2

4———350 DI

36
——<J oo

ENABLE

741504

FIGURE 5-44. Bidirectional Data Bus Buffers

DI bus driver is now enabled. The DO bus buffer is now disabled so that its out-
puts will not conflict with the data on the slave’s bidirectional data bus.

Do not use the write strobe to enable the DO bus driver, because you want the
data on the slave’s bus to be stable before and after the strobe occurs. If the write
strobe were used to gate the data onto the board, the data would be changing at
the edges of the strobes, which is forbidden.

Chapter 5: DECODING AND BUFFERING 8 3

WAIT STATE GENERATORS

In the previous chapter we discussed the S-100 Bus timing with and without
wait states. During this discussion it might be helpful to refer to Figures 4-5 and
4-6.

Wait states are used by slaves that are not fast enough to read or write the
data from the master during a normal bus cycle. Such slaves will cause one or
more wait states to allow the slave to catch up. In older systems, wait states were
almost never needed, but with current CPU chips running faster and faster, the
I/O chips are having a hard time keeping up. Memory devices are getting faster,
but the LSI peripheral chips are still relatively slow. EPROMs are also typically
slower than other forms of memory, and therefore wait states are generally
needed.

The following circuits show three different wait state generators. The first
generates one wait state, the second generates two, and the last will allow the
generation of zero to eight wait states, the number being selected by a switch.

The circuit in Figure 5-45 will generate one wait state whenever the particular
slave is accessed (BDSEL#* is low). On the negative-going edge of ® after pSYNC
goes high, the inverter’s (74LS04) output will go high, clocking the high leve! at
the D input of the 74LS74 to the non-inverting output Q. The inverting output Q
will go low, and the 7406 will invert that again, causing the RDY line to go high.
This is the normal state of the RDY line and no wait state will be generated. Think
of the RDY line as the wait request#* input to the master.

When BDSEL#+ is low (signifying that this slave has been accessed) and
pSYNC is high (signifying the start of a bus cycle) the output of the NAND gate

@ +5V
PR
D QP
74LS74
24 _ 72
» D_——DO—>CK Q -—DO—D RDY
74LS04 CLR 7406
(Open Collector)
pSYNC
74LS00
BDSEL#*
741504

FIGURE 5-45. Circuit to Generate One Wait State

84 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

will go low, setting the non-inverting output of the flip-flop high. This is inverted
by the 7406, which pulls the RDY line low, requesting a wait state.

At the next falling edge of @, the clear input of the flip-flop will remain low
because pSYNC and BDSEL# will still be active. This overrides the clock input to
the flip-fiop, so nothing will happen, and RDY stays low. The master samples the
RDY line at the next rising edge of ® and enters a wait state. Shortly thereafter,
pSYNC will go low, causing the clear input of the flip-flop to go high. The next
negative-going edge of @ will then clock the high level at the D input through,
causing the RDY line to go high again. The CPU will sample the RDY line at the
next rising edge of @, find it high, and end the wait state.

The circuit in Figure 5-46 adds a second flip-flop to the previous circuit. Both
flip-flops are cleared by the same signal, starting the first wait state. When the
clear inputs return high, the next negative-going edge of ® will clock a low level
into the B flip-flop which will leave the RDY line low, causing a second wait state
to be entered. The same edge of ® will clock a high into the D input of flip-flop A,
causing the Q output of A to go high. Therefore, at the next falling edge of @ this
high will be clocked through flip-flop B, causing RDY to go high, ending the wait
state. Thus two wait states have been generated. This circuit is basically a two-
stage parallel load shift register.

The circuit in Figure 5-47 expands this circuit with shift register IC, a
741L5165. This IC has eight flip-flops (A through H) which are loaded in parallel by
bringing the SHIFT/LOAD input low. Clocking of the register is inhibited when this
input is low, and the data at the input to flip-flop H will immediately appear at the
output, in this case the inverting output (QH). If switch position 1 is closed, a low

® +5V +5V
{ T
R PR
D .
[A Q o 5 @
74L574 74LS74
24 . | 72
@ - Dc Dck @ ck Q@ —DO—D RDY
741504 CLR ‘ CLR 7406
pSYNC
74LS00
BDSEL»
741504

FIGURE 5-46. Circuit to Generate Two Wait States

Chapter 5: DECODING AND BUFFERING 8 5

will be presented to the data input of flip-flop H, and when SHIFT/LOAD goes low,
a high will be present at the QH output. This high will be inverted by the 74086,
which pulls the RDY line low, starting a wait state.

Assume that all the other switch positions are open. High levels will be pre-
sented to all the other flip-flop D inputs. When SHIFT/LOAD goes high (when
pSYNC goes low) the register can be clocked. The high that was loaded into the G
input will now be clocked into flip-flop H and will appear at the QH output as a
low. This will end the wait state. Subsequent clock cycles will continue to clock
highs down the register because that was what was loaded into it with the SHIFT/
LOAD pulse. If switches 1 and 2 were closed, two wait states would be generated.
If the first three switches were closed, three wait states would be generated, etc.

If you do not want any wait states, leave all the switches open. If you want one
wait state, close switch position 1. If four wait states are desired, then close
switches 1 through 4. If eight wait states are desired, close all the switches. Eight
wait states should be enough for any device.

HOW TO APPLY THIS CHAPTER TO THE REST OF THE BOOK

This section is very important. All (or most) of the decoding and buffering cir-
cuits presented in this chapter are intended to be used in conjunction with the rest
of the circuits in this book. You may have noticed a circled letter at the upper left-
hand corner of the schematics in this chapter. If while looking at the circuit
diagrams that follow, you see a box with a circled letter in it, that means use the
circuit in this chapter with the corresponding letter. The signals that emanate from
the box will correspond to the signals with the same names in the schematics in
this chapter. Signals going into the boxes should also match up.

® 8 7 6 5 4 3 2 1

76 A B C D E F G H |
pSYNC SHIFT LOAD Serial In

7415168
BDSEL® 741500 A b
24 7a1504. QH 72
® CLOCK IN ah Aoy
741504 CLOCK INHIBIT 7906

il

O = Pull-up resistor

FIGURE 5-47. Circuit to Generate O to 8 Wait States

86 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

This method is used so that we do not have to continually redraw these cir-
cuits, which are contained on almost every S-100 slave device. It also converts
part of the schematic into a block diagram, hopefully making the schematic more
readable, because only the relevant signals are shown in detail. Figure 5-48 shows
how a typical schematic will look later on, and Figure 5-49 shows the boxes of
Figure 5-48 converted to the actual schematic they represent. The example

shows a 2716 EPROM circuit for the S-100 Bus, with one wait state.

37
amo> A10
34
as > A9
84
as [o— A8
83
AT> A7 D7 L 43~n17
82
A6 [D>— A6 D6 | EEY
29 2716 92
as > A5 EPROM D5 ———>015
30 2K - 8)
Ad D Ad D4 Tri-State 91 D DI4
31 Buffers 42
A3 [— A3 D3 7418244 F——=">0DI3
81
A2 >— A2 02 L 2'>on
80
A D> Al D1 {> 24> oit
79 95
A A0 DO ———={">0i0
OE CE ENABLE
a7
sMEMRD——'—} J
78
pDBIN [>—— E_—Q)__q'
Address Wait State
A15 N NAY Decoder Generator
BDSEL* BDSEL*
> @ N U RDY
A1 NN

AU Note: Wavy signal lines are shown for clarity only;

for actual hook-up, see associated schematics

FIGURE 5-48. Typical Schematic in Rest of Book

Chapter 5: DECODING AND BUFFERING 8 7
37
A0 [C>— A10
34
Ay O— A9
84
A8 [A8
A 2 A7 D7 2> 01
a6 = A6 D6 L 936~ 016
29 2716 o2
as > A5 EPROM D5 L_Dous
30 2K X 8 o
as [O>— A4 D4 Tri-State p———_> Dl4
31 Buffers 42
A3 O— A3 03 7aL5244a pP—> 0B
81
A2 A2 D2 L—D‘” DI2
80
A1 - Al D1 —{ >———094 Di1
no - AO DO L350~ oo
47 74L810 OF CE ENABLE
sMEMR - l 1 J
78
p0BIN ————
741504 45V
32 .
INEY > 2 _F) .
36
Al 4} 3 O = Pull-up resistor
0—(%)—0-?)
85
A13 [-\
0—0/0-0-}’
33 +5V
A2 O— A ®
0—(%){)1)
87
A1 > A L
PR
JEO o'<>P74LS136 0 af—-
4
) -—J_ 741504 741LS74
4 - _
+ > [>ck @ ——-l »o— 2> rov
CLR 7406
741804
67
PHANTOM» [>—
76 741500 1aT500
pSYNC >

FIGURE 5-49. “Expanded’”.Schematic of Figure 5-48

memaory interfacing

This chapter describes how to interface to both Random Access Memories
(RAMs) and Erasable/Programmable Read-Only Memories (EPROMSs). Using the
information presented in this chapter, and the decoder and buffer circuits in
Chapter 5, you should be able to build a memory system of any size and con-
figuration.

There are two types of memories in common use today: RAMs and ROMs
(which encompass PROMs and EPROMs). RAMs are called ‘‘random access’’
because the earliest semiconductor memories were serial access shift registers.
With a serial memory you have to read all the bits in order until you get to the
desired data. As the name implies, random access memory allows direct access to
any bit {random, in this case, means in no particular order).

Although ROMs are also ‘‘random access,’’ the term RAM has become used to
denote a memory that may be easily read from and written to (read/write
memory). A Read-Only Memory is programmed at the factory and its contents
may never be changed. EPROMs may be programmed by the user, but usually
require special hardware, and can only be erased by an intense ultraviolet light.

There are two types of RAMs in common use today: static and dynamic. When
data is written into a static RAM, it will remain unchanged until it is rewritten or
until power is lost. The data is therefore ‘‘static.”” A dynamic RAM’s data must be
refreshed periodically or it will be lost. This refresh cycle must be interleaved with
the normal system accesses; this can cause some complicated problems and
requires highly sophisticated logic designs. Therefore, we will only show you how
to interface static memories to the S-100 Bus.

89

90 INTERFACING TO S-100/EEE 636 MICROCOMPUTERS

SOME COMMON RAMS AND THEIR ARRAYS

There are two common sizes of RAM ICs currently in use. They are the 1K
(1024-bit) device and the 4K {4096-bit) device. The 4K RAM is available in two
common organizations. The organization of a RAM IC refers to how the bits are
arranged by address. A 4K-bit IC may have 4096 unique addresses, each contain-
ing one bit, or 1024 unique addresses each containing four bits. The former is
referred to as a 4K by 1 organization, and the latter is referred to as a 1K by 4
organization.

When the S-100 Bus first appeared, a “‘large’”” memory IC contained 256 bits,
and 1024-bit ICs were just becoming available. Consequently, a ““large’” memory
board contained 8 Kbytes. The S-100 standard provides for addressing up to 16
Mbytes! 32 Kbyte static memory boards are commonplace today.

Nevertheless, having a small amount of memory might be of use to you, so we
will describe the 21L02 1K by 1 memory IC. A logic symbol with pin connections
for the 21L02 is shown in Figure 6-1. A typical 1K X 8 "array” of eight 21L02s
is shown in Figure 6-2. Note that all the address and control lines are bused
together, but the data lines remain separate.

14 12
A9 DO ~
15 11
A8 DI
16
i A7
1
——p] AB
2
7 AS 21L02
—|As
6
——] A3
4
—{ A2
5 10
—{ A1 VvCC
8 9
4 A0 GND
CE RIW

FIGURE 6-1. 21L02 Logic Symbol with Pin Connections

Chapter 6: MEMORY INTERFACING 9 1

10
y4
~ 7 A0-9 pob——pm DI7
A9 >—
CE
ABJ »{ RW DI ——< po7
AT Y 21102
A6 — 19
A5 H—o 7#120-9 pof—ypm DI
ray—— o] CE
A3>—J RW bt K DOB
21102
A2 H—
10
Al >—“ \7L.. AO-9
-9 po f——p DIS
A0 Y
CE
rRW o —< oos
_ 21102
TY—2e
— N\ 10
WE Vi
4 7P A0 ol g D4
CE
1 R W ol —< Do4
21L02

—~—= A0-9 00 b—p D13

CE
R/W D|‘_< DO3
21L02
10
e
7 AO-9 DO j— DI2
CE
1 RW DI —< D02
21L02
10
ya
7 A0S ol e DI
CE
& R'W DI ——(ple]]
21102
10
A 209 DO }——a= DIO
Ce
RW DI ———(DOO
21L02

FIGURE 6-2. 1K X 8 RAM Using Eight 21L02s
(Interface to S-100 Bus is shown in Figure 6-8)

9 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

This IC is made by many different manufacturers, and each manufacturer has
its own part number for the same device. The following table lists some of the
larger memory suppliers’ numbers for the basic 21L02.

Manufacturer Part Number®
Intel 2102AL-X
Fairchild 2102LX
Advanced Micro Devices (AMD) 91L02-X
National Semiconductor 2102AL-X

* The X in the part number will be a digit or letter that will
vary depending on the speed of the part.

The most popular type of RAM chip in use today is the 4K (4096-bit) device,
which comes in two organizations: 2114 and 4044/5257/2147.The 2114 is 1K
by 4, and the 4044 is 4K by 1. Surprisingly, a 2114 is called a 2114 by almost all
of the manufacturers, but the 4044 type part has many different pin compatible
versions. For example, the 2147 is a super high speed version of the 4044,

The 2114 logic symbol with pin connections is shown in Figure 6-3. This IC
has four bits of data per address and thus only two ICs are required to provide a
full byte of data, as opposed to eight ICs for the 1-bit wide parts. This is quite use-
ful where only a small amount of memory {1 or 2 Kbytes) is needed. Two 2114s

15 1
—] A9 /04 jeuttl—lp
16 12

~—i A8 /03
17 13
—fin A7 1/02 fetl—t
1 14
—l AG /01 ettt
2
c———l A5
2114
—] A4
— 2o a3
7
—asf A2
6 18
—d A1 veep——m—
5 9
—D-‘ AO GND ——
cS WE

8 110

FIGURE 6-3. 2114 Logic Symbol with Pin Connections

Chapter 6: MEMORY INTERFACING 9 3

{ //
)
A9 -4 A9
A8 A8
A7 A7
AB 4 A6
A5 4 A5
A4 — A4
A3 y A3 2114 - 2114
A2 4 A2
A1 4 At
A0 —4 A0
cs cs
WE WE
S 8383 5883
Y vy ER
Bt 0 1 2 3 4 5 6 7
LSB MSB

Bidirectional Data

FIGURE 6-4. Two 2114 RAMs Connected in a Typical
Array (1K X 8)

are shown connected in Figure 6-4. Note that this is exactly the same amount of
RAM as shown in Figure 6-2, but now only two chips are used, instead of eight
(think of how many less wire-wrap connections that is).

Where larger amounts of memory are required (more than 16K X 8), the 4K by
1 ICs such as the 4044 are preferred. This is because it takes less decoding cir-
cuitry — eight 4K blocks for a 32K X 8 memory as opposed to 32 1K blocks if
2114s were used. A logic symbol with pin connections for the 4044 RAM is
shown in Figure 6-5. This part has many designations, depending on the
manufacturer, and has many higher performance, pin compatible upgrades. The
following table shows the ‘’garden variety’’ parts, and then the higher perfor-
mance parts.

94 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Manufacturer Part Number
Intel 2141L-X
Texas Instruments 40L44-X
AMD 90L44-X
National Semiconductor 5257-XL
Higher Performance Upgrades

Intel 2147-X
Intersil 7147
Hitachi 6147

Comments

High speed and current”
High speed, CMOS for

extremely low current.
As 7147 above.

* National, Tl, Motorola, NEC, and many others also make this part with similar part
numbers. Also note that even though this part has much higher current requirements
than a standard 4044 type, in a system using several rows of parts the total current
consumption will be much less. This is because the part ‘powers down’’ when not
selected, and in a larger system only one row of parts will be selected at any one time.

—H A11
—p1 A10
—{ A9
— 1 A8
16
—| A7
—p| AG
6
Ol
5
—y A4
—1 A3
—y A2
—d A1
AO

DO F—
11
Dl jep——

4044

vCC
s
_anp

WE

_—.Q

10 Ta

FIGURE 6-5. 4044 Logic Symbol with Pin Connections

Chapter 6: MEMORY INTERFACING 9 5

Figure 6-6 shows eight of these parts connected together in a standard 4K X
8 array. Note that all the address and control lines are bused together, and all the
data lines are separate. Note the puli-up resistor on the CE line. This is not nor-
mally required, but when using a “‘power-down” version of these chips (the
2147, for example), it ensures that the chip draw as little current as possible. The
closer CE is to +5 volts, the less power is consumed.

The following circuits show some typical RAM arrangements using the
decoders presented in Chapter 5. There are circuits for the three types of RAMs
we have discussed in a few different sizes. Once you understand the approach,
you should be able to design a memory of any organization.

A block diagram of a typical S-100 memory board is shown in Figure 6-7. The
low-order address lines are buffered and applied directly to the memory array.
The ICs have built-in decoders that decode the address bits into unique RAM loca-
tions on the chip. The higher-order address bits are connected to a decoder circuit
that selects the board and provides the individual enables for each row of RAMs.
The data lines are buffered, and the buffers are controlled by the qualified read
and write strobes. An optional wait state generator is provided if slow memories
(or fast masters) are used.

WA—O0 &
I
N
IS
I
I
IS
N

A
Ai 4 Aiaou 4044 4044 4044 4044 4044 4044 4044
A3 A3
A2 A2
Al A1
AC AO
CE CE
WE WE
00 DI DO ot DO DI 00 DI D0 DI DO DI 0O Dl DO Dt

N — .
Bit O Bit 1 Bit 2 Bit 3 Bit 4 8it5 Bit 6 Bit 7
LSB MSB

FIGURE 6-6. Eight 4044-Type RAMs in a Typical Array
(4K x 8)

96 INTERFACING TO S-100/EEE 636 MICROCOMPUTERS

>—— e g e
Data Input and
Addrgz: . Address . Memory . Data Bus . Output Buses
Buffers Array Buffers
>— e > ha—
CE WE
Address > . Address T
Bus > M Decoder
Wait State
=1 Generator |——®» RDY Line
{If Required)
Status and >— | Read/Write
Control Bus > * 1 Logic

FIGURE 6-7. Block Diagram of Typical S-100 Memory Board

Figures 6-8 through 6-10 show some typical S-100 memory interfaces; two
are for 1K bytes and one is for 16K bytes. Feel free to build the memory circuits
we have shown you, but if you need a memory board larger than a few Kbytes, we
strongly recommend that you purchase the memory board from an $-100
manufacturer.

Figures 6-11 and 6-12 show logic symbols and pin connections for the 2708
and 2716 EPROMSs, the two most popular in use today. The 2708 requires three
supply voltages and the 2716 requires only one. (The first 2716 produced by
Texas Instruments required three supply voltages, but they now make a single
supply version called the 2516. We recommend that only the single supply part
be used.) The address bus buffer shown in Figure 6-13 is required to provide a
high-level input voltage of at least 3.0 volts to the 2708.

Figures 6-13 through 6-16 are schematics for various sizes of EPROM
memory connected to the S-100 Bus. These schematics include a wait state
generator (you may use the one you prefer, depending on how many wait states
are required) because EPROMs are typically slower devices than RAMs.

Higher density EPROMSs are under constant development. At the time this book
was written the 2732 EPROM was becoming widely available. The cost of a 2732
was still quite high compared to that of two 2716s, but since that price will pro-
bably drop rapidly, we have included a logic and connection diagram for the 2732
in Figure 6-17. It is a 4K by 8 device and requires a single power supply.

Chapter 6: MEMORY INTERFACING 9 7

S$-100 Bus
R 34 14
A D— A9
A8 84 o 15 AB S$-100 Bus
[>—— suitable -
Suitable
A7[>si___ Buffers 6] ., 11 Buffers <o
AGDBZ__ s 1 L oos
29 £
asC>—— Has 3V ——<Joos
[=)
30 -
Ao Ui VA 2 1 ———] 004
31 6 =] 11
A3>—o A3) ——<J D03
81 5 1
a2>— A2 ! ——J D02
N 4
MDBO vV Al 1 b—-< l D01
7 A
Ang_ 81 a0 4————-(: DOO
68 3
MWRT > Dc WE
Address 12
A15 NN 74LS244 ___D
. Decoder BDSEL* . DI7
— 12
| O P QO o5
. 2
R i > o5
A10 NN 311,
- .
©
o >
o DI3
12 D
Array of Di2
Eight 12 D oI
21L02s 2 N
(As shown in 1 : > DIO
Figure 6-2) |l
47 I T
sMEMR >] J_Dc
78
pDBINE} 74L810

FIGURE 6-8. 1K X 8 of 21L02-Type Memory
Interfaced to the S-100 Bus

98 INTERFACING TO S-100/IEEE 636 MICROCOMPUTERS

$-100 Bus
34 15 Two 2114s
AQD_—— A3 (As shown in
84)
ABD 16 A8 Figure 6-4)
S 174 A7
82 1
A6 [o—— A6
29 2
A5 D—3 Suitable A5
0
AAD Buffers 3 AS
31 4
a3z o—— A3
81 7 11 py Data Bus 8
A2 >— A2 1704 |agt Buffers A~ DIO-DI7
80 6 12
ao>— Al 103 e @
79 13
Ac> '> 1 a0 1702 gL g
14 pg
1701 jea >
68 10 S-100
MWRT > Dc WE Data Bus
1
1104 fag— 03 g
Address 12 p2
A15W Decoder /03 jt- \
soseLs | 4 13 1
. CE 1702 juugp- 8
. 14 po
/ }a—y~— D00-DO7
A10 NN o1
RD+
o o
sMEMR > J
78 I
pDBIN [

FIGURE 6-9. 1K X 8 of 2114-Type-Memory
Interfaced to the S-100 Bus

$-100 Bus

87

an [>—
37

at0 [C>—
34

29 o
84

Chapter 6: MEMORY INTERFACING 9 9

A15 "N

A12 Ny

12 12 8 8
$-100
- ~ AQ-11 Di feet— >~ DO Buffer 00 Bus
— 8
- WE @ le—><- 000-DO7
Suitable . 8
Buffers -1 CE DO ya N
Row 4
12 8
£ gl AO-11 DI L
E 1 WE
o] T 8 Four arrays of 8
DO ~ 4044 -type memory
Row 3 as shown in Figure 6-6
12 8
oi-ped AO-11 DI -
WE
= 8
CE
DO
Row 2 7
\71_>.12 AO-11 DI <._/—8 DI Buffer $-100
! DI Bus
ol we @ | 010017
= 8 8
CE 0o L,
Row 1
Address RD*
Decoder
5.
@ SELC*
Dsma»
SELA«
BDSEL

SMEMR [_'.>47

78
poBiIN >

FIGURE 6-10. 16K X 8 of 4044-Type Memory
interfaced to the S-100 Bus

7 00 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

22

L

A9
A8
A7
AB
A5
A4
A3 2708
A2
A1

AOQ

CE

07
06
05
04
03
02
o1
00

VDD
vCC
VSS

vBB
OE

19 +12v)

22 (+5 V)

12
21

(GND)
(=5 V)

t18

? 20

FIGURE 6-11. 2708 Logic Symbol with Pin Connections

19
22
23

PEbrbbEEy

A10

A9
A8

A7
AB
A5 271s
A4
A3
A2
Al
AO

CE

07
06
05
04
03

01
00

VPP
vee

GND
OE

(+5 V)
(+5 V}

?18

?20

FIGURE 6-12. 2716 Logic Symbol with Pin Connections

Chapter 6: MEMORY INTERFACING 7 0 7

S-100 Bus
4
A9 Da———— A9
84 Suitable 2708
AsD_ Buffer A8 EPROM
83
AT D A7 07 > DI Buffer
82
A [o— A6 06 = @ —
29 a
A5 >— AS 05— — -
30 a
a[OO—— A4 04 > -
31 L
A o>— A3 03 f—= —
81
>—71 A2 02 |- L - 3
80 P
A [Co— A1 o1 T —
79
o> o ool > 1 -
CE OE
RD*
A15 AN ANANY Address
. Decoder
BDSEL*
. @ }_o
A10 NN 74L504
[
a7 —]
DBIN
P E>78 J_ 74Ls10
sMEMR [
BDSEL»
1> @ N RDY

"Wait State Generator
of your choice

FIGURE 6-13. 1K X 8 of 2708-Type EPROM
Interfaced to the S-100 Bus

1 0 2 INTERFACING TO S-100/IEEE 636 MICROCOMPUTERS

$-100 Data Input Bus

Fo—

{]:::

FIGURE 6-14. 2K X 8 of 2716-Type Memory
Interfaced to the S-100 Bus

—

A10 VPP
A9 2716
A8 EPROM
A7 07 DI Buffer
A6 06| — @
A5 05—
A4 04 —
A3 o3 |—>
A2 02 —
Al 01 p—=-
AO oo-——_-____{>>____
CE OE
Address RD+*
Decoder
. BDSEL*
74LS04

74LS10

O

= RDY

“Wait State Generator

of your choice

Chapter 6: MEMORY INTERFACING 103

S 100 Bus
34
asTr— A9
84
as[>—— A8
83
atl>—— A7 o7 - ——
82
As[———f A6 06 @ F—
29 05 N
AsTO— Suitable A5 @ 2 § 2 2 2 § § 5
ad 30 Buffer A N] I R 5 8 8 S o4 DI Butfer £
a3 >~——3‘ A3 03 H
81 py
a2[>—— A2 02 a3
A‘D___so A1 ot -
7
aof >—9 —I> AQ _ _ o9 r\I/
OF CE|OF CE|OF Cé|Oe Ck | OF CE|GE CE|OF €| OE CE
9%-
AVE AN S
@ [~ stLo: e
- SELFe
SELE
Address b, SELD®
Decaoder
by SELC*
=
SELBe
[ISERVAVVAVaV, -
As
oy SEL Q .
BDSEL»
741504
s “Wait Stale Generator { § BDSFL+
smEmR [7 74Ls10 of your choice
78
pDBIN [

FIGURE 6-15. 8K x 8 of 2708-Type Memory Interfaced to the S-100 Bus

S 100 Bus »y
37
A0] Al0 VPP
34
a9 [>— A9
84
a8 [C>—o a8
82
a7 [——] a7 07 -
82
46 [k A6 08
i Suitable ol o © © o © e | e
N 2 2 2 2 e = -
D:o Butfer S 5 8 i b~ 5 8 N 05 O Buller
as[o>— A 04
31
a3 [>— A3 03 o
81
a2 [t A2 02
80
M>— Al 01
79
>———I> s _[_ | 00 >—
CE O | CE OE [CE OE | CF OF | CF OF|CE GF |ce OF | &F oF
ADe
SELHs
A15 AN
- SELG*
— SELFe
- SELEs
Address SELDe
Decoder f®—
[sFLee
p—"
=y oFee
SELA®
AT AANNAY - [~ ROY
BDSELs
47 ‘Wat State Generator
SMEMR [— 741810 of your chorce
78
poBIN [T

FIGURE 6-16. 16K X 8 of 2716-Type Memory Interfaced to the S-100 Bus

104 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

—Zlg] A1t 07—
19
— el At0 o L
22
A9 05 2
23 14
—] A8 04—
-—1> A7 03 L’
2 11
—3— A6 593, 02—
— i A5 01H9
L VY 002 g
5
— gl A3
6
—] A2
7 24
—] An vee
8 12
—] A0 GND
CE OE

FIGURE 6-17. 2732 Logic Symbol with Pin Connections

BANK SELECT

The S-100 standard provides for 24 address lines, allowing 16 Mbytes of
memory to be addressed. Before these lines were established by the standard,
many manufacturers used a scheme known as “bank select’ to allow the use of
more than 64 Kbytes of memory.

Bank select works like this: an entire memory board, or a portion of it, may be
turned on and off by writing a command to an output port (see the next chapter
for a description of output ports). By writing a particular bit pattern to the port, the
software would control which “‘bank’’ of memory would be selected, and which
banks would be deselected. Only one bank of memory may be turned on in the
same address space at any one time.

Figure 6-18 shows a schematic for implementing a bank select scheme. Like
the extended memory address decoder shown in Chapter 5, it may be added to
any of the memory address decoders shown in that chapter. Here is how it works:
at the end of the write strobe (pWR#) the output of the 74LS30 will be clocked
into the 74LS74 (D type flip-flop). If any of the Bank Select switches are closed
and any of the associated data bits (after inversion) are low, then the output of the
74LS30 will be high. This will cause the output of the 74LS74 to be high and will

Chapter 6: MEMORY INTERFACING 7 0 5

0 +5V
>
51k0 Y
b3 A
<L—-o/o_
Port Address PR
ATVANNNAS -
: Decoder 741504 r. D74|.s740 —» EXMEMADR
) @ DSEL-I b cK —
A NN 8 >)
74LS04 aLs10 = B
77 +5V
pWRe [>— : p—0 0—@
45
souT >
5.1 k{2
RESET+ D75
Bank Select
90
DO7D— {0—0—
40
006 C>—r ——</o—<>—-
39
bos > —] | O
38
DOAD_SQ Suitable | 0—0—3}_
Invertin
003 [Co>——| 9 ——0/
. Buffers o—OT7atsso
002 [C>—o 0O
35 e = Pull tor to +5 Volt
Do1D— o_<>_ 0- ull-up resistor to olts
36
poo > —Po—t— o

FIGURE 6-18. Bank Select Circuitry

turn on the memory board via EXMEMADR. If none of the data bit/switch pairs
matches, then the output of the 74LS30 will be low, and the memory board will
be turned off. If more than one switch is closed, the board will be turned on if any
of the data bits match. This allows a board to reside in more than one bank. Up to
eight banks are possible with this scheme.

The circuit is also able to determine whether or not the board is enabled or dis-
abled at power-up and when a RESET occurs. The RESET # line can be connected
to the PRESET or CLEAR input to the flip-flop by closing either switch A or B. If
you want the board to be enabled at power-up and at RESET, turn switch A on
and switch B off. If you want the board to be disabled at power-up and at RESET,
turn switch B on and switch A off. Never turn switches A and B on at the same
time. Leaving both switches off will make the board come up in a random state.
The reason that RESET# may be used instead of RESET#-POC# is that POC#
must assert RESET #. Older S-100 systems that do not meet the standard may
not do this, so you may want to use a gate to AND POC* and RESET «.

/O ports,
an Introduction

This chapter describes how an S-100 computer “‘talks’’ to anything outside of
its own small world, and how these external things may talk to the computer. This
is done via an interfacing circuit referred to as an I/0 (Input/Output) port. /O ports
are slave devices on the S-100 Bus.

THE CONCEPT OF A PORT

An I/0O port is called a port because that is where information enters and leaves
the computer, just as cargo enters and leaves a country via a port. A port can be
an input port (the master reads data from the port), an output port {the master
writes data to the port), or an input/output port (the master can either read data
from or write data to the port). An input/output port is referred to as a ‘‘bidirec-
tional port.”

Many ports can exist in a computer system. The number is limited only by the
number of address bits that are reserved for port addresses. The S-100 Bus
allows up to 65,536 unique I/O ports to exist. Although a subset of the system
address lines is used, these port addresses do not conflict with the memory
address space because the status bus reflects an I/O cycle instead of a memory
cycle. Eight-bit microprocessors generally use an 8-bit /0 address and hence can
individually address any one of 256 input and 256 output ports. Sixteen-bit
microprocessors generally use larger port address words and hence can address
more I/O ports. The S-100 Standard provides a 16-bit I/O address, yielding
65,536 port addresses.

107

7 08 INTERFACING TO S-100/lEEE 696 MICROCOMPUTERS

$-100 Bus 8
AO-AT Address Bus -
8 Data Input Bus
DIO-DI7 et ’4
8 Data Output Bus N
D00-DO7 - >
4% ® & 8 e A8
[
cPy Interface Interface interface
(Master) Circuit Circuit Circuit
(Slave) {Stave! (Slave}
Address Address Address |
SA16 6B1g — 6C1p
4
sIN L
ra -
Status
{ SOUT Control & Status l l l
08N Y|y 17|
Controt 87 y85ye3 ’51{" 87 yBsye3yey 87 | BS | 83| B1
WRe
P B6 B4 B2 80 86 B4 B2 BO 86 B4 B2 80
N, v’
Port BA1g Port 6B1g Port 6Cyg
Output Output input
R4

To Peripheral Devices and Circuits

FIGURE 7-1. Block Diagram of CPU With Two Output Ports
(6A 5 & 6B,) and One Input Port 6C,)

Figure 7-1 illustrates the basic scheme for creating input and output port inter-
faces. The examples show three ports. Each port has an address. Each port is
merely an 8-bit interface to a peripheral device or circuit. The ports are selected
by an address — in this example, the hexadecimal values 6A, 6B, and 6C. The
8080, 8085, 8086, Z80, and Z8000 have specific instructions (IN and OUT) for
transmitting data to or from a port. For example, when an OUT 6A instruction is
executed by an 8080, the master places 6A,; on the lower eight bits of the
address bus and the data in the accumulator is placed on the data output bus. The
out-to-a-port control signals are placed on the S-100 status and control bus by
the bus master.

The output port interface circuit, shown in Figure 7-2, typically consists of an
8-bit latch, an address decoder, and an /O write qualifier circuit (shown in
Chapter 5). When an OUT instruction (e.g., OUT 6A) is executed, the addressed
interface circuit latches the data from the data output bus and presents it to the
peripheral device or circuit. The input port interface circuit, as shown in Figure
7-3, typically consists of eight tri-state gates or an 8-bit latch, an address
decoder, and an |/O read qualifier circuit (refer to Chapter 5). When addressed
with an IN instruction (e.g., IN 6C), the input port gates the data onto the data
input bus for the master.

Chapter 7: /0 PORTS, AN INTRODUCTION 7 0 9

8
Address | IOSEL
(AO-A7> 7 Decoder
(Refer to
Chapter 5}

$-100 1/0 Write
Bus DWR.>_1 5 Qualifier
Output Strobe
SOUT P / _—4 (Refer to pu

Chapter 5) 1

8
N N\ /8 8-Bit /g Data to Peripheral
\DOO o7 7 1 Latch Device or Circuit

FIGURE 7-2. Block Diagram of a Typical Output Port

An 8-bit master provides an 8-bit address which can select up to 256 output
and 256 input ports. The address information is decoded and gated with the
S-100 status and control signals to enable the latch or gate circuits. The func-
tional circuit of a typical output port is shown in Figure 7-2.

It is also possible to create a port by using a memory address to select an I/0
port. This technique is called ‘‘memory-mapped I/0.” This is the standard tech-
nique used with microprocessors such as the 6502, 6800, 6809, and 68000,
which do not have specific input or output instructions. The 8080, 8085, and
280 microprocessors should generally not require memory-mapped /0. The
block diagram for a memory-mapped I/O port is shown in Figure 7-4.

On the S-100 Bus, most I/O slaves are I/O-mapped; however, memory-
mapped slaves are sometimes used. The trend is definitely away from memory-
mapped I/O devices. In the case of processors that have no I/0 instructions, a
block of memory can be decoded by the CPU card logic so that an S-100 I/O
cycle is performed on the bus instead of the memory cycle. This of course
decreases the usable memory space.

To summarize, the master can address I/0O ports and either send data to or
receive data from the port. The S-100 Bus allows up to 65,536 unique I/0O port
locations that do not conflict with the memory address space, and each location
can be either input, output, or both. For information on what makes up an S-100
I/0 cycle, refer to Chapters 3 and 4.

110

$-100
Bus

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

S-100
Bus

\

16 IOSEL
Address
/ AD-A1 5) 7 | Decoder
(Refer to
Chapter 5)
1/0 Read
slNP>1 Qualifier
2
AN — (Refer to
DBIN —
PRER” 7 Chapter 5)
\ 8 8-Bit
DIO-DI7 ~— A Latch
or Gate
FIGURE 7-3. Block Diagram of a Typical Input Port
16 Address
I0SE|
(AO-A!S >—rfd Difi"“,’f' t
EXIOADR
{Refer to
Chapter 5)
Memory
Write
Strobe
Qualifier
MWRT -] (Referto
v Chapter 5)
8-Bit
DOO-DO7>*/ Latch

8

(£

FIGURE 7-4. Block Diagram of a Memory-Mapped Output Port

8
-/ < Data from Peripheral

Device or Circuit

Data to Peripheral
Device or Circuit

Chapter 7: /O PORTS, AN INTRODUCTION 7 7 7

HANDSHAKING — STROBES AND STATUS

Sometimes when we read data from or write data to an 1/0 port, we aren’t con-
cerned with whether or not the data we sent was received. This may be because
the device is just an LED or a device that has no way of telling us that it has
received the data. Or it may be that the data it is sending us is valid (because the
program may decide what's valid about it).

Since I/0 ports are usually used to interface with peripheral devices such as
printers, keyboards, terminals, and modems, we would often like to be assured
that the device actually received the data sent to it, or that the device has valid
data to send. For example, as shown in Figure 7-5, a printer will usually have an
output signal line that tells the computer that it is ready to accept data, and an
input signal line that tells it when to take the data. A keyboard would have a line
that would tell the computer when a key had been pressed and that the data on its
data lines was valid. These lines are usually called strobes, and like the S-100 bus
strobes, they convey when information: when data is valid, when data has been
received, etc.

The act of interfacing with these strobes is called ““handshaking.”” The term
handshaking comes from the fact that when humans “’shake hands’* on some-
thing, it means that there is an understanding between them. In the case of the
computer and the peripheral, one understands that the other is doing or has done
something, such as sending data.

In the case of an input port, the computer wants to be informed when the data
it is receiving from the peripheral is valid. The peripheral will assert a line that will
convey this ‘’data available’’ information. This line is usually read by the computer
on a separate input port, commonly known as the ‘'status port” (because it tells
the status of the data that will be available on the ““data port’’). The computer will
read all eight bits of the status port, but this ‘‘data available’’ bit is the only one to
be concerned with. This is commonly referred to as the “‘status bit.”” The bit will
usually be assigned a mnemonic such as DAV. The computer will usually be in a
loop waiting for the status bit to go true. When the status bit goes true, the loop
will “’fall through,” and the computer may then read the data from the data port.

An output port has a corresponding line that the computer needs to assert so
that the peripheral knows when the data is valid. This is the data strobe, and it
may be sent automatically by the port hardware every time the computer writes
data to the data port, or we may use a line from another output port that the com-
puter will assert separately. This separate port is usually called the ““control port.”
Most peripherals will not be able to accept data as fast as the computer can send
it (which may be many hundred thousand characters per second), so they will
usually have a status line that tells the computer when the peripheral is busy and
not busy. The computer would normally read this line on a “’status’’ port.

7 72 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Computer 8 Peripherals
B7 ——F—{oi0D17
Printer
Data v
Output Strobe
Port
——
—
BO) - Busy
B7
Control
Qutput
Port
BO
B7 f———
Status
Input
Port
Data Available (DAV)
BO)4———1—
B7 Key pressed
Data
Input Keyboard
Port
8
BO [/ D00-DO7

FIGURE 7-5. Handshaking and Data Paths Between a Computer
and Peripherals Form a Communications Channel

CHANNELS

To accomplish the transfer of data through I/O ports, we may actually need
more than one 8-bit data port to transfer eight bits of data. We call the combina-
tion of necessary ports a ‘‘channel.” A typical channel might consist of two port

Chapter 7: I/O PORTS, AN INTRODUCTION 1 1 3

addresses and four actual ports: a data input port, a data output port, a status
input port and a control output port. In addition, we will need the software
routines to conduct the transfer of data. The next chapter will deal with ports,
channels, and the associated software.

There are two basic types of channels: parallel and serial. An S-100 computer
deals only with parallel data; hardware and/or software is needed to convert the
parallel data into serial data and vice versa. We will discuss serial interfacing in a
later chapter.

LATCHING THE DATA

Usually when we send data out to a peripheral, we want the data to be present
on the output lines for a period of time (usually until we send new data). Recall
that the data on the S-100 Bus remains stable for only a short while béfore and
after the write strobe. This could be a very short time indeed. Also, when a periph-
eral presents data to an input port, the master might not get around to reading it
until the data has gone away. We could put the master into a wait state to extend
the bus strobes, but that slows down the system (and gets tricky). We need some
way to preserve the data, and this is done with a latch.

A latch is a type of flip-flop that has a data input and a clock input (commonly
referred to as a D-type latch). The data at the data input is latched into the flip-
flop when the clock input is asserted correctly (this could be an edge or a level,
depending on the type of latch). A group of latches is often called a register, but a
group of latches {usually in the same IC package) may also be called a latch.

Some common 74LS-series latches are shown in Figures 7-6 through 7-10.
The 74LS74 has two independent sections, each with clear and preset inputs,
inverting and non-inverting outputs, and a positive edge-triggered clock input. It is
shown in Figure 7-6. Figure 7-7 shows the 74LS175, essentially a quad version

Function Table

2PR 2a
8
Inputs Outputs L____J
Praset Clear Clock o a Q PR
o Q
|
[
2

IrxrIc
Irx--IT
XXX
> X% X X
FITeCT
TrxTr-

o

2

2

i

H = High leve! steady state]
L = Low level (steady state} 1 2 3 4 5 6 7
x = lrrelevant
1 = Transition from low to high level iCtR 1D 10K PR 1Q 1a GND
Qo = Level of Q before the indicated steady-state

nput conditions were established

FIGURE 7-6. 74LS74 Dual D-Type Latch

1 14 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Vec 4 4G 4 3 30 30 CLOCK

ClEAR 1Q ia 1D 20 24 20 GND
7418174 7415175
Function Table
{Each Fiip-Flop)
Inputs Outputs
Clem Clock D] Q@
n H = High level steady state)
L X X M L = Low level {steady state)
" IH L X = lrrelevant
H S | = Teansition from low 1o high level
H ot X]% B Qo = The level of Q before the ndicated steady-state input were

FIGURE 7-7. 74LS174 and 74LS175 Hex and Quad D-Type Latches

of the 74LS74, except that the preset inputs are missing and there is a common
clock line and clear line. Figure 7-7 also shows the 74LS174, a hex version of the
7415175 with essentially the same features, except that the non-inverting out-
puts are missing.

Figures 7-8 through 7-10 show octal latches, which are very convenient and
popular because computers usually deal with data in multiples of eight bits. The
7415273 in Figure 7-8 has eight sections, non-inverting outputs, a common
clock input, and a common clear input. It is positive edge-triggered. The 74LS374
in Figure 7-9 is almost the same except that the clear input has been replaced by
an output enable input (the outputs of the 74LS374 are tri-state). The 74LS373

Function Table
(Each Flip-Fiop!

Inputs Qutput
Clear Clock [} a
L x x L
H 1 H H
H 1 L L
H L X Qg
H o = High level Isteady state]
L = Low leve! (steady state)

X = Irrelevant
= Transition from low to high tevel
Qy = Level of Q before the mdicated steady state
wnput conditions were established

CLEAR 1Q D 20 20 30 3D 4D 4Q GND

FIGURE 7-8. 74LS273 Octal D-Type Latch

Chapter 7: /O PORTS, AN INTRODUCTION 1 7 5

Enable
Function Table ¢
Output Enable
Control o Output
L H H H
L H L L
L L X Qg
H X X z
H = High level (steady statel
L = Low level isteady statet
X = Irelevant
| = Transition from low to high level
Qg = Level of Q before the indicated steady-state OUTPUT 1Q 10 20 20 3Q 30 4D 40 GND
input conditons were established CONTROL

Z = High impedance state

FIGURE 7-9. 74LS374 Octa! D-Type Latch

in Figure 7-10 is almost identical to the 74LS374 except that its clock input
works a little differently. The 74LS373 is known as a transparent latch. That is
because when its clock input is high, the data at the D inputs goes straight
through to the outputs, as if it were a buffer. But when the clock input goes low,
the data is latched. Both the 74LS373 and the 74LS374 meet the current sinking
requirements of an S-100 bus driver and may be used as such. {See Chapter 5 for
more information.)

PROGRAMMABLE I/O PORT IC'S

An increasingly popular approach to I/0O ports employs more sophisticated LSl
ICs. These ICs contain control for two or more ports, with provisions for defining
port direction, peripheral handshaking, and interrupt processing. However, it
should be noted that programmable LSI I/O ports offer no advantages for simple
I/0 over the non-programmable ICs shown previously. This is due to the fact that

Vc¢ 8 8O 70 70 6Q 6D SD 5Q CLOCK
Function Table

Output
Contral

L

Clock Output

D

H H
L L
X Qg
X Z

L 1
L L
H X

H = High level steady state)
] = Low leve! isteady statel
X = Irelevant
= Transtion trom low to high level
Q, = Leveiof Q before the indicated steady-state
input conditions were established
7 = Hgh-mapedance state

CUTPUT 1Q D 20 20 3a 30 40 40 GND
CONTROL

FIGURE 7-10. 74LS373 Octal Transparent Latch

11 6 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

the programmable I/0 ICs are designed to interface directly to a bidirectional bus,
and added ICs are required to use them with the separate S-100 data buses.

Probably the two most popular ICs of this type are the Motorola MC6820 and
the Intel 8255.

Motorola MC6820

Motorola calls the MC6820 a PIA (Peripheral interface Adapter). The functional
block diagram for the PIA is shown in Figure 7-11.

The MC6820 has two nearly identical ports, referred to as A and B. Each port
has data, direction, and control registers. The data register holds either the input
or output data. The register is latched for output and unlatched for input. The
direction register determines the data direction for each bit (pin) in the data

I i < CA1
| i = CA2
| 87 I
[~ I
I Contro! |ugp——d Direction Data l 8
Register Register Register Port A
l A A A l Data
| I
B i ol ol
8 !Data 1/0 |
:] IRQA '
IRQB
—»I RESET Control Direction Data !
—y R/W Register Register Register I 8
~—=! RS B B B ‘17" Port B
__»' RS2 B6 fep— Data
——» CSO 87 - l
—] cst |
—>| cs2 |
———ef ENABLE i = CB2
} cai
1 AN
N |

FIGURE 7-11. Functional Block Diagram of the MC6820 PIA

Chapter 7: I/O PORTS, AN INTRODUCTION 7 1 7

register (O=input and 1=output). This permits some bits to be defined as output
and others as input, or even allows the data register to be used for temporary
storage.

The control register holds the status and control bits for handshaking and other
PIA functions. The function of the two control lines (CA1 and CA2 for port A} is
configured by the control register.

The MC6820 uses four consecutive port addresses. Since there are six
registers {two data, two direction, and two control) and only four addresses, bit 2
of each control register is used to determine whether the direction register (bit
2=0) or data register (bit 2=1) is being addressed. For a more detailed discussion
of the MC6820, consult the Osborne 4 and 8-Bit Microprocessor Handbook.

intel 8255

Called a PPI (Programmable Peripheral Interface) IC, the 8255 provides three
8-bit ports (A, B, and C). C is actually two 4-bit ports, and its bits can be
individually set and reset. Ports A and B can be programmed to be either input,
output, or bidirectional ports. Port C can be programmed to be either input, output
or a pair of control ports, one for port A and the other for port B. An internal con-
trol register determines the specific configuration and can be altered by the pro-
gram. The functional block diagram of the PPl is shown in Figure 7-12.

The 8255 can be programmed to operate in any of three different modes. In all
modes, Ports A and B are used as either input, output, or bidirectional data ports.
Port C is arranged as two 4-bit ports, so it is used as I/O or control, depending on
the mode selected for ports A and B. Further, port C’s bits can be set or reset inde-
pendently to generate device strobes. The modes are as follows:

Mode O — Basic I/O (Figure 7-13a). A, B, and C are either latched output or
non-latched input ports.

Mode 1 — Strobed 1/0 (Figure 7-135). A and/or B are strobed data ports (input
or output) with C providing each port with three control lines (one interrupt line). If
desired, one port may be used in mode O and the other in mode 1. If both ports are
used in mode 1 then there are two remaining bits available in port C for I/O.

The lines operate as follows:

INTR (Interrupt Request): used to interrupt CPU.
STB (Strobe input): loads data into register.

IBF (input Buffer Full flip-flop): indicates that data has been loaded into
register.

ACK (Acknowledge input): informs 8255 that data from Ports A and B
has been accepted.

OBF (Output Buffer Full): indicates that CPU has sent data to port.

7 18 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

3

r————"""—"""~>"——7—77= —I
I
I

|
|
|
| Control Data 8
——1 Register =1 Register —|+> Port A
| A A
| I
| I
I 4 ’ / ' : 4
| / 15| wesser [T
8 (o
:Data /0 // % S I | Port C
4
I y / ——|+>
| / / I
| L
— RD l
—>I WR I
—J A1l
' Control Data l 8
A0 1 Register 1 Register _|+> Port B
B B
—A TESET I
CS I

l . B

NS

FIGURE 7-12. Functional Block Diagram of the 8255 PPI

Mode 2 — Strobed bidirectional I1/0 (Figure 7-13¢). A is a bidirectional data
port supported by five strobe control and interrupt lines. B may be operated in
either mode O or 1, with three associated control lines.

The operation of the control register is shown in Figure 7-14. If bit 7 is high the
control byte controls the mode, as shown. For example: 10010101 establishes A
as a mode O input port, B as a mode 1 output port, C high-order bits as an output
port, and C low-order bits as an input port. If Bit 7 is low, port C acts as a set of
eight set/reset flip-flops, as indicated in Figure 7-15, controlled by an OUT

Chapter 7: /O PORTS, AN INTRODUCTION 7 1 9

8255 8255 8255
8 8 ! 8
BOA7‘~7L> Data Port 8 BO-7 ‘%» Data Port B BO-T‘-}L» Data Port B
co p——e= INTR 2 co <——>l Vo Port B
— o o
c1p—mBForOBF { & ci or Mode 0 or 1
4 I — ;Comrol
c2 — STBor ACK c2 fa——
C0-3 jtf-mm
Data Port C c3 b— INTR c3}—— INTR
4 c4 b—» STBor 10 C4 fe—— STB
Ca-7 jaarfom
C5 }——» IBF or /O ‘: c5 b——a IBF Port A
C6 }——p 1/0 or ACK & C6 j—— ACK Mode 2
c7 }—— 170 or OBF c7p—— OBF
8 8 8
AO-7 [t Data Port A AO-7 [/ Data Port A AO-7 |t~ Data
Port A
— D — —
Mode 0 Mode 1 Mode 2
(A 8)

FIGURE 7-13. The Three Modes of Operation of the 8255

instruction. When used as a status/control for A or B, these bits can be set or
reset using the bit set/reset, as if they were data output ports. Note that after
being reset via the RESET input, the 8255 is set to input mode. A typical S-100
I/O port circuit and software driver will be shown in the next chapter.

OTHER PROGRAMMABLE PORT IC’S

There are a number of other programmable parallel I/O ICs available — in fact,
too many to discuss. However, we would like to call your attention to some of
them.

Z80-PIO

Made by Zilog, this 40-pin IC is a cross between the 6820 and the 8255. It
contains two 8-bit I/O ports plus two associated control lines per port. Each port
may be defined independently as input, output, or control port. As a control port,
each pin can be individually defined to be input or output. Furthermore, the Z80-
PIO contains extensive interrupt logic, including interrupt reset by decoding Z80
instructions from the bus “‘on the fly."”

1 20 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

7 6 54 3 21 0 <@ BitNo.

L] L1111

P R X L Y .
Port C lower O = Output, 1 = Input
Port B O = Output, 1 = Input
Port B 0 = Mode O select, 1 = Mode 1 select

Port C upper O = Output, 1 = Input

Port A O = Output, 1 = Input

Port A 00 = Mode O select
01 = Mode 1 select
10 = Mode 2 select
11 = Mode 2 select

FIGURE 7-14. 8255 Mode Command Format

TMS 5501

Made by Texas Instruments, this is one of the most versatile interface ICs
available. it has two 8-bit I/O ports (one is input and one output), an external sense
input, and a bidirectional serial link with programmable baud rate generator.
Furthermore, the 55601 contains five programmable timers. It also provides
several interrupt control functions by receiving external interrupt signals, generat-
ing interrupt signals to an 8080 processor, masking out undesired interrupts,
establishing priority of interrupts, and generating vectors.

7 6 54 3 2 1 O --—— BitNo.
0
W
Reset selected bit to O

A 0
1 = Set selected bit to 1

000 Select PCO
001 Select PC1
010 Select PC2
011 Select PC3
100 Select PC4
101 Select PC5
110 Select PC6
111 Select PC7
These bits are ignored

FIGURE 7-15. 8255 Bit Set/Reset Command Format

Chapter 7: /O PORTS, AN INTRODUCTION 7 2 7

MCS 6522

Made by MOS Technology and others, the 6522 is an enhanced 6820. It pro-
vides more handshaking logic with port A. In addition, a counter/timer and serial
I/0 have been added to port B.

Each of the three devices mentioned here requires a complicated interface to
work properly with the S-100 Bus.

REFERENCES

1. R. Baker, ‘Put the ‘Do Everything’ Chip In"Your Next Design,”” BYTE, July
1976.

2. P. F. Goldsbrough and P. R. Rony, Microcomputer Interfacing With The 8255
PPI Chip. Howard W. Sams, Inc., 1979.

3. A. Osborne and G. Kane, An Introduction to Microcomputers: Volumes 2 and
3. Berkeley: Osborne/McGraw-Hill, 1976, 1979.

parallel interfacing

In the preceding chapter we discussed the basic principles of creating I/0 ports
in an S-100 system. In this chapter we will show several specific examples. We
will show both the hardware and software used to drive the ports. The software
routines used with input and output ports are most often called ““I/O drivers.”
Without these driver routines the hardware does nothing.

A parallel input interface transfers all the bits in the data word at one time to
the computer from the peripheral device or circuit. A parallel output interface
transfers the data word from the computer to the peripheral device or circuit. In a
later chapter we will discuss a serial interface which transfers the data word one
bit at a time. The parallel interface is thus faster than the serial interface but
requires a separate line for each bit in the word plus a common line. The serial
interface requires only one pair of lines in each direction. In this chapter we will
deal with common parallel interfaces.

SIMPLE PARALLEL OUTPUT AND INPUT INTERFACES

Figure 8-1 illustrates the use of the 74LS373 or 74LS374 (discussed in the
previous chapter) as a simple parallel output interface. The address decoder cir-
cuit output is active when the selected port is addressed. The I/O write strobe is
developed by a qualifier circuit. The 74LS373 thus latches the data from the data
bus when the strobe is high, while the 74LS374, which is edge-triggered, latches
the data on the positive edge of the I/O write strobe signal.

A simple parallel input port is shown in Figure 8-2. It uses an octal tri-state
buffer/driver IC (refer to Figure 8-3). When this port is read, the data present at
the input is placed on the data input bus and transferred to the master.

123

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

124

e
(v}
O
a

89 74L8374

Data Output Bus
To Peripheral Device

R —————— - 14
o ———
-

e a—— >
e ———

e e e
e

> Bit0 /.

36
ooo[>—0 Q

Clockor OC
Enable |
45 74L804 741810 1/0 Write Strobe
sOUT [>-
77
pWR* D___.Do.r[_—
A7 AN Address
Decoder

| ©

LUNAVAVAVAVAVY

BDSEL*

FIGURE 8-1. Simple Latched Output Port

The following simple subroutine reads the data at the input port, inverts it, and
sends it to the output port. It assumes that both the input and output ports are at
the same address (10, /).

;SUBROUTINE TO READ DATA FROM A PARALLEL INPUT PORT,
;INVERT IT AND SEND IT TO A PARALLEL OUTPUT PORT.
;WHEN THIS SUBOUTINE IS CALLED, DATA IN ACCUMULATOR

;IS LOST.
H
;TO USE WITR DIFFERENT PORT ADDRESSES, CHANGE THE
; "BASE" EQUATE.
i
0010 = BASE EQU 10H ;BEGINNING PORT ADDRESS
0010 = IPORT EQU BASE ; INPUT DATA PORT
0010 = OPORT EQU BASE ;OUTPUT DATA PORT
;
0100 = ORG 100H
i
0100 DB10 START IN IPORT ;FETCH DATA FROM INPUT PORT
0102 2F CMA ;COMPLEMENT DATA
0103 D310 ouT OPORT ;SEND DATA TO OUTPUT PORT
0105 C9 RET

Chapter 8: PARALLEL INTERFACING] 2 5

S$-100 Bus
43
{ m7<::}_________ ——————-——4(Bit 7 \
DI > —X< o
o
) 92 i S
2 | os—Ho — < 3
o 91 —
2 DMG_—‘ ———< ©
& 42 7415244 2
o DI3 | ———< g
5 41 o
o o < J—— < c
[=]
DI 094_._ F——< s
95
DIOG——————Q_—‘ Bit O

I/0 Read Strobe
74L81
pDBIN D?B——-—— ° {Active Low)
s S '_
sINP %504
Address
A7 AN Decoder
A0 NN '
BDSEL*

FIGURE 8-2. Simple Input Port {Non-Latched)

HANDSHAKING INTERFACING

In the previous chapter we introduced the concept of handshaking between
the master and peripheral devices or circuits. Now let's look at how we
accomplish this. Figure 8-4 illustrates a parallel interface with an 8-bit data output
port and a 1-bit data latch that holds active high and active low strobe signals for
the peripheral device.

The address decoder circuit, taken from Chapter 5, provides address select
signals for two ports, A and B. Port A is the control output port and port B is the
data output port. The following program is a simple 8080/8085 driver subroutine
to output data to the peripheral. The flowchart is shown in Figure 8-5. The data is
first sent to the data latch, where it is held. A strobe signal for the peripheral, teil-
ing it to load the data from the latch, is generated by first making the 1-bit control
port latch high and then returning it to a low logic level.

126

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

|10

7415244
|20
vce
2
Y1 18 2 1A1
1 4
1v2 8 /\] 1A2
|
1y —22 f-“'l— 5 1A3
1
2 8
1v4 ! /\l 1A4
S
‘ 9 11
2Y1 :/nll 2A1
13
2v2 ! 2 2A2
N
5 15
2v3 /1‘ 2A3
Iy
3 17
2va T 2A4
¢
% % GND
1 | 1 9|
G 2G

FIGURE 8-3. 74LS244 Logic Symbol with Pin Connections

0010
0011
0010

0100

0100
0102
0104
0106
0108
010A

Wonu

D311
3E01
D310
3E00
D310
Cc9

;SUBROUTINE TO OUTPUT DATA TO PARALLEL PORT WITH SIMPLE

HANDSHAKING

;ASSUMES DATA IN ACCUMULATOR WHEN SUBROUTINE IS CALLED.
;ACCUMULATOR CONTENTS ARE LOST

:TO USE WITH A DIFFERENT PORT ADDRESS, CHANGE THE “BASE" EQUATE.
;ALL OTHER ADDRESSES RELATIVE TG BASE

BASE
DATA
CMND

ORG

START OUT
MVI
ouT
MVI
ouT
RET

EQU
EQU
EQU

100H

DATA
A,01
CMND
A,00
CMND

10H
BASE+1
BASE

;BEGINNING PORT ADDRESS
; DATA PORT
;COMMAND PORT

;OUTPUT DATA TO DATA PORT
;SET STB HIGH

;OUTPUT TO COMMAND PORT
;SET STB LOW

;OUTPUT TO COMMAND PORT

; DONE

Chapter 8: PARALLEL INTERFACING 1 2 7

90 \
DO7 D___ D Q ——— Bit 7
40
pos Co—— >
39
pos [o—— >
38
D____ e
Data < DO4 89 Data to
Data Latct
Output Bus DO3 D—— 7418374 e Peripheral
88 Device
002 [>——— —*
35
po1 [>—— ——»
36 .
DOO D D Q }——->» Bit O
11 Clock or
Enable oc
2l /
+STV
PR
D QpF——a STB
Strobe to
74LS74 Peripheral
— — Devi
. 3 575 evice
TR +5V
1/0 Write Strobe A

1/0 Write Strobe B

Address SELB*

.YARFaVaVaVs Decoder

A0 A ® g%:D_

25 741532
sout >

77
pPWR* 74LS00

74LS04

FIGURE 8-4. Latched Output Port with Handshaking Strobe

7 28 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Qutput Data
Subroutine

Get Data to
Cutput

Y

Output to Data
Port

Y

Set Data Bit O
High

Y

Output to
Command Port

'

Set Data Bit O
Low

Y

Output to
Command Port

FIGURE 8-5. Flowchart of Program to Output Data and Strobe

A circuit which first checks if the peripheral is ready to receive the output data
is shown in Figure 8-6. A 1-bit status input port has been added. The input for this
port comes from an output on the peripheral which tells the master that the
peripheral is “‘busy’’ and is not ready to receive the data from the master. For
example, a printer might be busy printing the last character sent to it, and until itis
finished printing the character it cannot take in another character. Notice that only
two port addresses are decoded. Port A is used as the address for an input port

Chapter 8: PARALLEL INTERFACING 1 2 9

S$-100 Bus
(DO?D&-————D Q p———— Bit7
4i
D06 D—g———— e
39
pos > -
38
Data< poa - Data to
89 i
Output Bus DO3 D 7415374 Peripheral
D02 D&——— -
35
DO1 l >— .
36
poo > D a f—————— 8ito /
11 K Clock or
Enable

=B

+5V

P
[} Qp———a STB

Strobe to

741574 Peripheral

+5V

95 anev | Status from
DIO < }— i !—< BUSY} N
74LS125A Peripheral

~—PDek_ A 578
CLR

WRe 7
P 7aLso0a
45 1/0
souT > 74LS00 Write
Strobe B
Address o
A7 NN Decoder Writ
° - rite
. SeL8 Strobe A
.
A0 NN
/0 Read
78 Strobe A
pDBIN [>
46
sine 741500 741832

FIGURE 8-6. Latched Output Port with Output Strobe
and Busy Handshaking

130 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

(busy status) and an output port (strobe control), while port B is used only for data
output. The driver subroutine for this interface circuit is shown below. The
flowchart is shown in Figure 8-7.

;SUBROUTINE TO OUTPUT DATA TO PARALLEL PORT WITR BUSY TEST
;AND OUTPUT STROBE HANDSHAKING (FIGURE 8-%)

;ASSUMES DATA IN ACCUMULATOR WHEN CALLED

;CONTENTS OF ACCUMULATOR ARE LOST ON RETURN

;ROUTINE WILL NOT RETURN UNTIL DATA HAS BEEN SENT

;TO USE WITH DIFFERENT PORT ADDRESSES, CHANGE "BASE" EQUATE
;ALL OTHER ADDRESSES RELATIVE TO BASE

0010 = BASE EQU 10H ;BEGINNING PORT ADDRESS
0011 = DATA EQU BASE+1 ;DATA PORT

0010 = STATUS EQU BASE ;STATUS INPUT PORT

0010 = CMND EQU BASE ;COMMAND OUTPUT PORT
0001 = MASK EQU O1H ;BUSY BIT MASK

0100 ORG 1008

0100 FS PUSH PSW ;SAVE DATA IN ACCUMULATOR
0101 DB10 BSYTST 1IN STATUS ;READ BUSY BIT

0103 EA01 ANI MASK ;MASK IT FROM OTHER BITS
0105 CA0101 Jz BSYTST ;READ AGAIN IF LOW

0108 F1 POP PSW ;GET DATA TO BE SENT
0109 D311 out DADA ; SEND IT

010B 3EO01 MVI A,01H ;SET STB BIT HIGH

010D D310 ouT CMND ;SEND TO COMMAND PORT
010F 3ENO MVI A,00H ;SET STB BIT LOW

0111 D310 ouT CMND ;SEND TO COMMAND PORT
0113 C9 RET ;DONE

A peripheral which sends data to the master must usually tell the master that it
is sending data. For example, a keyboard must tell the master when a key has
been pressed, and then, and only then, should the master read the keyboard data
input port to determine which key has been pressed. In addition, if the data pre-
sented by the peripheral to the master is present only for a short time then a
latched data input port must be provided to hold the data until the master can read
it. An illustration of this type of input handshaking is shown in Figure 8-8.

In this circuit, a 1-bit latched input port is used to receive the key pressed signal
(DAV) from the keyboard. The same DAV strobe signal from the keyboard strobes
the data into the data input latch. The setting of the status bit tells the master,
when it reads the status input port, that a key has been pressed and that the “‘data
is available’’ (DAV) in the data input latch. The master polls the status input port
first to check if data is available. If it is, then the data is read from the data input
port and, at the same time, the DAV latch is reset so that the next keypress will be
detected and data latched. The master will not return from the subroutine until a
key has been pressed. The subroutine is shown below. The flowchart is shown in
Figure 8-9.

;SUBROUTINE TO READ DATA FROM INPUT PORT WITH HANDSHAKING

;RETURNS WITH DATA IN ACCUMULATOR WHEN CALLED.
;ROUTINE WILL NOT RETURN UNTIL DATA HAS BEEN READ

;TO USE WITH DIFFERENT PORT ADDRESSES, CHANGE "BASE" EQUATE
;ALL OTHER ADDRESSES RELATIVE TO BASE.

Output Data with
Busy Test and
Handshaking

Chapter 8: PARALLEL INTERFACING 1 3 1

— o

Read Status Port

Y

Mask Out Busy Bit
{Bit 0)

Is
Device Busy
?

Yes

Get Data and Write
it Out to Data Port

l

v

Set Data Bit O
High

k]

Output to
Command
Port

Y

Set Data Bit O
Low

¥

Output to
Command
Port

[

‘ Return ’

FIGURE 8-7. Flowchart of Program to Read Busy Bit,
Send Data and Output Strobe Bit

0010 = BASE EQU 10H ;BEGINNING PORT ADDRESS
0011 = DATA EQU BASE+1 ;DATA PORT

0010 = STATUS EQU BASE ;STATUS INPUT PORT

0001 = MASK EQU O01H ;DAV BIT MASK

0100 ORG 100H

0100 DB1O DAVTST 1IN STATUS ;READ DAV BIT

0102 EA01 ANI MASK ;MASK IT FROM REST OF BITS
0104 CA0D001 Jz DAVTST ;READ AGAIN IF LOW

0107 DB1l IN DATA ;READ DATA

0109 C9 RET ; DONE

MEMORY-MAPPED 1/0

Using memory-mapped I/O instead of port I/O can provide faster I/O, which
may be needed in some real-time applications such as digital-to-analog conver-
sion. For example, using an 8080 OUT instruction with a 2 MHz clock means

132

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

$-100 Bus

e La—
MY LA —
NER i e —

Data J pia 91

Input

Bus) pis <2
PR g AN
W gy La SN—
DI0 2>

oc

Bit 7

74LS374

ok <

il

+5V

741L.S125A

LU

Bit 0 /

Data from
Peripheral
Device

4>—< BAV

1/0 Read Strobe B

/0O Read Strobe A

Strobe from
Peripheral Device

Assumes Data Valid
on Falling edge of DAV

A7 N

A0 NN

Address
Decoder

©

SELB#

46

siNP }
78
pDBIN 74L.S00

FIGURE 8-8. Latched input Port with DAV Strobe

SELA#

741832

Chapter 8: PARALLEL INTERFACING 73 3

Read Data
Routine

Read Status Port

]

Mask Out DAV Bit

Data Available

Read Data

FIGURE 8-9. Flowchart to Read Input Data

5 1«s execution time for successive data outputting. With memory I/0 this execu-
tion time could be reduced to 2 us.

Compare the following two 8080 program routines to understand why
memory-mapped I/O is so much faster than I/0-mapped output. Both output the
contents of the B through E registers. The first uses standard /0.

MOV
ouT
MoV
ouT
MOV
ouT
MOV
OouT

A,B ;OUTPUT REGISTER DATA
PORT

A,C ;OUTPUT C-REGISTER DATA
PORT

A,D ;OUTPUT D-REGISTER DATA
PORT

A,E ;OUTPUT E-REGISTER DATA
PORT

In the following example, memory-mapped I/0 is used.

LXI
MOV
MoV
MOV
MoV

H, PORT ;SET PORT ADDRESS

M,B ;OUTPUT B-REGISTER DATA
M,C ;OUTPUT C-REGISTER DATA
M,D ;OUTPUT D-REGISTER DATA
M,E ;OUTPUT E-REGISTER DATA

1) 34 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

In the first example, fifteen 8080 clock cycles are required to output each
register. In the memory-mapped example, only five clock cycles are required, pro-
viding a threefold improvement in speed.

Interfacing to the
real world — input

When we connect the CPU to peripheral devices we say that we are interfacing
the CPU to the “‘real world.” In other words, now we are connecting the computer
to external devices that do things. After all, the CPU does nothing more than
"‘process’” data between input and output. In this chapter we will see how we
connect such things as keyboards, switches, and sensors to the computer.

Interface driver circuitry and driver software are required to accomplish this
interface. This is because these devices typically operate at different voltages
and/or currents or require that power be supplied by the interface. Further, a pro-
gram or software routine, most often called a ‘‘driver program,” is required to
format the data and control information to or from the processor.

All of the circuits in this chapter are designed to be used with the parallel input
ports shown in the previous chapter, or with most well designed commercially
available parallel interfaces.

INPUTTING FROM SWITCHES

Reading the condition of a switch, whether it is open or closed, is one of the
most basic computer input operations. Figure 9-1a illustrates a simple switch
input. The switch is connected to bit O of a parallel input port. When the switch is
closed the bit O input is low and when the switch is open the bit O input is high.
Figure 9-1b also illustrates the use of a pushbutton {momentary contact) switch.
When using this type of switch and pull-up resistor circuit, the “logical’’ position
of the switch is inverted. An open, or off, switch will be read by the computer as a

135

, 3 6 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

a. Works with both CMOS
and TTL gate inputs.

4.7 kQ

!

Input Port
Bit O

b. Works with CMOS

inputs only.
+5V
47k
Inpui Port
Bit O

1

FIGURE 9-1. Connecting Switches to an Input Port

logic one and a closed, or on, switch will be read as a logic zero. This may be con-
fusing because you normally think of “’on’’ as a “‘one’’ and “‘off’" as a “"zero.” To
change the logical states you can use inverters after the switches or invert in soft-
ware. In the case where the switch is not permanently marked with on and off
indications, just mount the switch upside down.

Here are some 8080/8085 software drivers for the circuits shown. For exam-
ple, if we wish to start a process when the pushbutton switch in Figure 9-1bis
depressed, we could use the following program. The flowchart is shown in Figure

9-2.

0010
0010
0200

0100

0100
gl02
0104
0107

sROUTINE TO START A PROCESS WHEN

5A PUSHBUTTON SWITCH

IS DEPRESSED.

sIT IS ASSUMED THAT THE PROCESS
3 SUBROUTINE STARTS AT MEMORY LOCATION 200H

5
BASE EQU 10H

= PORT EQU BASE
= START EQU 200H

H

H

ORG 100H

H
DB1O LooP IN PORT
E601 ANI 1
€20001 JNZ LOOP
c30002 JMP START

;s PORT STARTING ADDRESS
sSWITCH PORT
sPROCESS SUBROUTINE LOCATION

sCHECK SWITCH

sNOT CLOSED CHECK AGAIN
;CLOSED THEN START PROCESS

A rotary type switch may also be connected to a port, as shown in Figure 9-3,
to determine the switch position. The following short routine will determine which
of the six possible positions the switch is in, and cause the processor to branch to
a selected routine. The flowchart is shown in Figure 9-4.

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT 7 3 7

Read Switch
Routine

Read Switch
Port

Go to Process
Routine

FIGURE 9-2. Read Switch Routine Flowchart

+5V
> < 3 > 3 >
2 3 3T 2 3 Zanarxn
9 9 9 9 9 —— = B7
Not
—> 86 } Used
- B5
- B4
—& B3
3
/,-0-\\ # B2
4 Q2 —— 81
\
(N —
5 — /1
~ i P4
o

FIGURE 9-3. Connecting Rotary Switch to an Input Port

1 38 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Read Rotary
Switch Routine

Read Switch
Port

Is

?

?

Is
Switch 1
Closed

Is
Switch 5
Closed

Switch O
Closed

Switch 3
Closed

Switch 4
Closed

Yes

No

Yes

No

Yes

FIGURE 9-4. Rotary Switch Routine Flowchart

0010
0010
0200
0300
0400

[}

mon

SWO Routine

SW1 Routine

SW2 Routine

SW3 Routine

SW4 Routine

SW5 Routine

sROUTINE TO TEST POSITION OF A ROTARY SWITCH
; AND BRANCH TO SIX DIFFERENT SERVICE ROUTINES.
3IT IS ASSUMED THAT ROUTINE SWO STARTS AT 200H

B

H
BASE
PORT
SWO
SW1
SW2

EQU
EQU
EQU
EQU
EQU

10H

BASE
200H
SWO+100H
SW1+100H

; PORTS STARTING ADDRESS
;SWITCH INPUT PORT

H SERVICE

H ROUTINE

H ADDRESSES

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT 1 3 9

0500 = SW3 EQU SW2+100H
0600 = SWa4 EQU SW3+100H
0700 = SW5 EQU SW4+100H

;

;
0100 ORG 100H
0100 DBLO RDSW IN PORT ;READ SWITCH
0102 1F RAR 3IF IN POSITION-0
0103 D20002 JNC SWO H EXECUTE ROUTINE SWO
0106 1F RAR ;IF IN POSITION~-1
01Q¢7 D2Q003 JNC SW1 H EXECUTE ROUTINE SWl
010A IF RAR 5IF IN POSITION-2
010B D20Q0C4 JNC SW2 H EXECUTE ROUTINE SW2
010E 1F RAR sIF IN POSITION-3
O010F D2000S5 JNC SW3 H EXECUTE ROUTINE SW3
0112 1F RAR SIF IN POSITION-4
0113 D20006 JNC SW4 H EXECUTE ROUTINE SWé&4
0116 1F RAR 3IF IN POSITION~S
0117 D20007 INC SWS ; EXECUTE ROUTINE SW5
011A C30001 JMP RDSW sNOT IN ANY POSITION

5 READ AGAIN

Magnetically operated switches are particularly easy to use to sense position.
Figure 9-ba illustrates a magnet attached to a rotary moving device or to a linear
moving device. When the magnet is adjacent to the reed switch, the switch con-
tacts close {reed switches which open under the influence of a magnet are also
available). In the example shown in Figure 9-5b the position of the linear moving
device can be determined.

Using the setup shown in Figure 9-5a, a process can be started when the wheel
is positioned correctly, as follows:

sROUTINE TO START A PROCESS WHEN WHEEL

51S POSITIONED CORRECTLY.
sIT IS ASSUMED THAT THE PROCESS ROUTINE

3 STARTS AT MEMORY LOCATION 200H

>

B
PORT EQU 10H 5 SWITCH PORT ADDRESS

0010 =
0200 = PROCS EQU 200H sPROCESS ROUTINE ADDRESS
H
H
0100 ORG 100H
H
H
0100 DBLO POSIT IN PORT sCHECK - SWITCH
0102 E601 ANI O0lH 5IF SWITCH IS NOT CLOSED
0104 C20001 JNZ POSIT 5 CHECK AGAIN
0107 €30002 JMP PROCS s;IF CLOSED START PROCESS

The position of the linearty moving object shown in Figure 9-55 can be deter-
mined with the following 8080/8085 routine.

;ROUTINE TO DETECT THE POSITION OF A MOVING

3OBJECT AND EXECUTE ONE OF FOUR DIFFERENT ROUTINES
;DEPENDING ON LINEAR POSITION.

3 FIRST POSITION ROUTINE BEGINS AT ADDRESS 200H
H
H

0010 = PORT EQU 10H sSWITCHES PORT ADDRESS
0200 = ROUTO EQU 200H sADDRESSES

0300 = ROUTI EQU ROUTO+100H ; OF

0400 = ROUT2 EQU ROUT1+100H ; POSITION

1 40 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

+5V

5.1 k{)

Input
Port
Bit O

Magnet Reed

Switch

a. Rotary position

+5V

>
S
> 5.1 kQ
= B0
Position - 81
[¢]
- B2
o—» B3
Position

1

Position
2

Position
3

b. Linear position

FIGURE 9-5. Determining Position With Magnetically Operated Switches

0500 = ROUT3
H

0100 ORG 100H

H

0100 DB10O POSIT
0102 1F

0103 D20002
0106 1F

0107 D20003
010A 1F

010B D20004
010E 1F

010F D20005
0112 C30001

EQU

IN

RAR
JNC

RAR

JNC
RAR
JNC
RAR
JNC
JMP

ROUT2+100H

PORT

ROUTO

ROUT1
ROUT2

ROUT3
POSIT

H ROUTINES

sCHECK LINEAR POSITION

sIF IN POSITION-O
3 EXECUTE ROUTINE-O

5IF IN POSITION-1

3 _EXECUTE ROUTINE-1
3IF IN POSITION-2

; EXECUTE ROUTINE-2

sIF IN POSITION-3

; EXECUTE ROUTINE-3

;IF NO POSITION DETECTED
; TRY AGAIN

Input
Port

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT 14171

Switch Debounce

Read
Switch

No

Yes

Wait
2 ms

Still
Closed
?

Yes

FIGURE 9-6. Flowchart for Switch Debounce Routine

DEBOUNCING SWITCHES

Switches have a kind of noise associated with their operation called *‘switch
bounce.” This is produced by the mechanical bouncing of the switch contacts as
they close. The switch may go on and off thousands of times a second. In some
applications this switch bounce will cause errors. For example, contact bounce in
a terminal keyboard will cause many characters to be generated when only one is
desired.

Switch bounce can be eliminated by a variety of hardware circuits. However, it
is usually more economical to do it in software. This debouncing can be
accomplished by sensing a switch closure twice, separated by an appropriate time
interval. A time interval of a few milliseconds is usually sufficient. The following is
a sample 8080/8085 program for switch debouncing. The flowchart is shown in
Figure 9-6.

142 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

;ROUTINE TO DEBOUNCE A SWITCH
H

H
PORT EQU 10H s SWITCH PORT ADDRESS

0010 =
0004 = TIME EQU 10D ;NUMBER OF DELAY LOOPS=10
0085 = MS EQU 85H ;NUMBER OF LOOPS FOR 1 MS
0001 = MASK EQU I ;MASK OFF ALL BUT BIT-0
}
;
0100 ORG 100H
H
0100 F5 RDSW PUSH PSW ; SAVE REGISTERS
0101 €5 PUSH B
0102 DB10O IN PORT $CHECK SWITCH
0104 E601 ANT MASK
0106 C20001 JNZ RDSW ;NOT CLOSED, READ AGAIN
0109 CD1601 CALL DELAY ;CLOSED, WAIT FOR 10 MS
010C DB1O IN PORT ;CHECK SWITCH AGAIN
010E E601 ANT MASK
0110 €20001 JNZ RDSW ;IF NOT CLOSED START OVER
0113 C1 POP B ;RESTORE REGISTERS
0114 F1 POP PSW
0115 C9 RET ;CLOSURE WAS VALID
0116 3E0A DELAY MVI A,TIME ;SET NUMBER OF MS
0118 0685 DELY1 MVI B,MS ;SET MS COUNT
011A 05 DELY2 DCR B ;COUNT FOR 1 MS
011B C21A01 JNZ DELY2
O11E 3D DCR A ;COUNT NUMBER OF MS
011F C21801 JNZ DELY1
0122 €9 RET

The delay time is determined by calculating the time for Register B to count
down to zero. This count should be set so that loop DELY2 takes 1 ms. The
Accumulator counts the number of milliseconds. For example, if using an 8080/
8085 microprocessor with a 2 MHz clock and no wait states, we proceed as
follows. First, look up the number of clock cycles for each instruction.

Clock
Instruction Cycles
DELY1 MVI B,MS 7
DELY2 DCR B 5 1T ms
JNZ DELY2 10} 15 clock
DCR A 5§ cycles
JNZ DELY1 10

The CALL, MVI A, and RET instructions can be ignored since they occur only
once. When the system is operating at the standard 2 MHz clock rate, 2000 clock
cycles occur every millisecond. The value (MS) in Register B (which is the number
of inner loops) is calculated as follows:

2000=7 +[(5+10) X MS]
2000 - 7 =15 X MS
1993 + 15 = MS

MS =133, =85,

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT 1 4 3

Therefore, if TIME = 1010 and MS = 8516, the delay routine will provide

approximately a 10 ms delay interval, as follows:

Clock

Instruction Cycles

CALL DELAY 18
MVI A,10D 7
MVI B,85H 7

DCR B B»

16 X 133=1995

JNZ DELY2 10*} 2(1995+ 7 +5 + 10)=2017
DCRA 5«

JNZ DELY1 10%

RET 10

*On8085: DCR = 4 cycles
JNZ = 7 cycles except on last time (jump condition
false) when it is 10 cycles

The total delay routine is thus:
(2 X 2017) + 18 + 7 + 10 = 4069 cycles
The total time is:
4069 X 500 ns = 2.035 ms
Notice that the 8085 clock execution times for the DCR and JNZ instructions

are slightly different and the calculations must be modified accordingly. Also, on
the Z80 the following execution times should be used:

Clock

Instruction Cycles
CALL 17
MVI reg (LD reg) 7
DCR reg (DEC reg) 4
JNZ (JPNZ) 10
RET 10

Longer time delays may require the use of a register pair counter rather than a
single register. This may be accomplished as follows:

1 4 4 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

;DELAY SUBROUTINE FOR LONGER TIME DELAY
; CONTENTS OF REGISTERS A, B, C and D ARE LOST

FFFF = TIME EQU OFFFFH ;NUMBER OF SECONDS
FFFF = LOOPS EQU OFFFFH ;NUMBER OF LOOPS
;
H
0200 ORG 200H
;
0200 11FFFF DELAY LXI D,TIME ;SET NUMBER OF DELAY LOOPS
0203 OQLFFFF DELYL LXI B,LOOPS ;SET LOOP COUNT
0206 0B DELY2 DCX B ;COUNT
0207 78 MOV A,B ;CHECK IF BC = 0
0208 B1 ORA C
0209 C20602 JNZ DELY2 ;IF NOT ZERO DO AGAIN
020C 1B DCX D ;COUNT SOME MORE
020D 7B MOV ALE JCHECK IF DE = 0
020E B2 ORA D
020F €20302 JNZ DELY1 sIF NOT ZERO DO AGAIN
0212 C9 RET ;DELAYED LONG ENOUGH
5 RETURN

The MOV A,B and MOV A,C instructions followed by ORA C and ORA D are to
test for zero in the respective register pair since the DCX B and DCX D instructions
do not affect any flags. The inner loop decrements register pair BC for approx-
imately one second. The outer loop decrements register pair DE to count off the
number of seconds.

INTERFACING TO KEYBOARDS AND SWITCH ARRAYS

Typical alphanumeric keyboards, as used in standard video and printer ter-
minals, employ 50 or more switches. These switches could be connected directly
to parallel ports. However, this would take six or more ports, each of which would
have to be scanned to determine which key has been closed. The interfacing
electronic circuitry, and hence the cost, can be substantially reduced by a matrix-
scanning technique.

The same situation exists in systems employing a large number of sensing
switches. For example, security systems with switch type sensors on all doors and
windows, fire and smoke detectors, fault detectors, etc., may have several
hundred switch inputs to the computer. In this case the amount of wiring, as well
as interfacing electronics, can often be reduced by a matrix-scanning system.

The basic scheme for the matrix-scanning system is illustrated in Figure 9-7. It
consists of a matrix of wires with normally open momentary-contact switches at
each intersection. In this case there are 64 individual switch contacts. These
switches may be keys on an alphanumeric keyboard, or any devices with switch-
type closures. Only two /O ports are needed: one output and one input. This
reduces the number of ports from the previous eight to only two, and the number
of wires from the previous 65 to only 16.

A program is required to scan the switch matrix and determine whether a

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT , 4 5

+5V

LA A
A A 4 o

: Resistors 4.7 k()

AAA
vy
AAA
\—

AA
A A A
AAA
A A A4
—AAA
AA.
yvw
A
A A A4
~AAA.

Rows

Latched B4 -
7

Open Collector <
Output Port

Y
1N
7

~
/>
~ Key at each
. Intersection
~

Input Port < \
B3 -—

2 = N
B1 g

\ BO -»

Columns

FIGURE 9-7. Keyboard Matrix Scanning System

switch has been closed, and if so, which one. Also, the program must include a
switch debounce routine. Further, there is the problem of simultaneous multiple
key depressions. This is cured by causing the scan routine to wait until all keys are
opened before sensing a closure. This is called “‘lock-out.” In an alarm system a
lock-out could postpone timely actuation of an alarm if switches do not open
again.

The flowchart for the keyboard scan routine is shown in Figure 9-8. It starts by
enabling all output port bits {setting them all low). All the input port bits will be
high unless a switch is closed. The program waits for all switches to be open
before proceeding. Then, the occurrence of a zero at any bit of the input port indi-
cates a contact closure. The debounce delay is then invoked, after which the

146

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Keyboard Scan
Routine

Y

Save Registers
and Set High
Part of
Table Address

2 Y
Set All

Rows
Low

Scan
]

Wait Until
No Key Is
Pressed

Scan

Read Columns

Any
Key
Pressed

Save
Column
Pattern

!

Wait
For
Debounce

Y

Set First
Row Bit
Low

—=

Save
Row
Pattern

Y

Read Columns

No

\

Recall Pattern

AND Row and
Column Data To
Get Low Address

Byte

Y

1

Shift Row
Pattern Left

Assemble High
and Low Table
Address Word

Are

v

Recall
Column
Pattern

Y

Read
Columns
Again

No Patterns

The Same

All Rows
Checked
?

FIGURE 9-8. Flowchart for Keyboard Scanning Routine

Y

Fetch Character
Code From
Table

Character
Code = 0

Restore
Registers

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT 1 4 7

matrix is scanned to determine which key is closed. This technique assumes no
simultaneous multiple closures.

Each row is enabled, one row at a time, until a switch closure is detected on the
column inputs. At this point the Accumulator contains the row count and Register
B contains the column count. The LOOKUP subroutine is called which ANDs the
Accumulator and Register B to form the low byte of the lookup table address. The
low address byte is combined with the high address byte (set to 3016 at the
beginning of the keyboard routine) to form the 16-bit table lookup address word.
The character code is then fetched from the table. The following is the keyboard
scanning routine.

s KEYBOARD SCANNING ROUTINE FOR MATRIX KEYBOARD.

s RETURNS WITH CHARACTER CORRESPONDING TO KEY POSITION
5 IN ACCUMULATOR - DERIVED FROM LOOKUP TABLE

;s LOOKUP TABLE CONSISTS OF 256 BYTES, OF WHICH ONLY
564 ACTUALLY CONTAIN KEY VALUES. THE REST CONTAIN ‘007

s WHICH IS AN ERROR CODE.
;TABLE ADDRESS IS CONTAINED IN "TABLE" EQUATE

0010 = PORT EQU 10H ;OUTPUT AND INPUT PORT ADDRESS
0030 = TABLE EQU 30H ;HI BYTE OF TABLE ADDRESS
0004 = TIME EQU 10 ;NUMBER OF DELAY LOOPS
0085 = s EQU 85H ;NO. OF LOOPS FOR 1 MS
0100 ’ ORG 100H

;
0100 ¢5 SCAN PUSH B ;SAVE BC REGISTER PAIR
0101 E5 PUSH H ;AND HL
0102 2630 MVI H,TABLE ;PUT HI BYTE OF TABLE IN H
0104 AF SCANL XRA A ;ZERO A REGISTER
0105 D310 oUT PORT ;SET ALL ROWS LOW
0107 DBLO N PORT ;READ COLUMNS
0109 FEFF CPI OFFH ;ARE ANY KEYS PRESSED?
010B C20401 JNzZ SCAN1 5YES, WAIT FOR RELEASE
010E DB10 SCAN2 IN PORT ;READ COLUMNS AGAIN
0110 FEFF CPI OFFH JARE ANY KEYS PRESSED?
0112 CAOEO1I Jz SCAN2 iNO, TRY AGAIN
0115 F5 PUSH PSW ;SAVE COLUMNS ON STACK
0116 CD4101 CALL DELAY SWAIT FOR DEBOUNCE
0119 F1 © POP PSW {GET COLUMNS BACK
0114 47 MOV B,A ;PUT THEM INTO B
01iB DB1O IN PORT ;READ THE COLUMNS AGAIN
011D B8 CMP B JSEE IF THE SAME AS BEFORE
011E €20401 INZ SCAN1 ;NO, TRY THE WHOLE THING AGAIN
0121 3EFE MVI A,OFEH ;ZERO FIRST ROW BIT
0123 D310 SCAN3 OUT PORT ;SEND IT OUT
0125 47 MOV B,A ;COPY INTO REGISTER B
0126 DBLO IN PORT ;READ THE COLUMNS
0128 FEFF CPI OFFH $IS IT THIS ROW?
0124 €23601 JNZ LOOKUP ;YES, LOOK-UP CHARACTER
012D 78 MOV A,B ;NO, GET ROW FOR ROTATE
012E 07 RLC ;MOVE THE ZERO LEFT ONCE
012F D20401 JNC SCAN1L ;IF ALL ROWS CHECKED
0132 47 MOV B,A ;PUT A BACK IN B
0133 €32301 JMP SCAN3 {TRY NEXT ROW

5

; LOOKUP TABLE ROUTINE

;B HAS ROW INFO, A HAS COLUMN INFO

; THEY ARE ANDED TO GET LOW-ORDER LOOKUP TABLE BYTE

;H HAS HI BYTE OF POINTER TO TABLE, L IS SET BY THE ABOVE
;IF VALUE POINTED TO IS ZERO THEN THERE IS AN ERROR

H
0136 AO LOOKUP ANA B 5AND A AND B REGISTERS

14 8 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

0137 6F MOV L,A sPUT INTO POINTER

0138 7E MoV A,M ;GET BYTE FROM TABLE

0139 FEOO CP1 00H ;IS IT AN ERROR?

013B CA04Q1 Jz SCAN1 ;YES, TRY THE WHOLE MESS AGAIN
013E El POP H ;NO, RESTORE THE REGISTERS
013F Cl POP B ;AND RETURN WITH THE

0140 °C9 RET sCHARACTER IN A

H
; SUBROUTINE FOR KEYBOUNCE DELAY

0141 3E0A DELAY MVI A,TIME 3SET NUMBER OF MS

0143 0685 DELAYl MVI B,MS ;SET NUMBER OF LOOPS IN A MS
0145 05 DELAY2 DCR B 3 START COUNT

0146 C24501 JNZ DELAY2 sLOOP UNTIL B=0

0149 3D DCR A ;THEN DECREMENT OUTER LOOP
014A C24301 JNZ DELAY1 ;AND REPEAT INNER LOOP

014D C9 RET sAND THEN IT”S DONE

INTERFACING TO ENCODED KEYBOARDS

The previous example showed how to interface a matrix of keyswitches (an
unencoded keyboard) with a minimum of hardware. The CPU is left to do most of
the work, and many tradeoffs were made to keep the software simple. However,
there are several “’keyboard encoder’’ ICs that perform all the scanning, decoding,
and error detecting functions in hardware. These ICs provide eight data bits and a
data-available strobe to the CPU. The circuit in Figure 9-9 shows a typical
keyboard encoder interface.

You can obtain the keyboard encoder IC and an unencoded keyboard, and wire
up the matrix yourself; however, the encoder ICs are usually part of commercially
available ASCII keyboards. In either case, the IC or encoded keyboard may be con-
nected to the computer using the latched parallel input port circuit shown in
Figure 8-8. The software for that circuit may also be used to read the keyboard
data.

It is also possible to operate the keyboard as an interrupt device to the CPU. In
this way the CPU may do other work until interrupted by a pressed key. A discus-
sion of this technique will be left for Chapter 13.

LIGHT SENSORS

There are many different ways of sensing light and using it as a switch type
(on-off) input to the CPU. All of the following circuits act in the same manner as a
switch, and therefore the associated software would be the same as that for a
switch type input.

A simple light sensor can be created using a photocell as shown in Figure
9-10a. Light falling on the photocell causes its resistance to drop, in turn causing

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT 7 4 9

Keyboard Switches

] [X'IL
- b————————— B0
x2|
} ——————— =81

X3|

—————# B2
XGT

& B3 ASCll

x5 Code To Parallet

F———————® B84 Input Port
X6

———————# B5
X7

p———————® B6
X8

P> Keypress
X9 Strobe (DAV)

LY10 Yo|Y8|Y7|Y6|YS|Ya]Y3{Y2]|Y1 Keyboard
gt N SIh PR Ry Sy — . Encoder Shift
Ic | N =N
Control
b3

Clock

FIGURE 9-9. Typical Encoded Keyboard Circuit

the voltage at the inverter input to decrease to nearly O V, switching the inverter
output high. A CMOS inverter, with its high input impedance, works best in this
application. Even better performance can be achieved using a Schmitt-trigger
type CMOS inverter, such as the 74C14. This prevents any oscillation, which
might otherwise occur as the input voltage changes.

A phototransistor, as shown in Figure 9-10b and 9-10c, provides much greater
sensitivity to light. These are also available with built-in lenses which provide even
higher sensitivity and much better rejection of ambient light sources. An external
lens may also be used. Use of a lens typically increases sensitivity by a factor of 5.
In any event, a debounce type software routine or Schmitt-trigger circuit will be
necessary in most applications to eliminate oscillations occurring during the tran-
sition through the linear gate region. Further, bypassing the photocell or photo-
transistor with a small capacitor (e.g., 5 nF) will also provide some noise filtering.

1 5 0 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Schmitt Trigger
CMQOS Inverter

To Bit of
Input Port
(LSTTL)

Photocell
Claire 903

Phototransistor

Focusing
Lens

1 nF

-

10 MQ2

AAA

Fairchild FPT-100
or TL TIL63

1MQ
Sensitivity
Adjust

A A4

b.
+5V
Schmitt Trigger
CMOS Inverter
To Bit of
Input Port
{LSTTL)
- Phototransistor
S Fairchild FPT-100
L. 9~ or T TIL63
Q +5V ? +5V
P 4
S10kQ
‘b
4 2N2807
<
groke
To Bit of
¥ |nput Port
2N3904 s {LSTTL)
or 210kQ
2N2222 €

FIGURE 9-10. Using a Photocell and Phototransistors as

a Port Input

Combination LED/phototransistor packages are available in a wide variety of
mountings. One typical application of such a device is shown in Figure 9-11. Here,
the rotational position of a disk is sensed. In fact, an LED/phototransistor com-
bination is usually used to sense the position of floppy disks, printers, etc. The

floppy disk contains one or more holes through which the LED shines onto the

phototransistor.

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT 7 5 7

+5V

Fairchild 180 (

FKT0042

gl

L

+5V

\\
N

l_..o

K

Q Schmitt Trigger Type
N CMOS Inverter
» To Bit of
Input Port
(LSTTL)
120 k)
Reflector

*Guard from Ambient Light

FIGURE 9-11. An LED/Phototransistor Device Used for
Detecting Position of a Disk

OTHER TYPES OF SENSORS

A wide variety of sensors are suitable for CPU input. Some examples are
shown in Figure 9-12. Figure 9-12a illustrates the use of a thermistor as a tem-
perature-operated switch. Figures 9-12b and 9-12c¢illustrate how a conductivity
change between a pair of conductors will be sufficient to cause a change in a logic
level output. Figure 9-12brepresents a rain sensor, while Figure 9-12crepresents
a conductivity sensor. In each case it is important that a high input impedance
CMOS gate be used so as not to load the sensor excessively.

A more accurate and stable temperature sensing circuit can be made using a
solid-state temperature sensing IC (in this case a National Semiconductor
LM3911) as shown in Figure 9-13. The output of the LM3911 changes at a linear
rate of 10 mV/°K. This output is fed to a comparator (LM301) which compares
the temperature-related voltage to a trip-point voltage, set by the 50 k() poten-
tiometer.

152

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

a. +5V

b +5 Vv
o
QOutput ‘
(LSTTU) L
é: 22 MO}
—dL
CMOS
Inverter
p Output
{LSTTL)
P]
& 100 k€
*P
-t

Note: All inverters are CMOS Schmitt Trigger Gates

FIGURE 9-12. Thermal and Conductivity Sensor Inputs

+12V +12V +12V
Range
Adjust
56 k()
3
Lm3911 P S
Temperature 4’1
Sensor 2 k3
A\ A4
10k 4
4 Lower
Temperature
_‘Ll___imit Adjust

FIGURE 9-13. Precision Temperature Sensing Circuit

CMOS
Inverter
Output
(LSTTL)
TTL Output

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT 1 5 3

+5V

B 4 <

&22M0 q: 22MQO

< < 0.1 uF
1 .
3

8 6 7 -
Vee Discharge
% Threshold
2 Trigger ouT 3——» TTL Output

Vadasal

Touch-Piate 555

Reset

N.C. Control Reset 4——-< {Connect to +5 V
Voltage if not used)

GND

i

FIGURE 9-14. A Touch-Plate Sensing Circuit

ot

A touch-plate sensor is shown in Figure 2-14. It employs a 555 timer used in a
monostable multivibrator mode. It has a time-out of approximately 1 second (set
by values of R1 and C1). When a person touches the touch-plate, the trigger input
of the 655 picks up an induced 60 Hz signal from alternating current fields pres-
ent in most buildings. If the touch-plate is touched and held, the 555 will oscillate
at a rate near the time-out rate. The circuit is sensitive to noise, so leads must be
kept as short as possible. A piece of aluminum screen functions well as a touch-
plate.

ISOLATING INPUTS

Frequently we wish to use an input which is not at TTL voltage levels. This
necessitates isolating the sensor circuit from the CPU input circuit. This is best
accomplished using optical couplers. These devices are essentially a light genera-
tor (usually an LED) whose light output is controlled by the input device and a light
sensor which is controlled by the light generator. Light is thus the link between
input and output, and there is no electrical interconnection. We do not have to
worry about the external voltages and ground levels.

The Monsanto MCT-2 (same as the 4N25, Texas Instruments TIL111,
Motorola MOC 1000, Fairchild FPLA820, and Litronix ISO-LIT-1) is a very widely

154 INTERFACING TO S-100//EEE 696 MICROCOMPUTERS

used optical coupler for computer interface isolation. It uses an LED and photo-
transistor. In applications where higher speed is needed (e.g., rates greater than
100 kbps) the Monsanto MCD-2 can be used. The MCD-2 employs a photo diode
as the light sensor. In these devices the phototransistor and diode can conduct up
to 50 mA and the LED can withstand more than 30 V in the off state.

A typical circuit for sensing the presence of DC voltage or current is shown in
Figure 9-15a. When the current through the LED is greater than 2 or 3 mA the
output will switch states. To calculate the value of the resistor, realize that the
LED current must be about 3 mA and the voltage drop across the LED will be
approximately 2 V in the on state. Therefore, the remainder of the voltage must
be dropped by the current limiting resistor (R). The following formula may be
used:

R = (Vdc — 2V) + 0.003 A

Thus, if we wish to sense when 100 V is reached:
= (100 — 2) + 0.003 = 32,667 ohms

Since this R value is not standard and the characteristics of optical couplers
vary, it is best to incorporate a potentiometer for fine tuning of the circuit opera-
tion. The circuit to detect the 100 Vdc is shown in Figure 9-15b. Note that a diode
has been added across the input to protect the LED from excessive reverse
voltage.

To detect AC voltage a simple rectifier and filter to convert the AC to DC is
usually sufficient. Rectifying the AC will produce a DC voltage thatis 1.414 times
the RMS value of the AC voltage. For example, to detect the presence of the AC
power line, at its normal level of 120 V, proceed as follows:

Convert RMS Vac to Vdc:

120 X 1.414 =170V
Then calculate the value of R, as before:
R={(170 — 2} + 0.003 = 56,000 ohms

The diode should have a PIV (peak inverse voltage) rating of at least 2.8 times
the Vac, hence:

PIV =120 X 28 =336 V

Hence a 1N4004 rectifier, having a PIV of 400 V and rated for 1 A was
selected.

The filter capacitor should be 0.1 nF to provide adequate filtering, and its
voltage rating should be greater than 1.4 times the Vac. Hence, a 200 V rating
was selected. The circuitry for this is shown in Figure 9-16.

Chapter 9: INTERFACING TO THE REAL WORLD — INPUT 7 5 5

a +V +5V
R 51k
MCT-
cr2 7414
Logic
Qutput
V
dc !!
s /k -
-V
b +5
51k
rl MCT-2 7414
Logi
+ O—TAMA— A4 —— ot
27 k2 10k
100 Vde S I 4
- \
V4

-

FIGURE 9-15. Using an Optical Coupler to Isolate the CPU Input

51 kQ
Monsanto
MCT-2

7414
IN4004 56 k{2, TW)
N Al o AAA Logic

T/ Ll] b Output
120 Vac 01 uf l[§

l _l__zoov L IN914
N\
> 1

FIGURE 9-16. AC Voltage Sensor Circuit

15 6 INTERFACING TO S-100/[EEE 696 MICROCOMPUTERS

+5V
36 k{}
GE H11AA
7414
N\ AAA Logic
T /7 A Output

1N
7
=

LT

FIGURE 9-17. AC Voltage Sensor Circuit

There are optical couplers made specifically to sense AC voltage. One such
device is shown in Figure 9-17. The presence of AC voltage causes a high logic
output except at the time the AC voltage is crossing zero.

If this circuit is used as part of a power failure detector circuit then a much
smaller size filter capacitor should be used to reduce the discharge time.

ISOLATING LOGIC SYSTEMS

We often need to isolate an input logic system from the CPU. For example, we
may wish to connect the output from a piece of equipment which, although it
develops TTL signal voltage levels, does not have a power supply which is prop-
erly isolated from the AC power line. Such equipment may do harm to the CPU.
The isolating circuit shown in Figure 9-18a affords such protection.

If we wish to isolate a system employing CMOS logic circuits, the circuitry
shown in Figure 9-18b can be used. This is necessary since the CMOS gate out-
put cannot provide sufficient current to drive the LED.

it should be pointed out that the slow speed of opto- isolators can be a problem
in applications where fast response is necessary.

a +5V
TTL
QOutput
To
CPU
TTL
Input
b +V +5V
Q
> > p
< < <
> 4 4
:’100 k() :,680 Q :,lk!l
[\ 7414
TTL

o
l/ Output

cPU
A

CMOS 200 k(2
Input

o

FIGURE 9-18. Isolating Logic Systems From the CPU

REFERENCES
"Applications of Opto-Isolators — Application Note 3#2.” Litronix Inc., 19000
Homestead Rd, Vallco Park, Cupertino, CA 95014

“Isolation Techniques Using Optical Couplers — Application Note
AN-571."" Motorola Semiconductor, Box 20912, Phoenix, AZ 85036.

Interfacing tothe
real world — output

In the preceding chapter we examined connecting switch type inputs to a
microcomputer. In this chapter we will look at how to connect a variety of devices
to the output of a microcomputer. These devices will then be controlled directly
by the computer.

INTERFACING TO LED'S AND LAMPS

Lamps are connected to the CPU to serve as indicators of states or events.
Most often LEDs are used. Actually, an LED may be connected directly to a gate
output, as shown in Figure 10-1a. In Figure 10-1a the LED will be lit when the
gate output is low. When the LED is on, typically 16 mA passes through the LED.
This is the maximum sink current for a standard TTL gate. However, the bright-
ness of the LED is less than desired. A high-current buffer, such as the 7437, can
be used to sink up to 48 mA. By decreasing the current-limiting resistor value to
82 ohms, the LED current is increased to 32 mA and higher brightness is
achieved.

An alternative to using a buffer IC is using an LED driver transistor, as shown in
Figure 10-1b. Essentially the same circuit may be used to drive an incandescent
lamp, as shown in Figure 10-1¢.

Seven-segment LED displays are also frequently connected to latched output
ports of a microcomputer. A typical example is shown in Figure 10-2. Each dis-
play is connected to a latched output port, as shown in Chapter 8. To display

159

1 60 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

characters, the character codes are loaded into the registers at each port. For
example, to display the characters ““6.1"’, the following routine could be used.

;MOVE ".1" TO RIGHT LED DISPLAY

MVI A,79H ;SEVEN SEGMENT CODE FOR "1" AND
; DECIMAL POINT

ouT PORTB
;MOVE "6% TO LEFT LED DISPLAY

MVI A,82H ;SEVEN SEGMENT CODE FOR “"G"

ouT PORTA

+5V +5V +5V
1800 820
P 5V
LED P el

2N2222
or similar

FIGURE 10-1. Interfacing to LEDs and Lamps

+5V +5V
B7 ——M—ﬂ Anode By_wﬂ Anode
g9
B6 ———AAA—— a 86 —MN—Q a
f f
B5 —WWAV— I 85 ————AMW——
f b f b
e e
B4 ————AAA—— g B4 ——AMV— 9
Port A d Port B < d
B3 ——AAA— I B3 ———AMW———
e c e c
B2 ——AAA—] B2 ——AAA——
° .
81 ——A—f 0 d 81— AMA—] dp 4
B0 —— AAA—] BO ———AAA—

All resistors are 330 (1
{Refer to Figure 4-10 for wiring of typical output port)

FIGURE 10-2. Connecting 7-Segment Display Devices

to Output Ports

40 mA
Lamp

2N2222
or similar

Chapter 10: INTERFACING TO THE REAL WORLD — OUTPUT 7 6‘7

When many 7-segment display devices are used, the port circuitry becomes
quite complex. In such a case it may be worthwhile to consider multiplexing the
displays. For example, to drive six 7-segment LED displays will require six sepa-
rate ports and 48 resistors. Multiplexing will reduce this to two ports and eight
resistors. However, a multiplexing software routine will be required, which takes
up CPU processing time. A typical multiplexed display circuit is shown in Figure
10-3. It employs a display panel consisting of an array of six 7-segment LED dis-
play devices {common cathode type) whose segments are connected in parallel.

L

8 11
87 ——=y
7
86— 12
6 13
B5 =il
PortA | pa— 2] UDN-2081a |14
Segment 4 Segment 15
Select B3 ——] Driver
3 16
B2 ———f
2 17
81 —>*>
! 18
BO —n1
< >
10 g $ 3 3 3 3 3 3
? b3 b3 b3 S o < <
— dp [°] f e d c b a
Anodes
Array of Six 7-Segment I—I I_l ’___’ ’ I I ’ ’ I
Common Cathode Displays ’ I ’ I ' l ’ I
—_— —le - le o —teo —le
+5V Cathodes
Tn
12 13
(B7 ~———t]
10 g
BE =g
8 7
BS ——— 75492
5 Digit 6
84—y Driver
3
83— 2
14 1
Port B Digit B2
Select
i
B ’ Not
K BO ——» | Used All resistors are 100 ohms

FIGURE 10-3. Wiring for a Multiplexed 6-Digit Display

7 6 2 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

This reduces the wiring to a minimum. The Sprague UDN-2981A and Texas
Instruments 75492 ICs are specifically designed for this application. The 2981
contains eight segment drivers and the 75492 contains six digit drivers. Two
latched output ports are employed, one for the segment outputs and the other to
select the digits.

The multiplexing procedure is to scan the display one digit at a time. As each
digit is enabled, in sequence, the appropriate segment code is provided. The pro-
gram controls the entire procedure. In the following program, the codes for the
characters to be displayed are first loaded into memory addresses DISPLAY
through DISPLAY + 5 (six consecutive memory locations). Each segment code is
then fetched from memory and sent to the segment port as each digit is selected.
After scanning all digits, the process is repeated.

;ROUTINE FOR CONTROLLING A SIX-DIGIT MULTIPLEXED

; DISPLAY

; SEVEN-SEGMENT CHARACTER CODES MUST FIRST BE LOADED INTO
;MEMORY ADDRESSES STARTING AT "DISPLAY"

i

H
BASE EQU 10H ; PORTS STARTING ADDRESS

0010 =

0010 = SPORT EQU BASE ; SEGMENT SELECT PORT

0011 = DPORT EQU BASE+1 ;DIGIT SELECT PORT

0004 = DIGSL EQU 4 ;DIGIT SELECT CODE

0200 = DISPLAY EQU 200H ; STARTING ADDRESS OF CHARACTERS
i

0100 ORG 100H

0100 210002 SCAN LXI H,DISPLAY ;SET SEGMENT CODE POINTER

0103 0604 MVI B,DIGSL ; SET DIGIT SELECT CODE

0105 7E NEXT MOV A,M ; FETCH SEGMENT CODE FROM RAM

0106 D310 OUT SPORT ; SEND IT TO SEGMENT PORT

0108 78 MOV A,B ;FETCH DIGIT SELECT CODE

0109 D311 OUT DPORT ;SEND IT TO DIGIT SELECT PORT

010B 17 RAL ; SELECT NEXT DIGIT

010C DA0OO1 Jc SCAN ; IF ALL DONE, START AGAIN

010F 47 MoV B,A ; SAVE DIGIT SELECT CODE

0110 23 INX H ;POINT TO NEXT CHARACTER

0111 €30501 JMP NEXT ;DISPLAY IT

There are currently several LS| Display Controller (driver/decoder/multiplexer)
ICs on the market. These devices handle all of the tasks that the previous routine
did, as well as simplify the hardware interface. They usually include memory for
holding the data to be displayed, the scanning and multiplexing circuitry, the
microprocessor interface circuitry, and the display drivers. They can usually be
interfaced to the system as memory locations or as an 1/0O port {or small group of
I/O ports). Once the data has been written to the Display Controller IC, it does all
the rest of the work, leaving the processor free to do other tasks.

Most display manufacturers also offer these sophisticated display controllers
mounted on a miniature PC board along with the displays.

Chapter 10: INTERFACING TO THE REAL WORLD — OUTPUT 7 6 3

DRIVING RELAYS

Some relays may be driven directly from standard TTL gates or buffers. Many
such relays are provided in DIPs to make the mechanical handling easier. These
relays are made by most of the larger relay manufacturers. For example, the
Sigma 191TE1A2-5S relay is shown in Figure 10-4. It contains a surge suppres-
sion diode within the DIP.

Three sample relay driver circuits are shown in Figure 10-5. In Figure 10-5athe
relay is driven directly by a TTL buffer such as the 7406, which can sink up to 40
mA. An alternative, shown in Figure 10-55, is to use a transistor to control the
relay. In Figure 10-5¢ several relays are driven from a 75492 hex driver, which
can sink up to 250 mA at each of its outputs. However, no more than 600 mW
should be dissipated by the IC continuously.

CONTROL OF DC POWER DEVICES

Control of power devices necessitates isolating the power load from the CPU.
Figure 10-6 illustrates the basic circuitry for controlling a DC power device. Isola-
tion is provided by an optical coupler, while the switching of the load is
accomplished by a power transistor or power Darlington amplifier, mounted on a
heat-sink. If the transistor’s gain is 30 or more, the transistor can switch a load of
up to 0.24 A. The use of a power Darlington amplifier will allow the switching of
several amperes. A high level signal at the input causes the load device to be
turned on. Although a relay can be used to switch the load, it is not as reliable and
generates radio frequency interference.

1 _ |a
2 |+ l
6 -
500 ()
7 8

FIGURE 10-4. Pin-Out Diagram for Sigma 191TE1A2-5S Relay

7 64 INTERFACING TO S-100/IEEE 6936 MICROCOMPUTERS

a. TTL buffer b. Transistor

+5V

S - gf B

TTL TTL
buffer Gate

22k0
——-Do— 2N2222

c. High current driver

(S

o
~
1| ggg
» s xo
- N
w0

@©

-
N

FIGURE 10-5. Typical Relay Driver Circuits

Chapter 10: INTERFACING TO THE REAL WORLD — OUTPUT | 6 5

+5V +12V +V
(o] (o]
3
330 0 2
‘P
MCT-2 bc
Load
h A=

) 4704 Power
Transistor
<

A
LA 4
»
N
=
-
=

FIGURE 10-6. DC Power Control Circuit

CONTROL OF AC POWER DEVICES

AC power loads are controlled using either an SCR (Silicon Controlled Rectifier)
or triac (back-to-back SCRs). The basic SCR control circuit is shown in Figure
10-7a. The MCS-1 is a combination opto-coupler/SCR. The lamp is turned on
during each positive half-cycle of the AC line voltage. Since only one half of the
AC line voltage is used, the circuit is inefficient. The incandescent lamp will be lit
at less than half its normal brilliance.

Efficiency can be greatly improved through the use of a full-wave bridge rec-
tifier in conjunction with the opto-coupler/SCR, as shown in Figure 10-7b. Here,
the SCR provides full-wave control. Actually, optical coupler/dual SCR devices
are available which greatly simplify the task. Such a device is shown in Figure 10-
8. Note that the Motorola MCS-1 output is rated for 250 mA maximum, while the
General Instrument MCS-6200 output will only carry 150 mA.

A triac control circuit is shown in Figure 10-9. This circuit is suitable for con-
trolling most home AC appliances. For higher power AC control a device such as
the General Instrument MSR 100/200 solid-state relay can be used. It will control
loads drawing up to 10 A at 120 V AC (1.2 kw). The device is shown in Figure
10-10. It features a zero-crossing trigger circuit and filter which greatly improve
efficiency and reduce transient and radio frequency noise. Devices are currently
available to control up to 40 A (5 kw) from a TTL level input.

1 66 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

a. Basic circuit

3301

120V
15W
Light Bulb

T e

Motorola I
MCS-1 o —7

From >
Output Port

—]
120 Vac

—

120V
15 W
Light Bulb

s
27 k() &
b2
b. Improved circuit
+5V
3302
Motorola —
MCS-1 *

From >
Qutput Port

5 3
27k0
<

FIGURE 10-7. AC Control Using an Opto-Coupler/SCR

120 Vac

Chapter 10: INTERFACING TO THE REAL WORLD — OUTPUT]6 7

+5 V 15 W
120V

20002
‘P
:: 27 kQ
1 6 8
General
Instrument
MCS-6200
2 —
| 120 Vac
2 —
3 7
From)
Output Port <
P 2710
<
FIGURE 10-8. AC Control Using an Opto-Coupler/Dual SCR
+5V
33010)
B Ac -
hAA Load
120 Vac
P ——
HEP+
5002
M2
HEP*
R1723
From) _ G
Output Port T
AAA

vy

10kQ

* HEP is a Motorola trademark

FIGURE 10-8. AC Control Using a Triac

7 68 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

From sy 31+ |J

Output Port &
Buffer/ zero
i Crossing
Circuit Trigger
. Circuit
l

1 AC
Load

120 Vac

: I—’

i

{wet

FIGURE 10-10. Monsanto MSR 100/200 Solid State Relay

CONTROL OF MOTORS

DC and AC motors can be controlied using circuits such as those shown in
Figures 10-6 through 10-10. The speed of the motor may be controlled by vary-
ing the number of on cycles. For example, if the motor is switched on for a very
short period of time and off for a long period of time, the average DC current
through the motor will be very low, causing a slow speed. If the motor is switched
on and off for the same periods, then the average current will be half the max-
imum. The software driver routine can incorporate a variable time delay to control
the average current through the motor. The resultant pulse train to the motor will
appear as shown in Figure 10-11.

To cause the DC motor to rotate slowly, the motor is turned on for one time
period and off for 14 time periods. The result is that the average current is only
6.7% of maximum, yielding a slow speed. Having equal on and off times yields an
average current that is 50% of maximum and results in a medium speed. No off
time causes maximum current and motor speed.

The direction of the motor’s rotation can be controlled by controlling the direc-
tion of current through the motor. The circuitry for controlling a low power DC
motor is shown in Figure 10-12. BO switches the motor on or off, while B1 con-
trols the motor’s direction. Note that diodes have been inserted in the base circuit
of the motor control transistor. These diodes protect the TTL port logic should the
transistor short circuit.

A basic software routine to control the motor’s speed and direction is shown in
Figure 10-13. A more efficient technique could be accomplished by using a pro-
grammable timer and interrupts. This will be discussed in Chapter 13.

?Chapter 10: INTERFACING TO THE REAL WORLD — OUTPUT 1 6 9

On
Slow f Average Current
Speed [S, [A Y

Off
Average Current
On /
Medium ’\’\’\’\,\’_\’\,\’\,\’\“’\,\’\f\
Speed
Off A c
verage Current
On '/
Maximum
Speed _
Off

FIGURE 10-11. Varying Current To Motor by Changing
On/Off Switching Time

+5V +V

DC
Motor

IN4OO1 IN4QO1

BO L O
+5V
From - =
Output Port
22kQ
81> A
Direction I t

FIGURE 10-12. Simple Low-Power DC Motor Interface Circuit

7 70 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Load Motor Set Control Reg.
On-Time = O1H
Register (Motor On)

OR Motor
d
Los:giss?:f Direction Reg
(0 = Max) and Control Reg

Result—Control

' |

Load Motor Control Reg—»
Direction Reg. Motor Port
{OOH or 02H) {Motor On)

Call Motor Routine

Speed
Count O

Turn Motor Decrement

Off Time Register
Decrement No
Speed Count

Yes
—

FIGURE 10-13. A Simple Software Routine for Controlling Speed
and Direction of DC Motor in Figure 10-12

DRIVING STEPPER MOTORS

Stepper motors are particularly advantageous where precise speed or precise
positioning is required. Stepper motors rotate a precise angular displacement each
time they are pulsed. Typical step angles are available from 3.75 degrees up to 90
degrees. Further, their operation may be either unidirectional or bidirectional.
Operating voltages range from 5 V to 48 V, although 12 V and 24 V are the most
common.

Chapter 10: INTERFACING TO THE REAL WORLD — OUTPUT 1 77

The stepper motor contains large numbers of stator pole pairs. These windings
must be energized in a certain sequence and hence require a rather complex
controller circuit. Fortunately, several stepper motor manufacturers carry IC con-
trollers which permit simple direct interfacing to a microcomputer.

A representative stepper motor and associated IC controller are the North
American Phillips model K82944-1 and SAA1027, respectively. The wiring for
the devices is shown in Figure 10-14.

A typical stepper motor driver program is shown below. The driver program
(STEP) is called as a subroutine. Three values are passed to the STEP subroutine
when it is called. They are:

STEP Number of steps (0 to 255) + 1
DIREC Direction (O4H or O6H)
SPEED Time between pulses, which establishes speed

A fourth value, PULSE, is established in the subroutine to set the on-time of the
pulse.

The controller is initialized by bringing the SET input high while keeping the
trigger input high. A low-to-high transition on the trigger input pulses the stepper
motor.

+12V

<

<
1 uFY
01 u +12V

I f

>
21000 $1000
‘P

14 4
11 YEL m RED
52> 2| s 9 GRY (€11 BLK
SAA 1027 m
B1 >—:3 Rotation 8 YEL RED
BO >—‘5 Trigger 8 SRY @/ LK
5 12 Stepper Motor
North American Phillips
K82944-1

FIGURE 10-14. Stepper Motor Interface Circuit

7 72 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

0010
0021
0004
0006
0010
1000

0100

0100
0102
0104
0107

0200

0200
0201
0202
0204
0206
0208
020A
0208
020E
020F
0210
0212
0215
0218
0219
021B
021C
021F
0220
0223
0224
0225

0226
0227
0228
0229
022a
022D
022E

[U L TR]

0621
OEC4
211000
CD0002

F5

D5
3E01
D310
3EFF
D310
05
CA2302
79

3C
D310
110010
CD2602
3D
D310

; STEPPER MOTOR CONTROLLER PROGRAMMING EXAMPLE

H

;
PORT EQU
STEP EQU
DIREC1 EQU
DIREC2 EQU
SPEED EQU
PULSE EQU
;
;
ORG 100H
MVI
MV I
LXI

;
i
;

10H
21H
04H
06H
10H
1000H

B,STEP

C,DIRECL
H,SPEED

CALL STEPPER

i
ORG 200H

i
STEPPER PUSH PSW

LOOP

DONE

i
DELAY
DELY1

GENERATING SOUND

The CPU can be used to control sound generators. Here we will examine a sim-
ple on-off sound control circuit. This circuit, shown in Figure 10-15, employs a
556 dual timer (two 555 timers can also be used) with one timer wired as an asta-
ble multivibrator and the other as a one-shot multivibrator. If a continuous tone is
desired, use the astable circuit only. Whenever the input on pin 4 is high the asta-

PUSH
MVI
out
MVI
ouT
DCR
Jz
MOV
INR
ouT
LX1
CALL
DCR
ouT
XCHG
CALL
XCHG
JMP
POP
POP
RET

PUSH
DCX
MoV
ORA
JNZ
POP
RET

D
A,01H
PORT
A,0FFH
PORT

B

DONE
A,C

A

PORT
D,PULSE
DELAY

A

PORT

DELAY

LOOP
D
PSW

PSW
D
A,D

E
DELY1
PSW

;OUTPUT PORT ADDRESS

; DUMMY STEP NUMBER + 1
;DIRECTION #1

;DIRECTION 2

;DUMMY TIME BETWEEN PULSES
; DUMMY PULSE WIDTH TIME

; SET NUMBER OF STEPS+1

; SET DIRECTION

; SET TIME BETWEEN PULSES
;STEP THE MOTOR

; SUBROUTINE TO DRIVE STEPPER MOTOR

; SAVE REGISTERS

; INITIALIZE CONTROLLER

;CHECK IF ALL STEPS COMPLETED

;GET DIRECTION ARGUMENT
;SET TRIGGER BIT HIGH

;SET PULSE WIDTH TIME
;SET TRIGGER BIT LOW

;GET PULSE OFF TIME

;SAVE PULSE OFF TIME

; STEP AGAIN

;RESTORE REGISTERS

;RETURN TO MAIN PROGRAM

;SAVE A REG AND FLAGS
;DECREMENT INPUT ARGUMENT
;TEST IF DE=0

;IF ARGUMENT NOT 0 KEEP GOING

; OTHERWISE RESTORE A & FLAGS
;AND RETURN

ble circuit is enabled and the tone is developed.

Chapter 10: INTERFACING TO THE REAL WORLD — OUTPUT 17 3

Continuous «_

Tone Input &
+5V +5V +5V
0 o
+5V 20-100 02
> 4 >
2 S4arkn $33kn
Y7ol 10 1 14 Speaker
13 1
>~ —
Pulsed N\ 8 o 4 10 uF
Input & b 5
| A |) e ___;]
<
47k0 8 556 47k0Q 556
< ?
12 6
L
m |7

1.F 0. 1uF

I

T—01.F
l 001,.-F|

FIGURE 10-15. Tone Generator Interface

The other section of the 556 can be used as a monostable multivibrator to pro-
duce a “beep’’ tone every time the Pulsed Input goes low. Since the one-shot is
triggered by a high-to-low transition, it will be necessary to set the Pulsed Input
high before attempting to enable the beep circuit again.

In Chapter 12 we will investigate programméd frequency control of a sound
generator.

REFERENCES

Bober, Robert E. ““Taking The First Step,”” BYTE, February 1978, p. 35.
"Focus on Stepping Motors,”” Electronic Design, October 25, 1977.
Giacomo, Paul. ’A Stepping Motor Primer,”” BYTE, February 1979, p. 90.

Interfacing to
sericl ports

Serial interfacing is used to transfer data words one bit at a time. It is generally
used with microcomputers as a link to peripherals and communications equip-
ment. For example, all data communication via telephone lines is done serially.

Serial data transmission has the advantage of using fewer connecting lines
than parallel transmission. Only one pair is required for input and one for output,
and in many cases this can be accomplished with one common line, reducing the
number of wires to three (in, out, and common). Parallel data communication
requires a line for each bit in the data word plus one common line. In other words,
two-way parallel I/0O typically requires eight inputs, eight outputs, and a common
line. So parallel I/0 typically uses five times as many lines as serial I/0. On the
other hand, parallel I/0, transmitting all bits at one time, versus one bit at a time
for serial, is much faster.

Serial I/0 requires that the parallel word be converted to or from a serial word.
This task can be accomplished with either hardware or software. The hardware
approach requires minimal software support and may utilize interrupts. The soft-
ware approach requires minimal supporting hardware but decreases the operating
flexibility of the processor.

A typical serial transmission appears as shown in Figure 11-1. The clock inputs
determine the rate at which bits are transmitted and received. The number of bits
per second transmitted is usually referred to as the “‘baud rate.”” For example, 300
baud means 300 bits per second.

A protocol has been adopted so that the receiving device will know when a
serial word starts and ends. The word begins with a start bit (0), continues with
the data bits and optional parity bit, and ends with one or two stop bits (1), as

176

7 76 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Parallel Pacallel
Data In Data Out

P9 VU AL 1L

Transmitting Receiving
Device Device

Clock ——-y feag—— Clock

FIGURE 11-1. Serial Data Transmission

shown in Figure 11-2. The O logic level is often called a “'space’’ or the spacing
condition, and the 1 logic level is called a ““mark’ or the marking condition. For
example, if the data word is 0110101 (7 bits) and even parity is sent, the
transmitted word will be 01010110111 (the least significant bit is sent first) and
will appear as shown in Figure 11-2. If this data word is an ASCIl code (the most
widely used serial data code), then the data word 35]6 represents the number 5.
The complete ASCIl code is given in Appendix A.

A teletypewriter, commonly abbreviated TTY, is a serial /O terminal which
uses one start bit, seven data bits, one parity bit (generally ignored by the TTY),
and two stop bits. Therefore, there are 11 bits in its transmitted and received
character code words. It operates at 10 characters per second, so its data rate is
110 baud. Video terminals can generally operate at speeds up to 9,600 baud
(960 characters per second) and some operate at speeds as high as 38,400 baud
(3,840 characters per second).

Serial 1/0 in hardware usually involves the use of an LSI controller IC. This
device handles many of the operations necessary in serial I/0.

LSB MSB
1 Mark LF—?——P-’—-P—T ;_ T T i
1 1 41 651 61 7 P_[I
0 Space - R '} [1 |
F AJI Data Bits v!- .L Stop—’-l
Start Parity Bits
Bit Bit
Next word may start
b. here or later
T T 1
T T T L
0] 1
s | Data Word ! ! Stop
tart Party’ its Start Bit-Next
Transmitted Word 1 Word

FIGURE 11-2. (a) Serial Transmission Format;
{b) Transmission of ASCII

Chapter 11: INTERFACING TO SERIAL PORTS ’ 77

THE UART

Several ICs have been developed to handle serial-to-parallel {and vice versa)
data conversion and provide the proper serial protocol and handshaking signals
for the CPU. One such device is called a UART (Universal Asynchronous Receiver/
Transmitter). ““Asynchronous’ transmission means that the serial data is not
accompanied to its destination by a separate synchronizing clock signal.
Asynchronous transmission uses start and stop bits to delimit characters, and
assumes that the bits will be sampled at a fixed rate synchronized to the start bit.

A widely used UART is the General Instrument AY-5-1013A, shown in Figure
11-3. UARTs from a number of manufacturers have standard pinouts. AM|,

8
N\]
Transmit Data) 7
26-33
\
CcS
Control strobe 34 -
17 TCP Data Input
Clock —- { - Buffer
39 POE Register
Parity odd ‘even
NSB
No. of stop bits 36
37 NDB1| Transmit
No of data bits #=1 Control 8
3g| NDB2 Logic \
No. of data bits L
TD:!
Data strobe 23 - T .
ransmit N
Buffer empty ~ag—22t—TOMT f—=] shift TS0 20 =ge"a'
24 TEOC Register utput
End-of-character g
4 ADE Receive
Data enable ” e . St RSI 25 Serial
Status enable - 4 Register Input
RCP
Clock 40 -
o . 15| ROR
verrun efror - Receive 8
Framing error <a—2 RFE] Contral
9 I Logic
13 RPE
Parity error -
Received 19 RDA Data Output
Data Available Y] -
18| RDAR 1T Buffer
Received Data - Register
Available Reset
18 6-12
Receive data @

FIGURE 11-3. Block Diagram of the AY-5-1013A UART

7 78 INTERFACING TO S-100//EEE 696 MICROCOMPUTERS

Signetics, Standard Microsystems Corporation, Texas Instruments, Western
Digital, and others all make UARTs which are pin-compatible with the Genera!
Instrument AY-5-1013A. The pin names vary from manufacturer to manufac-
turer, but the pin functions are generally the same. The AY-5-1013A UART con-
tains a transmitter (parallel-to-serial shift register) and a receiver (serial-to-parallel
shift register). Each is clocked separately, and they may be clocked at different
rates; usually the same rate is used for both.

The transmitter has a buffer register to latch the parallel input word and control
logic to add start, stop, and parity bits. The UART can be configured for the num-
ber of data and stop bits and odd/even parity. This is done by latching bits in a
control register inside the UART or by tying the appropriate IC control pins high or

46 74LS00

sINP [
78 ’_D—> input Strobe
pDBIN
0@)—» Data Input Strobe

Address BDSEL=* T T——
ANNNN Status Input Strobe
AO-A7 . @ 741832
/\WM Data Output Strobe
45
souT E>77 74504
PWR+*

+5V
16
56 pF
| 24576MHz 4 Voo
| X
B g —I— Slox 0 e Comm Clock to UART
1oM0 U7
< 1m
56 pF
| N 3
—JECP 4702 Q2=
I 5 Baud 5
cP Rate Q14—
- 11 Generator 7
O—S3 (BRG] QOp— /NC
o-4s2
o351 copP—
o-Hso
VSS

-lm

FIGURE 11-4. S-100 Interface for AY-5-1013A UART
(a) /0 Strobes and BRG

Chapter 11: INTERFACING TO SERIAL PORTS 7 79

low. In addition, there are status signals for the CPU: TBMT indicates that the
transmitter buffer is empty (ready to receive a new word) and TEOC (Transmitter
End Of Character) indicates that the UART has completed transmitting a word.

The receiver has an output buffer register to hold the received word until the

§ Input Strobe
d

+5V
Data Input Strob: ___
\ra a Inpu’ robe 18 ADAV vee 1
L-‘* RDE
Status Input Strobe —
> 18 swe +5V
Data Output Strobe —
> i 23155
AY-5-1013A 20
UART VCC
007 90 2] 3 33108 P P
006 40 4 5 32] 05 k]
& { oos 36 z 3Uioe | o (RD8 {2 2 %DW\
3
2) oo B2 2 375 | © DAv-‘S—T
3 89 12 1 29 £ 4 16 40
©) oo3 o4 f 2 ro7fE ——{ >
] DOZD 88 14 71;:?'2’:4 13 28 103 = RO6 7
3 1 1 7 |
001[>——5 s 5 2 D2 £ ROR 19 L g 8 14 39 DI5
36 1 o) 7415244 2
00 8 175v p1:] . 3 ro518_e. 8 3524 12 3sD - g
+ S I =
§< Reep2 > 2
1= zoi 4 9 11 9 89 s
G vee B RD4 —"> 03 z
19] 10 o 13
G GND 1 2 RPE
®
— — o e 13 —C>7 88 DI2
- - 11
RO2 -1
o o—35{nes Teoc24 15 232~ o1
o o—3ces \ rotp2 17 %DIO)
—o 0—Enss TBMT -J” GN?O
1——0/0———3-7- NOB1
3 -
ﬂ'—c/()—--—!3 NDB2
_J +5V
= T 34
74L504 cs
SLAVE 54 21
CLR+ Reset
A, _Comm. Clock from BRG 40 TP sl 20
° ‘e
7 I ¢ "1 Serial Data to
17 RCP SO 25—>0u|{ Interface Circuit
VGG GND
- 2 3
~16 V[%52 1‘?‘8‘1-! -l
hive 100.:F
12V =
15w +

FIGURE 11-4. S-100 Interface for AY-5-1013A UART
(b) UART and Data Bus Buffers

1 80 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

processor is ready to take it. The receiver status signals are DAV (Received Data
Available) and RDAV (Received Data Available Reset}. In addition, the receiver can
detect a framing error {improper stop bits), parity error (single bit error in datal,
and overrun error {character previously received has not been read by processor).
These error outputs are labelled RFE, RPE, and ROR respectively. These error
signals are generally ignored in most computer systems where the terminal and
processor are in the same local area. In noisy environments (e.g., communication
over standard telephone lines) the processor should check these outputs for
errors. The error and status signal outputs are tri-state, under control of pin 16
(SWE). The data output signals are also tri-state, controlled by pin 4 (RDE}. They
may therefore be connected in parallel and controlled by different I/0O strobes.
A typical S-100 UART interface is shown in Figure 11-4. The UART looks like
parallel ports to the bus while the UART exchanges standard bit-serial I/O signals
with the device connected to the serial lines. The transmitting and receiving cir-
cuits are clocked at the same rates (pins 17 and 40). A 4702 baud rate generator
circuit is used to develop the clock signal, which must be 16 times the baud rate.
The address decoder circuit selects the following port addresses:

Lower port data input
Lower port data output
Upper port status input

The bits in the status word appear on bits O, 1, 3, 4, 5, and 7, as shown in
Figure 11-4.

The following simple software driver subroutines can be used to control the
serial interface. The WRCHR routine requires that the data to be serialized be in
the Accumulator when the routine is called. The RDCHR routine returns with the
data in the Accumulator. If the RET instruction in the RDCHR routine is deleted,
the routine will also transmit the character back to the sending device.

;SUBROUTINES TO SEND AND RECEIVE DATA FROM THE CIRCUIT
;SHOWN IN FIGURE 11-4.

; RDCHAR RETURNS WITH THE DATA FROM THE UART IN A.
;WRCHAR IS CALLED WITH THE DATA TO BE SENT IN A.

; BOTH ROUTINES WILL NOT RETURN UNTIL FINISHED.

;ALL PORTS ARE RELATIVE TO "BASE".

0010 = BASE EQU 10H ; BASE PORT ADDRESS

0011 = STATUS EQU BASE+1 ; STATUS PORT

0010 = DATA EQU BASE ; DATA PORT

0080 = DAV EQU 80H ;RECEIVER DATA AVAILABLE BIT

0001 = TBE EQU O01H ; TRANSMITTER BUFFER EMPTY BIT
H

0100 ORG 100H

0100 DBI11 éDCHAR IN STATUS ;READ STATUS BYTE

0102 E680 ANI DAV ;MASK ALL BUT DAV BIT

0104 CA0001 Jz RDCHAR ;IF NOT HIGH, TRY AGAIN

0107 C9 RET ; AND RETURN
H

010A F5 WRCHAR PUSH PSW ;SAVE THE DATA TO BE SENT

010B DBl1l WR2 IN STATUS ;READ STATUS BYTE

Chapter 11: INTERFACING TO SERIAL PORTS 1 8 7

010D E601 ANI TBE ;MASK ALL BUT TBE BIT
010F F1 Jz WR2 ; IF NOT HIGH, TRY AGAIN
0112 Fl1 POP PSW ;GET THE DATA BACK
0113 D310 OUT DATA ;AND SEND IT

0115 C9 RET ;WE'RE DONE

The figures that follow show S-100 Bus interfaces for three next generation
UARTSs that are in common usage today. They are the 8251A, the 8250, and the
2651/2661. The 8251A and the 2651 are also capable of synchronous as well
as asynchronous transmission, and they are sometimes called Universal Syn-
chronous/Asynchronous Receiver Transmitters (USARTs). Synchronous
transmission differs from asynchronous in that a separate clock is sent along with
the data stream; however, this text will not show a synchronous interface. The
8250 and the 2651/2661 contain internal baud rate generators which reduce the
amount of external circuitry required as well as putting the baud rate under soft-
ware control. In all of these devices the ‘“status’’ byte appears as a register inside
the chip, whereas with the AY-5-1013A the status lines had to be buffered and
decoded separately. In addition, all of the RS-232 auxiliary control lines are imple-
mented by these three chips.

Figure 11-5 shows the interface for the 8251A. This IC was originally
manufactured by Intel, but is now also second-sourced by many other manufac-
turers. The interface circuitry is very straightforward. AO is used to select among
the internal registers, and sINP and sOUT are combined with the BDSEL#* to drive
the CS input. This combined signal is also used to condition the RD# strobe so
that the output buffer turns on only at the proper time. The baud rate clock for
this circuit is provided by the 4702, as shown in Figure 11-4. SLAVE CLR* is
inverted and used to reset the 8251A, but RESET# can be used if this is more
convenient in your system. For more information on how to program the 8251A
see the fourth reference at the end of this chapter.

Figure 11-6 shows the 2651 or 2661-3 USART interfaced to the S-100 Bus.
The 2651 is manufactured by Signetics and National Semiconductor. The
2661-3, an enhanced version of the 2651, is manufactured by Signetics. The
enhancements are all in the synchronous mode, however. Parts of this circuit are
very similar to the circuit shown in Figure 11-5, but some oddities in the 2651
bus interface required some special circuitry. The 2651 has an input called R/W.
One might suspect that this, as in so many other LS| peripheral ICs, is the data
strobe input. In fact, this input merely tells the chip which direction the data is
flowing, and it is not a strobe. It is tied to sOUT, which will be low for reads and
high for writes and is stable well in advance of the data strobes. This meets the
requirements of the R/W input.

The CE input is the data strobe for the 2651, but it must also be qualified with
BDSEL«*. In addition, it must pulse low for either a read or a write. The read and
write strobes for the S-100 Bus (pDBIN and pWR#) are logically ORed then

1 8 2 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

+5V
26
vee
FaVaVaVs DB7_8},, ¢
XD
Data DB6 7 *
. Bus 06
Buffer 085 6}, D
$-100 oBa_sf . v
Data *
DB3 2
Buses D3
DB2 1 .
D2 €78
. o1 28|
OSR}
Snnanasy DBO 2784
DTR
ORD' 8261A
USART
7 o
WRe WR TxE
P Dm 741532 *
pDBIN TxRDY
741504 ol p—
s
SYNDET
49
cLock > 290 ¢k
79 ”
a0 [O> 2
54 21
SLAVE CLR» H RESET

46
sINP
45
sOuUT 741502

741832

Address
Decoder

B8DSEL*

FIGURE 11-5. S-100 Interface for 8251A USART

<
&
»

Q2

Q1
Qo

co

Frr

]u:

@

qualified by BDSEL # to cause a low at CE whenever either strobe is active.

The 2651 has its own internal baud rate generator and requires only a 5.068
MHz signal to be applied to the BRCLK input. A classic crystal oscillator is formed
with two inverters and a 5.068 MHz crystal. The two 12 k{1 resistors pulling up
the CTS and RLSD lines are necessary because if these lines are left floating by
the RS-232 device, the 2651 will not function.

For more information on how to program the 2651 or 2661-3, see the last
reference at the end of this chapter.

NC

Chapter 11: INTERFACING TO SERIAL PORTS 7 83

Figure 11-7 shows the 8250 interfaced to the S-100 Bus. The 8250 is pro-
duced by National Semiconductor and Western Digital. The 8250 requires a
minimum of circuitry for the S-100 Bus interface — little more than an address
decoder. The baud rate is generated internally by a 16-bit divide-down counter.
The master frequency for this counter is the 2 MHz signal on pin 49 (CLOCK).
This requires that a 16-bit divisor value be written into registers inside the 8250.
Common baud rates and the associated divisors are shown in Table 11-1.

The 8250 contains interna! circuitry which makes its operation with interrupts
very sophisticated. The INTRPT output is shown buffered and inverted by a sec-
tion of a 7406 and may be connected to any of the S-100 vectored interrupt pins
or directly to INT # if this circuit is used in a minimal system.

For more information on how to program the 8250 see the third reference at
the end of this chapter.

+5V +12V

- RS-232.C
26 12ki1 g Ql2kn Interface
vee 19 1488 > O Jumper
DB7 8 TxD Area
FaVaVaVaVaWaWat D7 X o r,g
Data DB 7
B Bus D6 3 1489
Buffer 085 6 RxO oq 0 o—Emo
05 1488
|23
$-100 DB4 5 /TS
Data . D4 s ? |)’f -0 O—Ecvs
Buses 083 2§ . . 1489
o 1489
DB1 28
* D1 DSR n————oq——o o—{ 20 Jotn
AnnAnAn] DBO 27 188
DO —__|oa
2651 OTR ‘—! p———o O_EDSR
or 1489
ORD 26613 Fepple oL }——0—-—0 o— & |nsp
80 USART "
A > 10409 E g L
39 12] [1 JProt Ground
a0 > A0 TxRDY
SLAVECLR H 2UReseT RxRDY Pt Sig. Ground
. *ROY — roun
77 74LS08 741532 Not Used
pWR» _ _ .y
CE e p— =
741504 741832 13law acl2s
pDBIN 5.068 MHz
20 181
BRCLK ﬁl
Address SND 1k0 1k

A7 "] pecoder
.

1 O

74L502

74L832 74LS04 10 nF 741504

FIGURE 11-6. S-100 Interface for 2651/2661 USART

184

INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

PROGRAMMABLE BAUD RATE CLOCKS

In some computer systems it may be desirable to change the baud rate under
software control, as in a system where different terminals operating at different
baud rates are connected to the computer. In such a system it is necessary for the
computer to first determine the terminal’s baud rate and then adjust the UART to
the same baud rate. This means that the baud rate clock must be software pro-

grammable, rather than fixed as it is in Figures 11-4 and 11-5.

45V
40
D7 €
sout
Data . o7
Bus D& 7 06
Buffer
05 6ps
5-100 @ 4 1
Data
D3 4
Buses D3
D2 3
D2
D1 2|5,
Do oo
AN
RD _—
* ALSD
2345615
78
pDBIN [22 DiSTR
77 18|
pWR+ [T— DOSTR
— INS8250
ress
ANy
A7 Decoder UART
BDSEL*
14] .. P
@ 32 3] =
Q+5V g i
A3 NN Ner
Blesi oot
1 —
w6 741832 Noosrr GUTIR——
24
sINP " 12{cso csourpPE—
T] 17
sou U5isth xiaz pf-—
250555 ano P2
1L [L
81 = =
a2> 261 a2 O
80 27
a1 > Al
79 2 I E
o[> Blao BAGLOUI - --:I
54 35
SLAVECLR'H— MR ReLk B2
XTAL 1

49
CLOCK

741504
2 MHz

J16

FIGURE 11-7. S-100 Interface for INS82560 UART

Not Used

S D Ary Virline
ocINT#

Chapter 11: INTERFACING TO SERIAL PORTS 18 5

TABLE 11-1. Baud Rates and Divisors for INS8250 Using

2 MHz Clock
Divisor
Baud Rate High Low
Decimal Byte Byte
(Hexadecimal) (Hexadecimal)
110 = 1136 = 04 70
1345 = 929 = 03 A1l
300 = 416] 01 AQ
600 = 208 = 00 DO
1200 = 104 = 00 68
2400 = 52 = 00 34
3600 = 34 = 00 22
4800 = 26 = 00 1A
9600 = 13 = 00 oD
19,200 = 6 = 00 06
Formula: Divisor = Freq + (Baud Rate X 16)
Example: 1136 = 2,000,000 + (110 x 16)

The 4702 baud rate generator circuit shown in Figures 11-4 and 11-5 may be
made software programmable by replacing the switches with four bits from any
convenient latched parallel output port. Either one that exists in the system or one
of those discussed in Chapter 10 may be added to the circuit card directly.

The 2651 and 8250 circuits presented in Figures 11-6 and 11-7 contain built-
in software-programmable baud rate generators.

PERIPHERAL SERIAL INTERFACES

The serial I/0 pins of UARTSs are usually TTL logic voltage levels. This generally
limits line lengths to a few meters under ideal conditions. Hence, communication
interface links have been developed which overcome these limitations.

The most popular serial interface is the RS-232-C interface used between
modems and terminals, printers, computers, and the like. The current loop inter-
face, originally developed for teletypewriters, is also quite popular. Serial inter-
faces that do not conform to either the RS-232-C standard or the current loop
convention are sometimes used. These offer the advantage of lower cost and
simplicity. The RS-232-C and current loop approaches will be discussed in the
following sections.

7 86 INTERFACING TO S-100/IEEE 636 MICROCOMPUTERS

12 3 4 5 6 7 8 9 10 11 12 13
OO0 O 00O 0O OO0ODO0ODO0ODO0OO
Female Connector as

14 15 16 17 18 19 20 21 22 23 24 25 Viewed from Wiring Side

RS-232-C
Pin EIA Common
Number Name Mnemonic Description
1 AA Protective ground
2 BA TxD Data transmitted from terminal
3 BB RxD Data received from modem
4 CA RTS Request to send
5 cB CTS Clear to send
6 cC DSR Data set ready
7 AB Signal ground
8 CF DCD Carrier detector
9 * Reserved for Data Set Testing
10 . Reserved for Data Set Testing
11 » Unassigned
12 SCF Secondary carrier detector
13 ScB Secondary clear to send
14 SBA Secondary transmitted data
15 DB Transmitted bit clock, from DCE
16 SBB Secondary received data
17 DD Received bit clock
18 * Unassigned
19 SCA Secondary request to send
20 CcD DTR Data terminal ready
21 CG Signal quality detector
22 CE Ring indicator {used by auto answer equipment)
23 CH/CI Data signal rate selector
24 DA Transmitted bit clock, from DTE
25 » Unassigned
“Undefined

FIGURE 11-8. RS-232-C Connector and Pin Definitions

The RS-232-C Standard

The RS-232-C serial interface standard has been defined by the Electronic
Industries Association (EIA). RS’ stands for “Recommended Standard’ and the
"C" indicates that this is the third version of the standard.

The standard utilizes a 25-pin connector, and manufacturers have generally
agreed on the DB-25 type connector shown in Figure 11-8. The modem (the data
communications equipment, or DCE) should have a female connector, while the
terminal, printer, computer, etc. {the data terminal equipment, or DTE) should
have a male connector. However, many manufacturers do not adhere to this
requirement. The manufacturers generally put female connectors on all equip-
ment and assume the connecting cables have male connectors on both ends.

Chapter 11: INTERFACING TO SERIAL PORTS 187

Twenty signals are defined by EIA. However, generally only nine lines are used
between a terminal and a modem, and often as few as three lines are used.
RS-232-C does not specify how many of the signals are to be used. Typical
cables for terminal-modem and terminal-computer connections are shown in
Figure 11-9.

Pins 4, 5, 6, 8, and 20 are handshaking signals used between a modem and a
terminal. Pins 15, 17, and 24 are used with high-speed modems (1200 and 2400
baud). Pin 22 indicates that the modem has detected a ring signal on the
telephone line. It is used by equipment that automatically answers incoming calls.

Modem Terminal
——
AA |1 1 Protective Ground
r._ -_—
AB | 7 7 | Signal Ground
BA | 2 2 | Transmitted Data
— —
BB] 3 3 | Received Data
CA| 4 4 | Request to Send
cB| 5 5 | Clear to Send
[o{o I} 6 | Data Set Ready
CF| 8 8 | Carrier Detect
CD j20 20| Data Terminal Ready
b.
Computer Terminal

AA Protective Ground

AB Signal Ground

BA Transmitted Data

BB Received Data

CA Request to Send
cB Clear to Send
cC Data Set Ready
CF Carrier Detect

CcD Data Terminal Ready

Blelelola]el~]~]-]
L]
[1
Ble]o]a]efe]~]~]-

FIGURE 11-9. RS-232 Cable Wiring; (a} Modem-Terminal,
(b} Computer-Terminal

1 88 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

The computer’s RS-232-C interfaces should contain a jumper area so that the
DB-25 connector may be configured as a DCE or DTE device. This allows max-
imum flexibility in connecting peripherals to the computer. If this is impractical,
the most common usage of RS-232 serial ports is connecting terminals and print-
ers, so the computer should be wired as the DCE device.

TABLE 11-2. RS-232-C Signal Level Conventions

Interchange Voltage
Notation
Negative Positive
Signal Condition Marking Spacing
Binary State (data lines) 1 o]
Function (control lines) OFF ON

The standard defines the binary state 1 as a voltage level between —3 V and
—15 V. The binary state O can range from +3 V to +15 V. Hence the voltage
swing can be as little as 6 V or as great as 30 V. The greater the voltage swing the
greater the signal-to-noise ratio and hence the greater the noise immunity. The
voltage levels do not have to be symmetrical. Note that the signal condition for the
data signals is ‘‘opposite’” that for control signals. For example, a more negative
voltage represents a binary 1 state on a data line, but it represents an OFF condi-
tion on a control line. These signal levels are summarized in Table 11-2.

An interface circuit is required between the RS-232-C voltage levels and the
TTL levels typically used in logic circuits. Fortunately there are ICs specifically
made for this purpose. The most widely used are the 1488 (75188) quad line
driver and 1489 (75189) quad line receiver. The 1488 requires an external
capacitance of 330 pF on each output to meet the RS-232-C slew rate specifica-
tion of 30 V/us. If the cable and receiver do not have a capacitance greater than
330 pF, an external capacitor should be connected from each output to ground.

The 1489 quad receiver has external threshold voltage control via pins 2, 5, 9,
and 12. If these terminals are not used, any input less than +0.75 V switches the
receiver output high, and any input greater than +1.5 V switches the receiver out-
put low. If a 5 k() resistor is connected from the threshold input to +5 V, then the
input thresholds are shifted about 3 V more negative. The resistor is not required
except in high noise situations. Additional noise immunity is afforded by putting a
capacitor from the threshold pin to ground. For example, a 500 pF capacitor will
cause the receiver to ignore pulses up to 6 V whose durations are less than 800
ns. A typical computer/RS-232-C interface circuit is shown in Figure 11-10.
Alternative interface circuits using discrete components are generally undesirable
due to their nonstandard performance and decreased reliability.

Chapter 11: INTERFACING TO SERIAL PORTS 789

TTL Serial Out
from Computer

= Male

7 RS-232
Connector

TTL Serial In
to Computer

FIGURE 11-10. RS-232-C Serial Interface Circuit

The RS-232-C is currently the most widely used serial interface circuit. Its pre-
decessor, still used with older terminals, is RS-232-B, which is the same as the C
version with the exception of voltage levels. It defines a 1 logic level as =5 V to
—25 V, while the O logic level is the same.

RS-232-C is limited to interconnection lengths of less than 15 meters (50 feet)
and data rates less than 20 kilobits per second. In an attempt to update this stan-
dard (and provide compatibility during the transition) the Electronic Industries
Association has introduced three new standards: RS-449, RS-422-A, and
RS-423-A. RS-422-A and RS-423-A cover the electrical characteristics and
RS-449 the functional and mechanical characteristics of the interface. The basic
interchange functions of RS-232-C have been incorporated in RS-449. In addi-
tion to other changes, the newer standards extend the data rate to 2 megabits per
second, add ten circuit functions, and delete three. (See the fourth reference at
the end of this chapter for a discussion of these standards.)

The Current Loop Interface

The current loop type communication link was developed for teletypewriter
(TTY) terminals many years ago and has been used on many other devices as well.
It continues to be popular, although it is not as widespread as the RS-232-C link.

The receive line of a TTY is normally connected to the TTY’s selector magnet
through a resistor. It typically draws 20 mA through a 330 () current-limiting

190 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

resistor. Older TTYs worked on 60 mA through a 160 () resistor.

The TTY provides a series of contact openings on the send line when a key is
pressed on the TTY keyboard or the tape reader is operated. When no key is
pressed the switch contact (commutator) is closed. A 20 mA loop circuit is also
utilized for the send circuit.

The computer interface must usually be able to supply 20 mA on the “send”
and “‘receive’’ interfaces. The TTY should be checked to determine whether it
works on 20 mA or 60 mA. Most current loop interfaces provide only 20 mA
capability, which an older 60 mA TTY will not receive. Furthermore, the send cir-
cuit of a 60 mA TTY may damage the computer’s 20 mA receive circuit.

A typical 20 mA interface circuit is shown in Figure 11-11. The two diodes in
the receive circuit afford protection to the phototransistor from current spikes
induced by the selector magnet. This interface would have to be modified if the
TTY provided the current source for the loops.

Current
Loop

Interface Circuit

+5V +12V
o]

TTY

<&
<
.47 k)

<
7414 <
j:: MCT-2
1.2k !
[
1w l |
— Send
—_ 1
IO F : | Commutator
To = = -12v
UART - -

*_‘:K MCT-2
7414
\ 4701}

Serial Data Out

(Serial Data In

Receive
Setector
Magnet

FIGURE 11-11. 20 mA Current Loop Interface Circuit

Chapter 11: INTERFACING TO SERIAL PORTS 7 9 7

REFERENCES

Electronic Industries Association. ‘Interface Between Data Terminal Equipment
and Data Communication Equipment Employing Serial Data Interchange.”’
Electronic Industries Association, 2001 Eye Street N.W., Washington, D.C.
20006.

IEEE. “Peripheral Interface Standards for Microprocessors,’’ Proceedings of the
IEEE, Vol. 64, No. 6, June 1976.

National Semiconductor. 8250 Data Sheet.”” National Semiconductor, 2900
Semiconductor Drive, Santa Clara, CA 95051.

Osborne, Adam, and Kane, Jerry. An Introduction to Microcomputers, Volumes 2
and 3, Berkeley: Osborne/McGraw-Hill, 1978.

Signetics. “2651 Data Sheet.”” Signetics Corporation, 811 East Arques Avenue,
Sunnyvale, CA 94086.

digital-to-analog and
analog-to-digital
COonversion

Digital-to-Analog Converters (DACs) and Analog-to-Digital Converters {ADCs)
are often used as outputs from and inputs to microcomputer systems. The basics
of DAC and ADC have been covered in some depth in a number of publications
(see the references at the end of this chapter). Consult these texts for the theory
of operation of these circuits. Our putpose here is to examine how these circuits
are interfaced to the S-100 Bus and to look at some popular DAC and ADC
applications.

We will examine digital-to-analog conversion first because it is a simpler opera-
tion, and many analog-to-digital conversion circuits employ a DAC as part of the
ADC circuit.

DIGITAL-TO-ANALOG CONVERSION

In most cases, DACs employ some form of binary weighted current or voltage
summing that is controlled by a digital word presented to the summing network.
This word, in the case of a computer-DAC interface, is presented via a parallel
port, as shown in Figure 12-1. Outputting a word to the DAC port changes the
analog output voltage or current.

The binary summing circuit is of either the weighted or the R-2R resistive net-
work type. A typical weighted resistor type DAC circuit is shown in Figure 12-2.
The weighted resistors are connected to the 8-bit output of a parallel port via
buffers. The effective resistance for bit 7 is 11.75 k{), formed by the parallel
combination of four 47 k(2 resistors, while the bit 6 resistance is two parallel
resistors.

193

194 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

8
Data Bus —<#1Data In

8 8

S-100 Bus ¢ Address Bus —~Z4 Data Out 7‘» DAC | g Analog

Qutput

Contro! Bus =<y Parallel

OQutput Port

FIGURE 12-1. DAC Interface Block Diagram

The analog output voltage will be:

Vout = 5 (72—5)

n is the decimal equivalent of a binary number between O and 255. Therefore, a
value of 10001011 (decimal 139) yields an output of +2.7 V. 255 discrete
voltage steps from O to +5 V can be developed. The active element serving as a
summing point is the LM3900 transconductance operational amplifier. Although
a low cost op-amp such as the LM3900 or the 741 will suffice, it is better to use
one of the higher cost premium grade IC operational amplifiers if very accurate
analog outputs are required.

Although the foregoing circuit will provide a fairly accurate analog output
voltage, it lacks the necessary circuit refinements required for a precision analog
output. Although these refinements can be made, today it is more economical to
utilize one of a number of readily available monolithic DACs. A widely available
device is the 1408L-8 shown in Figures 12-3 and 12-4. The 1408 is a multiply-
ing DAC, so the reference voltage may be changed to vary the range of the analog
output voltage. The 1408 employs an R-2R summing network and produces an
output current which ranges from 0-2 mA. In Figure 12-3 the LM301A opera-
tional amplifier functions as a current-to-voltage converter to provide a 0-5 V
analog output voltage.

An improved DAC circuit is shown in Figure 12-4. In addition to the
LM301A op-amp, it utilizes a special reference regulator IC (MC1403U) which
provides a highly regulated positive 2.5 V reference for the DAC. Further, the 741
op-amp is used to develop a negative reference voltage for the current-to-voltage
converter circuit, thus improving the accuracy of the circuit.

A very simple DAC circuit can be built using an IC DAC with voltage output
(the 1408 produces a current output). One such DAC is the Ferranti Electric
ZN425E, shown in Figure 12-5. It also employs an R-2R summing network, and
further, it has an internal voltage reference (+2.56 V) and an 8-bit counter. The
counter can be used in a counter type ADC circuit {(discussed later). The biggest
advantage in using this device is that the output is already converted to voltage,

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 7 9 5

+5V
- |B T1
F=—————
47 ks
] I N I AA
> - WA—
! 1
|]
! 47 kQ !
N 8 1 aan !
1> W
lI P15 k0
1
] I N O A
> n VWA, .
]]
4050 1 :
)
of N Loy 47k)
1> 1 WW—
cMmos Lo J
Buffer r—-———=-= |
\] N e 4Kt
87) > AN
]
]
1 | 235k4 56 k(2
U a7k H “AAA
\ 14 N 151 4Ky b
B6 Vv | vy 1 +12V
51 kit 51 ki
| I | ANA AN Analog
94 k0 91 k() p—— Voltage
14 15 ;
- BS> {} AN sV 7Lm3g00 Outeut
o Op-amp
a —
5 —_— -
a r)
2 47kil 47k4) | 84 kQ)
3 Bd> 11 > 121 AAA—AAA/ } All resistors are 1% or better
3 | |
g Le———- g3k
S [NSNS . .}
4 a
£ e] I S LTI AN AL
g) D T
3 L 4
- SN [SO
g 4050
=
° 380 k2
82 Y D+ AA
cMos
Buffer
ar> 2 N S EE 9V
1
o> A 2 5 M1
7 +5V v b
R E

FIGURE 12-2. A Binary-Weighted DAC Circuit

thus eliminating the need for the operational amplifier in applications where a
voltage output is necessary. This assumes, of course, that the device can provide
the full-scale voltage your application requires (for the ZN425E full-scale output
is 2.65 V). Otherwise, a different full-scale output voltage can be achieved by
adding an op-amp at the output, or by applying a different reference voltage (O to
+3 V).

1 96 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Zero Adjust
+5V +5V -15V
10 k(2
Gain
>
! 5 k() :’3.9 k)
47 pF
»—"—-—-
1k
3.9 kfl
AAA
13 14 AaAA
Vee | +VREF 33 pF
[BIYy———2 0—| +15V
B6 4
ouT

B5 p—— Analog Output

4 1LmM301A
B4

[

From Parallel MC1408L-8 Op-amp
Output Port 83 DAC
-15V
BZ> 10 16
81}—-4 les pF
12 8 4ls
Leod—e £ &
S o 1
2 1 15 15V
2.7 kQ

FIGURE 12-3. A Simple 1408 DAC Circuit

From Parallel
Output Port

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 7 9 7

® @
[«]

@
I

+5V
T
MC1403 +25V 10
Voitage AA
Reference 2 b 25V
L
> 10 k2 -12V
1kQ ::‘('3‘_' AAA—
ain .
1 Adi. Offset Adj.
E—o
0.1 uF
+5V I Sis5kn $2240
<! <
J 2P < 2.2 k()
13 = 14 —AVY
+5V
Vee +VREF
; LM301A
ouTL4 2 Op-amp
p—— Analog Output
3
MC1408L-8 I
DAC —

il

® ©
SN
II’

BO

L

16 -15V
|47 pF

s
I
>

i

15

2.7 kQ -5V

FIGURE 12-4. An Improved 1408 DAC Circuit

7 98 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Data from Parallel
Output Port

+5V

0.2 uF

8

Data In

Vee

|15 |16 I

OUT IN -

VREF

ZN425E

DAC 14 » Analog Voltage

ouT
Output

LOGIC
RST
CLK

3

FIGURE 12-5. Voltage Output DAC IC Circuit

Here is a demonstration program which uses the DAC as a programmable
sine wave signal generator. The program outputs 64 successive values to the
DAC, which converts the binary values to analog voltage values. Each value is
stored in a table in memory. The output may be fed to an oscilloscope or audio
amplifier. The frequency may be varied by introducing a suitable delay between
each value call. A different wave form may be generated by simply changing the

values in the table.

0010
0200
0040

0100

0100
0103
0105
0106
0108
0109
010A

010D

= DAC

= TABLE
= COUNT
210002 WAVE
0640

7E LOOP
D310

23

05

C20501
C30001

; DAC SINE WAVE PROGRAM

ki

EQU
EQU
EQU

;

ORG

LXI
MVI
MoV
ouT
INX
DCR
JNZ

JMp

10H ; DAC PORT ADDRESS

200H ; START OF TABLE VALUES

64 ; NUMBER OF VALUES IN TABLE

100H

H,TABLE ; SET TABLE POINTER

B,COUNT ;SET FOR 64 POINTS

A,M ; MOVE TABLE VALUE TO DAC

DAC

H ; INCREMENT TABLE ADDRESS

B ; DECREMENT COUNTER

LOOP ;IF 64 POINTS NOT DONE GET
; NEXT TABLE VALUE

WAVE ; IF SINE WAVE COMPLETE DO

; AGAIN

; LOOK-UP TABLE OF SINE WAVE VALUES

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 7 9 9

0200 ORG TABLE

0200 808C98AS5 DB 128,140,152,165
0204 BOB7C7D1 DB 176,183,199,209
0208 DAE1EAF0Q DB 218,225,234,240
020C F6FAFDFF DB 246 ,250,253,255
0210 FFFFFDFA DB 255,255,253,250
0214 F6FOEAEL DB 246 ,240,2234,225
0218 DAD1C7BD DB 218,209,199,189
021C BOA5988C DB 176,165,152,140
0220 80736754 DB 128,115,103,90
0224 4F43382E DB 79,67,56,46
0228 251D150F DB 37,29,21,15
022C 09050200 DB 9,5,2,0

0230 00000205 DB 0,0,2,5

0234 090F151D DB 9,15,21,29

0238 252E3843 DB 37,46 ,56,67
023C 4F5A6773 DB 79,90,103,115

Interfacing to DACs Larger than Eight Bits

Eight-bit DACs provide resolution of one part in 256. However, some
applications require better resolution, and 10-, 12-, and 16-bit DACs are available
for these applications. A 10-bit DAC will provide a resolution of one part in 1024.

A 10-, 12-, or 16-bit DAC is driven by providing the data word in two bytes.
For example, a 10-bit DAC can use one byte plus two bits of a second byte for the
full 10-bit data word. One possible interface for a 10-bit DAC is shown in Figure
12-6. It uses the Analog Devices AD561 10-bit DAC. In order not to cause
glitches in the DAC output, the 10-bit data word is built up in a buffer register
composed of IC1 and IC2. After both the upper and lower parts of the word are in
the buffer, the ten bits are transferred, as one word, to the register driving the
DAC (IC3 and IC4). This technique is referred to as “double buffering.”’

Notice that the lower bits are loaded with an output to Port 2, the upper bits
are loaded with an output to Port 1 and the ten bits are transferred to the DAC
with an output to Port 3. The following is a software driver routine. The data to be
output is stored in a table with data in successive memory locations.

710-BIT DAC PROGRAM (FIGURE 12-6)

i
HPORT EQU

0001 = 1 ;DAC HIGH BYTE PORT
0002 = LPORT EQU 2 ;DAC LOW BYTE PORT

0003 = TPORT EQU 3 ;i TRANSFER PORT

0200 = TABLE EQU 200H ; TABLE STARTING ADDRESS
0040 = COUNT EQU 54 ;NUMBER OF VALUES IN TABLE
0100 ORG 100H

0100 210002 WAVE LXI H,TABLE ; SET TABLE POINTER

0103 0640 MVI B,COUNT ; SET TABLE COUNT

0105 7E LOOP MOV A,M ;LOAD LOWER BITS

0106 D302 OUT LPORT

0108 23 INX H ; LOAD UPPER BITS

0109 D301 OUT HPORT

010B D303 OUT TPORT ; TRANSFER 10 BITS TO DAC

010D 05 DCR B ; DECREMENT COUNT

200 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

010E €26900 JNZ LOOP ;64 POINTS NOT DONE GET NEXT
; POINT
0111 C36400 JMP WAVE ;64 POINTS DONE DO NEXT WAVE

; PLACE TABLE HERE
; THERE SHOULD BE 64 UPPER BYTES AND 64 LOWER BYTES

;i

0200 ORG TABLE
0200 00 ' DB 0 ;8 LOWER BITS
0201 00 DB 0 {8 UPPER BITS

.

Note that DACs with internal double-buffer registers are available (e.g., the
Analog Devices AD7522 10-bit DAC). If such a device is used, the interface is
simplified and the number of components required is reduced.

The interface shown in Figure 12-6 can be simplified by eliminating IC2 and
feeding the lower eight bits directly to IC3. The software driver routine must first
load the two high bits into IC1A {output to Port 1). An output to Port 3 will then
load the low byte into IC3 and transfer the upper two bits from IC1A to IC1B, pre-
senting ten bits to the DAC for conversion. This technique eliminates one instruc-
tion (output to Port 2). However, it also eliminates the double buffering.

74878
5
3 s 7 9
02 a2 D4 a4
2 Ic1 16 6 1c1 10
o1 4 al b3 g 03
13 a +5 -15V
> K12 —1> Clk3-a
14
T
+5V _L +5V 12
=)
20 20 13
08
1 19 1 19 4
D7> 8 o8 as 8 D7
S L] S ks 17 16] N
Analog
05‘> 1af o asls 14 15 5 s " Ouout
13 12 13 12 7
uA) ps_ 162 g5 1c3 04 ApDS61
o] ratssra [o] 7esae [B e
D3 > 04 latch Qa Latch 03
7 5 7 6 9
02 Y— 03 a3 D2
4 5 4 5 10 =
o1 > D2 a2 01
2 3 2 11
00) o1 a1 0o
7 —CLK. — CLK
GND G CLkA GND OF
[10 [‘ T [\o Iu T lv
A7 NANNY Address e Port 1
Decoder il
SELBe HPORT
. SELCe LPORT
A0 D—:@ Port 3
TPORT

e 741832
SWRS

sOUT 741832
74L504

FIGURE 12-6. 10-Bit DAC Interface

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 20 7

A Programmable Signal Generator

The prior example of signal synthesis suffers from two faults: the maximum
frequency is limited by the processor speed, and it ties up the processor com-
pletely in executing the synthesis routine. A better approach, if such repetitive
waveforms are to be generated, is to use an oscillator circuit controlled by a DAC
circuit. The DAC analog output is used to control the frequency of the oscillator.
Several IC voltage controlled oscillators are available for this purpose. They can be
driven from the DACs shown in Figures 12-3, 12-4, and 12-5. Two examples are
shown in Figure 12-7.

The Intersil 8038 can provide three simultaneous outputs (sine, square, and
triangular waves) over a frequency range of 0.001 Hz to 1 MHz. The frequency is
varied by varying the voltage on pin 8 from 45 to +15 V. The Motorola MC4024
is a dual voltage controlled square wave oscillator that operates directly from TTL
voltage levels and has a maximum operating frequency of 25 MHz.

ANALOG-TO-DIGITAL CONVERSION

Converting an analog input into a digital word can be accomplished by a
variety of ADC techniques. The two most popular are the “‘ramp’ and “suc-
cessive approximation’”” methods. Both employ a DAC and a comparator as
shown in Figure 12-8. The DAC input is varied while the DAC output is compared
to the analog input until a match, or approximate match, is made. The data word
input to the DAC then represents the amplitude of the analog input.

The Ramp Type ADC

A ramp type ADC compares the analog input to a ramp function from the
DAC. One circuit for doing this is shown in Figure 12-9. It uses the DAC, as shown
in Figure 12-3 or 12-4, to develop the ramp function. The DAC is fed to the
LM311 comparator circuit, where it is compared to the analog input. The output
of the comparator is fed to bit O of an input port. The comparator output equals
zero until the DAC output is greater than the analog input.

The software routine develops a ramp function from the DAC until the
match occurs. It starts by setting the DAC for zero voltage output and increments
the voltage until the DC voltage output of the DAC exceeds the analog input
voltage (COMP bit O = 1). The digital equivalent of the analog voltage is now pres-
ent at the input to the DAC and in Register B.

20 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

a +15 Vv

IN457

Symmetry
Adj. W

< <
47k & Q4.7 k(2
< 4

<

+15

fr bl
1

0.1 uF

9
Intersil > J—U_LI_L Square
8 8038 3 .
—0 N\/\ Triangle , Outputs

From &
Waveform

DAC /~ y
Generator 2 W Sine

2

|1) T
15 M} :I 100 % ¢
& 47nF < Distortion
Adj.

Pins 1,7.13 & 14 not used

v

-15V

+5V
5 nF Polystyrene
1 |4 I:' l_.lA-
Sine Wave

From 2 MC4a024 6
DAC >—M— vCco ouT—» Output

470

Pins 9 thru 13 not used

FIGURE 12-7. Two Different Computer Controlled VCO’s

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 2 0 3

Analog Voltage Proportionat
To Digital Word

Output Port) 8, Comparator
B7-BO DAC One Bit of
Input Port

Analog Input &
Voltage 7/

FIGURE 12-8. ADC System Where DAC Output is Compared
Against Unknown Analog Input

+5V
<
1 k()
<
b2
10 k2 TMQ
Analog Input> AAA- -AAN
+15Vv
2
Input from DAC 10 k€ 3 b T0 Bit 0 of Input Port
{Figure 12-3 or 12-4) LM311
Comparator
100 pF

-15V

FIGURE 12-9. Added Circuitry For Ramp and Successive
Approximation ADC

204 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

The following is a typical software driver routine:

;RAMP ADC CONVERSION ROUTINE
; VALUE IN B REGISTER IS LOST
; RETURNS WITH ADC VALUE IN REGISTER B

DAC EQU 1 ;DAC OUTPUT PORT

0001 =

0001 = COMP EQU 1 ;COMPARATOR INPUT PORT
0100 ORG 100H

0100 F5 INIT PUSH PSW ; SAVE REGISTERS

0101 AF XRA A ;RESET DAC

0102 47 MOV B,A

0103 D301 OUT DAC

0105 04 LOOP INR B ; INCREMENT DAC VOLTAGE
0106 78 MOV A,B

0107 D301 OUT DAC

0109 DBO1 IN COMP ; TEST FOR MATCH

010B 1F RAR

010C D26900 JNC LOOP ;NO MATCH, TRY NEXT DAC VALUE
010F Fl1 POP PSW ; RESTORE REGISTERS

The routine will develop steps that are 1/256th of the full-scale voltage. For
example, if the full-scale input is 5 volts, each step would be 19.5 millivolts. At the
completion of the ADC routine, Register B will contain the binary equivalent of the
analog input voltage. A delay subroutine can be added for slow operational
amplifiers.

The Successive Approximation ADC Technique

The ramp method is simple but very slow, and the time required to perform
the conversion depends on the value of the analog voltage input. The successive
approximation method is typically 15 times faster and always takes the same
number of loops in arriving at the result. In the case where speed is not critical, the
ramp technique works adequately. The successive approximation technique uses
the same circuitry as the ramp method. However, instead of changing the DAC
output in incremental steps, it changes the most significant bits, one at a time, to
quickly determine the correct digital word.

To comprehend the successive approximation technique, assume that the
full-scale voltage is +5 V and the analog input is +2 V. The conversion process
starts by setting the DAC input to 10000000, producing a half-scale DAC output
(+2.5 V). If the comparator output is high then the CPU knows that the DAC input
is too high and sets bit 7 to 0. The CPU then sets the DAC input to 01000000,
producing a DAC output of +1.25 V which, when compared to the analog input,
causes the comparator output to equal 0. The CPU now knows that the analog
input is greater than +1.25 V but less than +2.5 V, and hence leaves bit 6 equal
to 1. Next, the processor will output 01100000, producing a DAC output of

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 2 0 5

+1.87 V. This will still be too low, and bit 5 will be left equal to 1. The process will
continue as follows (only the first six approximations are shown):

(4844 vVv) _11111100

11111000<
{4.688 V) 11110100
11110000
\4531V) 11101100
/ 11101000
4.375 V) 11100100
11100000
4.219V) 11011100
11011000
(4.063 V) 11010100
11010000
(3806 VI 11001100
11001000
(3.75 V) 11000100
11000000
(3594 V) 10111100
10111000
(34375 V) 10110100
10110000
(3281 Vi 10101100
10101000
(3.125 V) 210100100
10100000
(2969 V) 10011100
10011000
(28125 V) 10010100
10010000
/ \(2.656 V) /10001100
10001000
25V 10000100
10000000
I (23437 V) 01111100
01111000
(21875 V) N 01110100
01110000
(20313 V) 01101100
011010007 (1953 v)
(1875 V) 01100100
01100000

01010000

(125 V)
01000000

(0.9375 v) /

00110000

(1.5626 V) f

\(1.406 V)

(1.719 v)
01011000

01011100
01010100
/01001 100
01001000
01000100

(1.094 v)
00111000

00111100

00110100

\(0.7812 V) 00101100

{0.625 V)
00100000

(03215 v) f

00010000

00110000
00100100

(0.4687 V)

00011100
0001100077

00010100

\(01562 V) 00001100

00001000
00000100

2 0 6 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

After eight approximations the result (01100110 = 1.9923 V) will be in
Register D. Here is a suggested software subroutine for the successive approx-
imation technique.

; SUCCESSIVE APPROXIMATION ADC ROUTINE
;CONTENTS OF REGISTER D LOST
; RETURNS WITH DATA IN REGISTER D

DAC EQU 1 ;DAC OUTPUT PORT

0001 =
0001 = comp EQU 1 ; COMPARATOR INPUT PORT
0080 = MASK EQU 80H ;BIT MASK
H
0100 ORG 100H
0100 F5 INIT PUSH PSW ; SAVE REGISTERS
0101 C5 PUSH B
0102 0680 MVI B,MASK ; SET MASK
0104 1600 Mvl D,C ; CLEAR DAC DATA REGISTER
0106 78 NXBIT MOV A,B ; OUTPUT MASK
0107 D301 OUT DAC
01069 DBO1 IN comp ; READ COMPARATOR OUTPUT
0l0B 1F RAR
010C D21201 JNC SHIFT ; IF NOT SET, SHIFT MASK
010F 78 MOV A,B ; IF SET, SAVE DATA
0110 B2 ORA D
01i1 57 MOV D,A
0112 78 SHIFT MOV A,B ; SHIFT MASK
0113 1F RAR
0114 DA1BO1 Jc DONE ; IF 8 SHIFTS DONE GO TO END
0117 47 MOV B,A ; IF NOT RECALL MASK
0118 C30601 JMP NXBIT ;AND DO NEXT BIT
01llB Cl DONE POP B ;RESTORE REGISTERS
011C F1 POP PSW
011D C9 RET

A successive approximation ADC can be built in which the successive
approximations are done in hardware rather than in software. This has the advan-
tage of not taking up processor time during the conversion process. In other
words, the processor can start the conversion process, go on to do other things,
and then come back to get the converted value or have the ADC circuit generate
an interrupt when it is finished. The hardware approach is also much faster (10-
30 times faster) and hence is to be preferred when measuring fast changing sig-
nals.

A typical successive approximation ADC is shown in Figure 12-10. It employs
the MC1408L8 DAC, used previously, and a special successive approximation
register, the National Semiconductor DM2502. The conversion process is started
by momentarily enabling the S (START) input. When the conversion process is
finished the EOC line will be active. Hence, the status input port is read until EOC is
0, and then the data at the parallel data input port is read.

Fully integrated successive approximation ADCs are also available. One such
device, the National Semiconductor ADC08186, also includes an on-chip multi-
plexer. The multiplexer permits the CPU to select any one of sixteen different
analog input signals to be input to the ADC.

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 20 7

Bit of Status &
Qutput Port ¢
+V
Comparator +5 V
Analog N
+
nput o/ i 10 bie
| 4 ; g Vee
ouT P
-V
5 14 Qo
6 13 2 DONE git of Status
a1 Qcc > \nput Port
12
L Q2
1408L8 8 11
DAC Q3 pmzs02
9 6 SAR

(see Figure 12-4 Q4

for wiring of pinsg10 5
not shown here)]

Qs

Qs

Q7

— 1
Not Q7 bop—
Used CLK GND

$-100 Bus ls J-e-
(>

24

¥ 86
—= B5
— B4 To Parallel
& B3 Input Port
— B2
- 81
= BO

FIGURE 12-10. ADC Using Hardware Successive
Approximation Register

Multiplexing ADCs

LS| ICs have recently become available which greatly simplify the multiplex-
ing of ADCs. Multiplexing analog inputs substantially reduces the hardware cost
of systems used to monitor or log data from many analog inputs. One such device
is the National Semiconductor ADC0816 shown in Figure 12-11. The ADC0816
is a CMOS device incorporating an 8-bit successive approximation ADC, a 16-
channel multiplexer, and necessary control logic. The successive approximation is
done in hardware so that a conversion takes approximately 100 us, using a 1
MHz clock rate. This is considerably faster than the software techniques dis-
cussed previously.

The device is addressed via the lower four bits of an output port (port 11 16
in the following example program), allowing selection of any one of 16 single-
ended analog signals as an input. Bit 4 of the port is used to start conversion

208 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

+5V

T21

Typical]
Analog 12ln1s msB) 27! 3 87
Input
>-'_12- N4 22 B6 a2 %)
= 29
=)—”— INT3 23 85
>—"wi2 2428 B4 .
p— 25 83 I?\:Lat
)——8 INTO 26428 Bz Port $-100
s 7 25 Interface
© >——Hne 2-7 B1
e 6 8|24
2 >——2Jins (sBi2 80 .
< 5
2 >——n7 _
3 4 - Handshake
£ >——ns EOC bav WaVaVa VAV
o
o 3 Bit
® >——=ns 741504
< 2
»>—"]ina
) 1 N3 7406 {Optional) Any $-100
Interrupt Line
4 15
>— N2 common :] (Optional)
9 1
)—3 w1 compin
>_3‘1 NO
! +5V
+ov ADCO8B16 o
Multiplexed
e < 2 e S ADC
> >
sriig 2282 16 19
START +REF
FaVaVa¥s B4 32 e expldL
Part of B3 33} oo o vee 17
$-100 Latched B2 34
Inte;iace Parallel ADD C
Output)
Port 81 Blope -rerf2
80 20
Y ®looa 6N
CLK
+5 V 22
L
PR
o a 1MHz
741574
(> box @
cLock =

FIGURE 12-11. S-100 Interface of 16 Channel ADC
Through Parallel Channels

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 2 0 9

(START input) and latch the 4-bit ADC multiplexer address code (ALE). The
processor waits until the end of the ADC conversion cycle (EOC) is indicated by
the ADCO816 and then reads the 8-bit binary output via the data input port. An
alternate approach would be to use the EOC signal from the ADC to generate an
interrupt signal.

Interrupts will be discussed in the next chapter. If interrupts are used,
remember to clear the interrupt when starting another ADC conversion. The
following is one possible software driver subroutine for the multiplexed ADC cir-
cuit.

i SUBROUTINE TO READ DATA FROM 16-CHANNEL ADC
; RETURNS WHEN ALL 16 CHANNELS HAVE BEEN READ
; STORES DATA IN TABLE CALLED "VALUES™ IN EQUATES

i

;TO USE WITH DIFFERENT PORT ADDRESSES, CHANGE
"BASE" IN EQUATES

;ALL OTHER PORTS RELATIVE TO BASE

0010 = BASE EQU 10H ; BEGINNING PORT ADDRESS
0011 = DATA EQU BASE+1 ; DATA PORT ADDRESS
0010 = STATUS EQU BASE ; STATUS PORT ADDRESS
0001 = MASK EQU OlH ;DAV BIT MASK
0010 = START EQU 10H ; START CONVERSION BIT MASK
0200 = VALUES EQU 200H ; ADDRESS OF VALUE TABLE

H
0100 ORG 100H
0100 F5 ANALOG PUSH PSW ; SAVE ALL REGISTERS
0101 C5 PUSH B ;THAT WE ARE GOING TO USE
0102 E5 PUSH H
0103 0OE10 MVI C,START ;PUT START BIT MASK IN C
0105 210002 LXI H,VALUES ;SET UP HL TO POINT TO TABLE
0108 0600 MVI B,O ;SET B TO 0
010A 78 N EXT MOV A,B ;GET THE CHANNEL NUMBER
010B D311 OUT DATA ; OUTPUT THE DATA
010D Bl ORA C ;SAME BUT WITH BIT 4 HIGH
0l10E D311 OUT DATA ;OUTPUT IT
0110 A9 XRA C ;SET BIT 4 LOW AGAIN
0111 D311 OUT DATA ; AND OUTPUT IT
0113 DBiO WAIT IN STATUS ; READ THE STATUS PORT
0115 E601 ANI MASK ;IS EOC (DAV) TRUE?
0117 CA1301 Jz WAIT ;NO, TRY AGAIN
0llAa DB11 IN DATA ; YES, READ THE VALUE
011C 77 MOV M,A ; PUT IT IN TABLE
011D 23 INX H ; INCREMENT TABLE POINTER
0l1E 04 INR B ; INCREMENT CHANNEL NUMBER
01llF 78 MOV A,B ;MOVE B INTO A FOR COMPARE
0120 FE10 CPI 16 ;DONE?
0122 C20A01 JNZ NEXT ;NO, NEXT CHANNEL
0125 El POP H ;YES, POP ALL THE
0126 Cl1 POP B ; REGISTERS WE USED
0127 Fi1 POP PSW ; FOR RETURN
0128 C9 RET ;AND WE'RE DONE

Note that the positive and negative reference voltages must not be noisy,
and the +§ V regulated supply should not be shared with other circuitry if full
accuracy is to be achieved.

2 7 0 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Analog Data Logging

Digital voltmeter (DVM} ICs offer an easy and very powerful way to measure
analog voltages and log them. ICs are available that include virtually all the DVM
circuitry and interface easily to a processor. A typical circuit is shown in Figure
12-12. It uses the National Semiconductor ADC3511C DVMIC. The only other IC
required, besides the parallel ports, is a +2 V regulated reference IC. Note that
good power supply distribution, decoupling, grounding, and regulation techniques
should be exercised, as discussed in the previous section.

The DVM IC contains its own internal clock whose frequency is set by an
external RC network (fout/fin). The IC provides addressed BCD data output
(3-1/2 digits). Each BCD digit (four bits) is available at the outputs (2°-23) on
demand via three digit select inputs (DO, D1, and DLE). DO and D1 are used to
select the desired digit data. DLE is the data latch enable and is set to O to select a
digit.

+5V

i

+ 51kl gy vin Vee conv ke > 57
Analog _ 519 k{2 10 Complete -
Input —Vin Overflow§ - 86
15
SWi1 Sign 8 - B5
14
A~ SW?2 23 4 - 33 To Parallel
b 200Q 3 input Port
100k § 22 - B2
12 21
ViR 21 - 51
a1 23
047 uF 20 - B0
I)
L ADC3511C
- 7 bvm 2 mMcC
B3>—-——":‘Sfaft ' 1403
From Parallel J B2 o OLE VREFESY 10 k6 | 3
Output Port B1>———'_—‘D1 Reference
\ 20 fout i - -
BO)—) DO ou 3
Analog V¢C $ 75«0
17
fin
VFILTER = VSS

+ 7 | 13 22 “Low Leakage
10 ;iF 0.47 uF == 250 pF
I L I

FIGURE 12-12. DVM IC Interface Circuit

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 2 11

Since the output is 3-1/2 digits, only the least significant bit in the most sig-
nificant digit word is used, and therefore represents decimal digits 1 or O. The
next two bits in the word are not used. The most significant bit (sign) is used to
indicate a positive or negative analog voltage input.

A “‘start of conversion’’ pulse transfers the BCD data to a set of internal
latches and the ‘‘conversion complete’” output is 1 when the conversion is done.
The ADC3511C converts an analog input of O to *=1.999 V to BCD code if the
Vo = 2 V. It takes about 200 ms to do a conversion.

The software driver program will read the sign and four BCD digits in suc-
cession and store them in two adjacent memory locations as follows:

Digit 3 Digit 2
Table + 1 | SIGN} X X | MSD
Table
B7 BO
Digit 1 Digit O
MSD = Most Significant Digit
X = not used
Sign: 1=+
0=~
i 3-1/2 DIGIT DVM DRIVER PROGRAM
i
INITL: LXI SP,STACK
LXI H,TABLE
; DRIVER PROGRAM FOR ADC3511 DVM IC
; RETURNS WITH 3-1/2 BCD DIGIT AND SIGN DATA
; IN ADMS MEMORY SPACE. IF OVERFLOW, RETURNS
;WITH "FF" IN MEMORY SPACE.
i
00F0 = UMASK EQU OFOH ; UPPER NIBBLE MASK
000F = LMASK EQU OFH ;LOWER NIBBLE MASK
0080 = SMASK EQU 80H ; SIGN MASK
0010 = DVM EQU 10H ;DVM I/0 PORTS ADDRESSES
0200 = ADMS EQU 200H ; ADC DATA MEMORY LOCATION
i
0100 ORG 100H
i
0100 FS ADIS PUSH PSW ; SAVE REGISTERS
0101 ES5 PUSH H
0102 C5 PUSH B
0103 DS PUSH D
0104 210002 LXI H,ADMS ; ADC DATA MEMORY POINTER
0107 B7 START ORA A ; START CONVERSION
0108 D310 OUT DVM
010A BF CMP A
010B D310 OUT DVM
010D DB10O WAIT IN DVM ; CONVERSION DONE?

010F 17 RAL

2 7 2 INTERFACING TO S-100/lEEE 696 MICROCOMPUTERS

0110 D20D01 JNC WAIT

0113 17 RAL ; OVERFLOW?

0114 DA4201 Jc OVFLO ; EXIT PROGRAM

0117 E680 ANI SMASK ;MASK OFF SIGN BIT

0119 57 MOV D,A ; SAVE SIGN

011A 3E04 MVI A,04H ;SET DIGIT SELECT CODE
011C CD2D01 CALL RDGIT ;GET DIGITS #1 AND #2
011F 77 MOV M,A ; SAVE DIGIT 1-2 DATA
0120 78 MOV A,B ;RECALL DIGIT SELECT CODE
0121 3C INR A ; SET CODE FOR NEXT DIGIT
0122 CD2DO1 CALL RDGIT ;GET DIGITS #3 AND #4
0125 E61F ANI 1FH ; MASK OFF UNWANTED BITS
0127 B2 ORA D ; COMBINE WITH SIGN BIT
0128 23 INX H ;SAVE IT IS MEMORY

0129 77 MOV. M,A

012A C34701 JMP DONE ;ALL DONE

012D 47 RDGIT MOV B,A ;SAVE DIGIT SELECT CODE
012E D310 OQUT DVM ; SELECT DIGIT

0130 DBI1O IN DVM ;READ DATA

0132 E60QF ANI LMASK ;MASK OFF BCD DATA

0134 4F Mov C,A ;SAVE IT

0135 78 Mmov A,B ;REGALL DIGIT SELECT CODE
0136 3C INR A ;SELECT NEXT DIGIT

0136 3C INR A ;SELECT NEXT DIGIT

0137 47 MOV B,A ; SAVE DIGIT SELECT CODE
0138 D310 OUT DVM

013A DB1O IN DVM ; READ BCD DATA

013C 17 RAL ;SHIFT IT LEFT

013D 17 RAL

013E 17 RAL

013F 17 RAL

0140 Bl ORA C ;COMBINE UPPER AND LOWER NIBBLES
0141 C9 RET

0142 36FF OVFLO MVI M,0FFH ; SET OVERFLOW INDICATION
0144 23 INX H

0145 36FF MVI M™,OFFH

0147 D1 DONE POP D ; RESTORE REGISTERS

0148 C1 POP B

0149 El POP H

014A Fl POP PSW

014B C9 RET

Analog Input Devices

A few of the more common devices that can be connected to ADC circuits
are described below.

Joy sticks are essentially two potentiometers that are mechanically linked
together so that one or both changes resistance as the “joy stick’’ is moved in an
X-Y plane. Two separate ADC circuits are required, one for each potentiometer.
Since joy stick positioning is usually not critical, very economical ADC circuits can
be used. The simple ADC arrangement shown in Figure 12-13 is quite popular.
The conversion requires that the processor output a 1 to start the capacitor
charging and at the same time start a software counter or hardware timer. The
capacitor charges exponentially toward +5 V, raising the voltage on the positive
input of the comparators. When the voltage equals the analog input voltage, the
comparator output goes to 1 level, causing the count to stop. The count is
approximately proportional to the analog input voltage (potentiometer setting) if

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 2 7 3

+5V
T»
22k g *s
<
Is 12=
e - ’_ 4 1
5k I I N2

b3 5 B1

0.1 “FI P |
— | LM339 l To Parallel
= | Comparator Input Port
q .
5k() Qug—e ! N
> [| ; BO
0.1uF p’
22k0 @ -~
- R
From Paratlel BO 3
Output Port > -
— 0.1uF

FIGURE 12-13. Simple Joy Stick ADC Circuit

the capacitor is not allowed to charge fully. This value is saved. The processor
then discharges the capacitor by outputting a O and repeats the process for the
other input.

Temperature Sensing can be accomplished simply, as shown in Figure 12-14a,
using a thermistor. Correction for non-linear characteristics of the thermistor can
be accomplished by using a look-up table in memory. For precise temperature
measurement a temperature controller IC, such as the National Semiconductor
LM3911, should be employed. It includes a temperature sensor, a stable voltage
reference, and an operational amplifier. The output voltage is directly proportional
to temperature over a range of -25° C to +85° C. The LM391 1 is shown in Figure
12-14b.

Light Sensing can be done using a photocell divider circuit such as that shown
in Figure 12-15a. A circuit providing much greater sensitivity is shown in Figure
12-15b. Here, a photo Darlington transistor (e.g., GE L14F2, which includes a
built-in lens) is used.

2 14 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

+5V +15 V

R 4.7 kU

To ADC
Input

820 k!
+V 100 k¢! S AAA——
2 +15V

IN
LM3911 |
Temperature e
Sensor 1 - 1TMQ
out AW
GND
4 AAA
— 47 M0

FIGURE 12-14. Two Different Temperature Sensing Circuits

a b.
+V
+5V +5V +5V
Photo 2N2907
Transistor
Photocell
To ADC 2N3904 To ADC
Input
Sensitivity
R 2M0 10 k{2

FIGURE 12-15. Light Sensing Circuit

Chapter 12: DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION 2 1 5

REFERENCES
Kane, J., and Osborne, A. An Introduction to Microcomputers: Volume 3 — Some
Real Support Devices, Section E. Berkeley: Osborne/McGraw-Hill, 1979.

Libes, S. Fundamentals and Applications of Digital Logic Circuits, 2nd edition.
Rochelle Park, N. J.: Hayden Book Co., Inc., 1978.

National Semiconductor Corporation, Pressure Transducer Handbook, 1977.

Titus, J. A.; Titus, C.A.; Rony, P.R.; and Larsen, D.G. Bugbook VIl —
Microcomputer-Analog Convérter Software and Hardware Interfacing. E & L
Instruments, 1978.

Chapter 14: PROGRAMMABLE TIMER/ICOUNTERS 2 5 7

Any $-100 - 1Hz oq
interrupt Request Pin ouT1 Timer 1

+5V Mode O - Interrupt on Terminal
Count

GATE 1 Divide by 1000 = 1 Hz
8253
E CLK 1
ouT 0
+5V :
Timer O
GATE O Mode 2 - Rate Generator

Divide by 2000 = 1 kHz
49

CLOCK D »
(2 MHz) ctko

FIGURE 14-7. Timer Configuration for Interrupting Interval
Timer Used to Make a "‘Real Time Clock”

;ROUTINES TO COMPUTE REAL TIME FROM INTERVAL COUNTER INTERRUPT
;ROUTINE MANIPULATES 3 MEMORY LOCATIONS STARTING AT "TABLE"
;TABLE HAS SECONDS IN BINARY, TABLE+1=MINUTES, TABLE+2=HOURS

; IMPLEMENTS 24 HOUR CLOCK, USES 1 HZ INTERRUPT

; TABLE LOCATIONS ASSUMED SET TO PROPER TIME

;WHEN "UPDATE" IS CALLED

;UPDATE IS THE INTERRUPT SERVICE ROUTINE

;INIT IS EXECUTED ONLY ONCE

’

; TIMER USES FOUR PORTS STARTING WITH BASE
;ALL PORTS RELATIVE TO BASE

; TO CHANGE PORT ADDRESSES, CHANGE BASE

BASE EQU 10H ;BEGINNING PORT ADDRESS

0010 =
0010 = CNTRO EQU BASE ;COUNTER 0 REGISTER
0011 = CNTR1 EQU BASE+1 ;COUNTER 1 REGISTER
0012 = CNTR2 EQU BASE+2 ;COUNTER 2 REGISTER
0013 = CONTROL EQU BASE+3 ;CONTROL WORD REGISTER
07D0 = COUNTO EQU 2000 ;DIVISOR FOR COUNTER 0
03E8 = COUNT1 EQU 1000 ;DIVISOR FOR COUNTER 1
0080 = TABLE EQU 80H ;ADDRESS OF TIME
0100 ORG 100H
H
0100 3E34 INIT MVI A,00110100B ;SELECT COUNTER 0, TWO BYTE LOAD
; ;MODE 2 AND BINARY FORMAT
0102 D313 ouT CONTROL ;SEND IT TO CONTROL PORT
0104 21D007 LXI H,COUNTO ;COUNT VALUE IN HL
0107 7D MOV A,L ;LOW BYTE IN A
0108 D310 ouT CNTRO ;SEND IT TO COUNTER 0
010A 7C MOV A,H ;BIGH BYTE IN A

010B D310 ouT CNTRO ;SEND IT AND START COUNTER

2 5 2 INTERFACING TO S-100//EEE 636 MICROCOMPUTERS

Initialize
Real Time Clock

Set Counter O
To Mode 2,
Binary

!

Set Divisor
Of 2000

Y

Set Counter 1
To Mode 0.
Binary

]

Set Divisor
Of 1000

Y

Start Counting

‘ Update ’

Save Registers Set Seconds To O Set Minutes To O Set Hours To O
Restart Store Back Store Back Store Back
Countgr 1 In Memory In Memory In Memory
Get Seconds Get The Minutes Get The Hours Restore
From Memory From Memory From Memory The Registers
Increment Increment Increment Enable
The Seconds The Minutes The Hours The Interrupts
they = 60
?
No

FIGURE 14-8. Flowchart for Real Time Clock Program

010D

010F
0111
0114
0115
0117
0118
0l1A
CcllB

F00O0

F000
F0O01
F002
F005
F006
F008
F009
FoOB
FOOE
FOOF
FO10
FOl2
FO15
F016
FO17
FOol8
FO19
FOlA
FO1C
FOLlF
F020
F021
F022
F023
F024
F026
F029
FO2A
F02B
F02C
FO2D
FO2E

3C
FE3C
C22AF0
AF

77

23

7E

3C
FE18
C22AF0
AF

77 EXIT
El

Fl

FB

c9

MVI

ouT
LXI
MOV
ouT
MOV
ouT
EI

RET

ORG

PUSH
PUSH
LXI
MOV
OouT
MOV
ouTt
LXI
MoV
INR
CPI
JINZ
XRA
MoV
INX
MOV
INR
CPI
JINZ
XRA
MOV
INX
MoV
INR
CPI
JNZ
XRA
MoV
POP
POP
EI
RET

Chapter 14: PROGRAMMABLE TIMER/ICOUNTERS 2 5 3

A,01110000B ;SELECT COUNTER 1, TWO BYTE LOAD
;MODE 0 AND BINARY FORMAT

CONTROL ;SEND IT TO THE CONTROL PORT
H,COUNT1 ;COUNT VALUE IN HL

A,L ;LOW BYTE IN A

CNTR1 ;SEND IT TO COUNTER 1

A,H ;HIGH BYTE IN A

CNTR1 ;SEND IT AND START COUNTER

;ENABLE THE INTERRUPTS
;ON TO SYSTEM TASKS

OF000H

PSW ;SAVE THE REGISTERS

H

H,COUNT1 ;RESEED COUNTER 1

A,L ;LOW BYTE IN A

CNTR1 ;SEND LOW BYTE TO COUNTER 1
A,H ;HIGH BYTE IN A

CNTR1 ;SEND IT AND START COUNTER GOING
H,TABLE ;SET UP H WITH TIME LOCATIONS
A,M ;GET SECONDS IN A

A i INCREMENT SECONDS

60 ;HAS IT REACHED 607?

EXIT ;NO, WE'RE DONE

A ;YES, ZERO SECONDS

M,A ;STORE IT BACK, SECONDS NOW =0
H ;POINT TO MINUTES

A,M ;GET MINUTES IN A

A ; INCREMENT THE MINUTES

60 ;ARE THEY 60 YET?

EXIT iNO, WE'RE DONE

A ;YES, ZERO MINUTES

M,A ;AND STORE IT BACK

H ;POINT TO HOURS

A/M ;GET HOURS IN A

A 7 INCREMENT THE HOURS

24 ;ARE THEY 24 YET?

EXIT ;NO, WE'RE DONE

A ;YES, ZERO THE HOURS

M,A iSTORE WHATEVER BACK IN MEMORY
H ;RESTORE REGISTERS

PSW

;ENABLE THE INTERRUPTS
;AND RETURN

INterrupts

The normal program execution of the CPU can be suspended in response to a
request for service from a peripheral device or circuit. This request is called an
“interrupt” or “‘interrupt request.’”” The CPU then executes a software routine
which services the device. Upon completion of the interrupt service routine the
CPU resumes the interrupted program at the point where it was interrupted. In
other words, an interrupt causes the CPU to suspend what it is currently doing,
attend to the needs of the interrupting device, and resume what it was doing
before the interrupt. For a more detailed discussion of the basics of interrupts see
references 2, 3, and 4 at the end of this chapter.

Interrupts usually make the computer system’s /O handling more efficient. In
previous chapters we looked at I/O handling for terminals. In the techniques
shown, the computer waited for a key to be pressed before responding. Hence, as
much as 99% of the CPU’s time could be spent in a waiting condition. By having
the terminal interrupt the CPU’s operation when a key is pressed, we can have the
CPU do other tasks instead of waiting, thereby improving the efficiency of the
computer system. If we are dealing with a slow output device, such as a
teletypewriter, we may use interrupts here, too. After all, an 8080 with a 2 MHz
clock can execute as many as 20,000 instructions in the time that it takes a
teletypewriter to print one character.

In another application, such as refreshing a display, we may interrupt the CPU
at regular intervals. For example, the multiplexed 7-segment display circuit shown
in Figure 10-3 might be scanned at a rate of 65 times per second. If eight digits
are used, the repetition rate becomes about 500 times per second. Thus we can
have a free-running pulse generator circuit which interrupts the CPU once every 2

217

2 1 8 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

milliseconds. In this case, every two milliseconds the CPU executes the display
scan routine and then returns to the main program.

An interrupt-driven processor system may therefore give the appearance of
running more than one program simultaneously. This is often referred to as
“foreground/background”’ operation. For example, a system may have a slow
interrupt-driven printer which generates an interrupt when it is ready to have its
buffer filled. Thus the CPU may be executing a program and be interrupted by the
printer only when the printer is ready to receive a string of characters to be
printed. The printer is said to operate in the background, while the main program
operates in the foreground, giving the appearance of ‘‘multi-processing’’ or
“multi-tasking.”

The block diagram of a simple single interrupt system is shown in Figure 13-1.
A peripheral device is interfaced to the S-100 bus in essentially the same manner
as we have previously shown. In addition, the interface circuit can signal the CPU,
via an interrupt request line, that it wishes to interrupt the CPU’s operation. The
CPU receives the interrupt signal, suspends its current operation, saves its return
address, and generates an interrupt acknowledge status signal (sINTA). The
sINTA signal is used by the interrupting circuit to tell the CPU, via the data input
bus, the address of the Interrupt Service Routine {ISR). The CPU executes the ISR
and then returns to the previously interrupted program. The ISR address that the
interrupting device provides is usually referred to as a ““vector,”” and the act of
jumping to the ISR is called ‘‘vectoring.”

+ Address
| 8]
7 ata Output
A 48
7 Data input S$-100
‘ / Bus
7 Control
INT
‘ = SINTA
8! 8[186 L
A I I Y I
E E I ‘ ‘i ISR :
cpu - I £ Input E Vector
l Port “ Register I
|] |
Y |

Peripheral
Device

FIGURE 13-1. Block Diagram of an S-100 Input
Interrupt System

Chapter 13: INTERRUPTS 2 1 9

It is also possible to have more than one device initiate an interrupt and have
different ISRs, one for each device. For example, when device #1 causes an inter-
rupt, the processor “'vectors’’ to the device #1 ISR. This system is called a *‘multi-
ple vectored interrupt” system and is shown in Figure 13-2. Furthermore, it is
possible to establish interrupt priorities among interrupting devices, such that
should two devices generate simultaneous interrupts, one will have priority over
the other. This is called a priority interrupt system.

Interrupts are used primarily for more efficient I/O handling. They are also
widely used in the following applications:

1. In systems where there are a large number of inputs to be polled and
very fast response is required (e.g., in a safety alarm system).

2. Power failure detection. When a power failure occurs, hardware can
be used to detect this failure and by initiating an interrupt save the
CPU registers and RAM contents on disk. A small backup power
supply sufficient to provide 1 or 2 seconds of operation is usually all
that is required. Then when power is restored, the memory and
register contents are reloaded and the program resumes running. This
interrupt usually has the highest priority in a priority interrupt system.

3. User control panel resetting of system or manual control.

4. Interrupts are sometimes used in setting breakpoints for tracing
program operation when debugging programs.

Address
Data Output

Data Input

Control

INT

sSINTA

Vio $-100
Vil Bus

ey 148 (51

£« 765432109 = =
z =Z z
= 2 S e ' £ £ Z
» Vector Interrupt & o)
Inputs utput nterval
CPU Port Clock
Multiple Vectored Interrupt
Controller
————— - Used with Programmabie {’
Interrupt Controller
(eg 8259A) Peripheral
Device

FIGURE 13-2. Block Diagram of an S-100 Multiple Interrupt System

2 20 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

ADVANTAGES AND DISADVANTAGES OF INTERRUPTS

Interrupts have certain disadvantages which in many cases make their use
inadvisable. Interrupt-driven programs are much more difficult to write, debug,
and test. This is because of the random nature of interrupts. Further, additional
hardware is required, which can get quite complex, particularly in multiple inter-
rupt systems.

Interrupts are easily justified on large, expensive, high-speed CPUs. However,
in slower low-cost microcomputer systems the large amount of time spent on
interrupt housekeeping may leave too little time for useful work. One should con-
sider the possibility of using several smaller processors instead of interrupts.
The only case where interrupts are really essential is in power fail interrupt
systems.

S-100 INTERRUPT LINES

The S-100 Bus specifies ten interrupt request input lines and one interrupt
acknowledge line:

Signal Pin

Name No. Description
INT» 73 Primary interrupt request input
VIO* 4 Vectored interrupt request line O
VI 5 Vectored interrupt request line 1
VI2» 6 Vectored interrupt request line 2
VI3#» 7 Vectored interrupt request line 3
Vid» 8 Vectored interrupt request line 4
VIE» 9 Vectored interrupt request line 5
VIE» 10 Vectored interrupt request line 6
VI7 % 11 Vectored interrupt request line 7
NMI » 12 Non-maskable interrupt request line

PWRFAIL#* 13 System power failure signal
ERROR# 98 Status signal indicating that an error
has occurred
sINTA 96 Interrupt acknowledge line

The INT line and the eight vectored interrupt request lines are enabled by a low
logic level which must be kept active until the request is acknowledged. The INT
input is a general interrupt request input used by an interrupt controller circuit or
directly by the interrupting device when only one such device exists in the system.
The VIO#-V 17+ input lines are used in a multiple interrupt system. If the interrupt

Chapter 13: INTERRUPTS 2 2 1

controller circuit utilizes a priority scheme, then when two simultaneous interrupts
arrive it processes the highest priority interrupt. In most systems VIO#* has the
highest priority. All of these lines can usually be “masked’ {turned off) by the
CPU.

The NMI# input line is a nonmaskable interrupt request input. This input cannot
be turned off by the processor. Further, it has priority over all other interrupt
requests. NMI#+ is negative-edge triggered and need not be asserted as a level.

The PWRFAIL+ input line is a power-failure-pending signal. It is used to indi-
cate an imminent power failure. This line must be enabled at least 50 ms before
the local voltage regulators drift out of specification. The line must also stay low
until power is restored and the power-on clear signal is activated. This means that
a normally closed relay or a battery powered circuit must drive the power failure
line.

The ERROR=+ line is an error status signal indicating an error condition. It is used
to indicate that the current bus operation is producing an error of some sort (for
example, a memory parity error, write to protected memory, etc.). When an error
occurs the processor should perform a “‘trap’’ operation. In other words, all rele-
vant information about the error-causing cycle should be saved (e.g., address,
data, register data, status information in memory, etc.).

MICROPROCESSOR INTERRUPT CHARACTERISTICS

The 8080, 8085, and Z80 microprocessors have similar interrupt systems.
The 8085 and 280 accommodate the 8080 interrupt system and have additional
interrupt capabilities. We will therefore look at all three microprocessors sepa-
rately.

8080 INTERRUPT SYSTEM

The 8080 has a single interrupt request input which is connected to the INT
line of the S-100 Bus if no vectored interrupt circuit is employed on the CPU
board. This interrupt input may be enabled and disabled with software using the El
and DI instructions. Further, the interrupt input is automatically disabled by the
processor during a reset operation and during the acceptance of an interrupt.

If the interrupt request occurs when the interrupt input is enabled, the 8080
completes the current instruction and then executes an interrupt acknowledge
cycle. It sets the sINTA line active. This is a status signal indicating that the pro-
cessor acknowledges the interrupt. At the same time the 8080 enters a modified
instruction fetch cycle. It is modified in that MEMR is low and pDBIN is high, hence

2 2 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

the instruction is not read from memory. Rather, external hardware must be pro-
vided to furnish a RST (restart) or other instruction.

The 8080 has a special instruction (RST) which is in effect a single-byte CALL
instruction to one of eight different interrupt vectors (addresses). When RST is
executed the return address (PC register) is saved on the stack. The processor
then branches to an address indicated by bits 4, 3, and 2 of the RST instruction,
as follows:

RST Instructions

Binary Hex RST Branch to (hex)
11 000 111 Cc7 0] 0000
11 001 111 CF 1 0008
11 010 111 D7 2 0010
11011 111 DF 3 0018
11 100 111 E7 4 0020
11 101 111 EF 5 0028
11110 111 F7 6 0030
T 111 111 FF 7 0038

Therefore, if the instruction code read by the processor during an interrupt
acknowledge cycle is 11010111 (D716) the processor will branch to memory
location 0010, , and commence execution there.

A very simple single interrupt circuit can be constructed using the parallel input
port shown in Figure 13-3. Notice the similarity between this schematic and the
one presented in Chapter 8. Here a parallel keyboard can generate an interrupt. No
provisions are made for the generation of an RST instruction. Hence, during the
interrupt acknowledge cycle the processor reads the data bus, which usually has
all highs on it (no data) and interprets it as FF_, oran RST 7 instruction. The CPU
therefore vectors to memory location 3816 and continues execution. This is not
recommended for non-terminated motherboards.

The circuit accepts a strobe from the keyboard, which latches the data from
the keyboard and sets the DAV flip-flop, interrupting the CPU. The CPU then goes
through a service routine, reading the data latched at the input port.

The ISR will usually follow the steps shown in Figure 13-4. The following is a
suggested ISR for the circuit shown in Figure 13-4.

; INTERRUPT SERVICE ROUTINE FOR SIMPLE KEYBOARD
; INTERRUPT - HARDWARE AUTOMATICALLY RESETS INTERRUPT
;WHEN KEYBOARD DATA HAS BEEN READ

i

;TO USE WITH OTHER PORT ADDRESSES, CHANGE "BASE" IN EQUATES
BASE EQU 10H ;BEGINNING PORT ADDRESS
PORT EQU BASE

0010
0010

(]

0038 ORG 38H ;RST 7 VECTORS HERE

Chapter 13: INTERRUPTS 22 3

0038 FS5 SRVCE PUSH PSW ;PUSH ANY REGISTERS NEEDED
0039 DB10 IN PORT ;GET THE DATA
;INSERT ROUTINE TO DO SOMETHING WITH KBD DATA HERE
;OR "CALL" TO ROUTINE
0038 Fl POP PSW ;POP ALL REGISTERS
003C FB EI ;ENABLE INTERRUPTS AGAIN
003D C9 RET ;BACK TO OTHER TASK
$-100 Bus
43
017 <} Q D —<
93
D6 <} —(
92
ois < —
91 Data from
D4 c 7418374 < Keyboard
D|3c42 Latch (
mzc“ ——<
94
on &} —<
pio &< J22 Q o —
+5V — cK
OF A
73 PR
NT+ & J——oG—]a o
7406 74LS74
—da CK< Keypress {Active Low)
J— Strobe
CLR 741504
46
sINP
78 1 b
pDBIN D——r_
l_ 74LS10
741504
(- YAVAVAVAVAV VAV VaVaVa Ve Address
Decoder
: O]
L]
L]
BDSEL#*
A0 NNNNNNNN VY]

FIGURE 13-3. Simple Single Interrupt Circuit

2 2 4 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Interrupt Service
Routine

Save some
or all
Registers

Y

Interrupt
Service
Program

Y

Notify Device that
the Interrupt has
been serviced

Y

Restore
all saved
Registers

Y

Enable
Interrupts

FIGURE 13-4. Interrupt Service Routine Flow Diagram

if there is not enough room to put the entire service routine at location 38H,
then put a “jump’’ to the routine there instead. If it is desired to vector to a
different restart location, an 8-bit buffer can be used as an interrupt instruction
port. This circuit is shown in Figure 13-5. During the interrupt acknowledge cycle,
the buffer gates the RST instruction onto the data bus. The sINTA signal is used
to gate the RST instruction on the data input bus.

Multiple Interrupt System

The single interrupt circuit can be expanded to a multiple interrupt system by
the addition of an 8-line to 3-line encoder IC (74LS148) as shown in Figure 13-6.
Each interrupt device strobe is connected to an input of the encoder IC and will

Chapter 13: INTERRUPTS 22 5

+5V +5V
20
9) $-100 Bus
27k 9 $ ¢S Vv,
¢ ¢ ;» < . 7415244 |, 43
> o7
15 I 5 93
L —{> o
13
[o! ! 92 oI5
1 I 9
o > 51 > o4
8 d 12
o~ N GZD DI3
RST Address 6 I 14 41
Selection (‘i > Di2
4 16 94
D DI
2 L 18 95
—> oo
12 78
1 pDBIN
GND 741500 98 SINTA
10
FIGURE 13-5. Interrupt Instruction Port
+5V
o
$-100 Bus $-100 Bus
43 = "
017 &Fp—————a o |4 0 fp—meee——g vi7+
93 = 10
ois &< }p———— — 1 p—————J vi6+
92 — — 9
ois <P A2 2 fp——ou-—-J V5~
91 —_ _ 8
i & Al] Sen——— e AT
a2 7418373 7415148 ;
013 <} Latch AQ Encoder iz <J viz+
— 6
P LA - & g vie
94 — 5
T RERAE— —e 16 pmme——J i1+
— 4
Dlocgs_ a_ ~ b} — =17 p———eJ vio+
OE G GS)
73 These lines may need
INT* G——'—OQ'— pull-ups if used in an
-— unterminated motherboard
96 7406 741504 -
SINTA
pDBIN

FIGURE 13-6. Simple Priority Interrupt Controller

2 2 6 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

cause a different RST instruction to be placed on the DI bus. For example, a low
on V17 # will generate an RST 7 instruction.

The RST vector locations are too close together for entire ISRs. There are only
eight bytes between RST addresses, and most ISRs require more than eight bytes.
Hence, a jump instruction must be used to vector to the actual ISRs for RST O
through RST 6. The following is a typical routine to initialize the CPU and set up
the ISR vectors.

;SYSTEM INITIALIZATION ROUTINES

;
;RESET & RST-0 ENTRY POINT
;USE FOR COLD START OR TO RESET SYSTEM

STACK EQU OFEOOH ; THESE

FEOO = i

0100 = MAIN EQU 100H ; ARE

1100 = ISR1 EQU 1100H ; DUMMY

1200 = ISR2 EQU ISR1+100H ; VALUES

1300 = ISR3 EQU ISR2+100H ;

1400 = ISR4 EQU ISR3+100H ; CHANGE

1500 = ISR5 EQU ISR4+100H ; AS

1600 = ISRG EQU ISR5+100H ; REQUIRED

1700 = ISR7 EQU ISR6+100H ;

0600 ORG O ;RESET & RST 0 ENTRY POINT

0000 FB EI ; ENABLE INTERRUPTS

0001 C30001 JMP MAIN ;GO TO MAIN PROGRAM

0008 ORG 8 ;RST 1 ENTRY POINT

0008 C30011) JMP ISRl ; INTERRUPT SERVICE ROUTINE-1 VECTOR
i

0010 ORG 10H ;RST 2 ENTRY POINT

0010 C30012 JMP ISR2 ; INTERRUPT SERVICE ROUTINE-2 VECTOR

0018 ORG 18H ;RST 3 ENTRY POINT
i

0018 C€30013 JMP ISR3 ;INTERRUPT SERVICE ROUTINE-3 VECTOR
i
i

0020 ORG 20H ;RST 4 ENTRY POINT
i

0020 C30014 JMP ISR4 ;INTERRUPT SERVICE ROUTINE-4 VECTOR
i
i

0028 ORG 28H ;RST5 ENTRY POINT
;

0028 C30015 JMP ISRS ;INTERRUPT SERVICE ROUTINE-5 VECTOR
;
i

0030 ORG 30H ;RST6 ENTRY POINT
i

0030 C30016 JMP ISR6 ; INTERRUPT SERVICE ROUTINE-6 VECTOR
i
i

0038 ORG 38H ;RST 7 ENTRY POINT

The circuit in Figure 13-7 is very similar to the one in Figure 13-6 but it has a
set of eight gates between the Vi# lines and the inputs to the 74LS148. One input

Chapter 13: INTERRUPTS 2 2 7

to each gate is connected to a Vi* line and the other input is connected to a bit
from a latched parallel output port.

The purpose of this circuit is to allow each interrupt to be ““masked.” This
means that the interrupt will be ignored by the circuitry. When the bit from the
parallel port is high, the interrupt input will be masked, and when the bit is low the
interrupt will be gated through to the 74LS148.

One of the simple latched parallel output ports from Chapter 8 can be used for
the mask bits.

The 8255 PPI Interrupts

The Intel 8255 Programmable Parallel Interface (PPI) is a versatile LS| parallel
I/0O device with three operating modes. While mode O provides basic I/0O, modes 1
and 2 provide strobed I/O. Figure 13-8 shows the 8255 being used to handle two
interrupt driven devices. Each parallel port (A and B} generates its own interrupt
strobe which would go to the interrupt inputs of a circuit such as those shown in
Figures 13-6, 13-7, and 13-9.

$-100 Bus Q $-100 Bus

47 0 1 vI7
10} .
o &Pl——a o f—4 (B 3
93 10
- VIGe
ol <P — o B <3
g
92 — —
P L— = o B <V
91 8 14
I BN i i—C B—<es <9
74158373 7418148

7
a2 Latch — Encoder — VI3
oi3 o @ —Q:(WG
6
41 5 Vi2e
Bit 2
5

l

94 —
—o Viie
4
95 = VIO«
00 {2 o L s - <0 I
OF G GS Ei Bit 0
74LS32
73 l Bits from simple
INT» G | latched output port
8 7406 74LS04 - as shown in Figure 8-1
pDBIN
SINTA 96 74L800

FIGURE 13-7. Simple Priority Interrupt Controller with Full Masking

2 28 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Encoded
A7 jg———————] B7 Keyboard
A6 jg———————1 B6
AL S — -1
Adjet—— 184

Input A3 B3 Data
A2 j 44— B2
Al pep—————————q B1

interrupt < c
Request 3 (INTR) A0 s BO

(STB) C4 Jag———————————] Keypressed
(BF} C5 p——————-—8»{ Acknowledge

8255

B7 p——rr——e =i B7

B6 »{ 56 Burroughs

B5 85 Se!f-Scan

—) > Display
Output J g4 b——————pmi B4
Interrupt 83 p———————p»] B3
Request . CO NTR) B2 b—-vov--—o—p»{ B2

B1} 81
(IBF) C1 p~—eoeoeo——_p»{ Data RDY
(s7B) C2 }e——o——— ACK

c6b———] Blank
Output% c7}—————————p| Cancel Word

Data

FIGURE 13-8. Using the 8255 PPI to Interface Two
Interrupt Driven Devices (Mode 1)

The 8259A Programmable Interrupt Controller and CPUs

The 8259A Programmable Interrupt Controller (PIC) is a very complex and
versatile IC and has inany features and operating modes. It would take up a whole
chapter just describing what this chip does. Instead of reprinting all the
information here, we suggest that you obtain it from the source — Intel. Intel has
published an excellent application note on the 8259A (see the references at the
end of this chapter).

A block diagram of the 8259A appears in Figure 13-9.

The 8259A PIC handles up to eight vectored priority interrupts and can be
cascaded for up to 64 vectored priority interrupts. It has several modes of opera-
tion.

Chapter 13: INTERRUPTS 2 2 9

INTA INT
Data Control Logic
D7-D0 -] Bus
Buffer
-
L
‘ 4
- " e
— [¢— RO
RD -
. Read/ P R
WR Write - tn < - Interrupt | IR2
Logic Service Priority Request [“#— IR3
—_—
Y Reg Resolver Reg lat— R4
(ISR RR) lg— g5
l [— IR6
cs la— R7
S § i }
Cascade
CAS 1 - - ¢ Buffer/ [Interrupt Mask Reg
omparator
CAS 2 ~a——f - (IMR)
Internai Bus
SPUEN
Pin Names
D7-DO Data Bus (Bidirectional)
Q Read Input
WR Write Input
AQ Command Select Address
Ccs Chip Select
CAS2-CASO Cascade Lines
SP/EN Slave Program:Enable Buffer
INT Interrupt Output
INTA Interrupt Acknowledge Input
IRO-IR7 Interrupt Request Inputs

FIGURE 13-9. Block Diagram of 8259A Programmable Interrupt
Controller (Courtesy of Intel Corp.)

The 8259A responds to an interrupt acknowledge cycle by placing the op-
code for a call instruction on the data lines. When the CPU decodes the call
op-code, it must fetch two more bytes to get the call address. The 8259A was
originally designed to work with an 8085 processor. The 8085 will issue two
more interrupt acknowledge cycles so that it may read the next two bytes.
However, the 8080 and the Z80 will not respond in this manner. Both read two
more bytes, but they will no longer provide any status information to signify that
an interrupt acknowledge cycle is still occurring. Instead, they will issue a memory
read status.

2 30 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

In terms relating to the S-100 Bus, if an 8085 is the CPU on the master and an
interrupt occurs, the master will assert sINTA and read the data from the Dl bus by
asserting pDBIN. Because the data is a CALL op-code, the master will leave sINTA
asserted and read the next byte by asserting pDBIN. The same procedure occurs
to read the last byte.

If an 8080 or Z80 is the CPU on the master and an interrupt occurs, the master
will assert sINTA and read the data by asserting pDBIN. So far the actions of the
8085 and 8080/Z80 masters have been the same. Because the data was a CALL
op-code, the master will try to fetch the next two bytes of data. However, the
8080/Z80 master will no longer assert sINTA, but will instead assert sSMEMR and
read the data by asserting pDBIN, just as if it were fetching the next two bytes
from memory. The interrupt controller slave card will no longer drive the data bus
during pDBIN because the interrupt acknowledge status is no longer present
(causing the slave to deselect). Some memory cards (depending on the random
address on the address bus) will select and drive the data bus instead. The result is
chaos, most likely causing the system to crash.

Something has to be done to trick the interrupt controller slave to remain
selected for the entire three-byte fetch, and at the same time insure that all the
system memory is deselected.

Interfacing to the 8259A

An 8259A priority interrupt circuit for the S-100 Bus is shown in Figure
13-10. To understand how the circuit works, realize that the next cycle that will
be executed after the three bytes of the CALL instruction have been fetched is a
memory write cycle. This occurs because the CPU is pushing the return address
onto the stack, which is a memory write operation. A memory write operation is
signified on the bus by sWO# being asserted. (sSWO# is also asserted for an out-
put, but we can assume in this case that an output cycle will not occur
immediately following an interrupt acknowledge cycle.)

Here's how the circuit works: pSTVAL# is inverted and applied to one input of
AND gate C. The other input is pSYNC. When pSYNC is high and pSTVAL#* is
low, the output of the AND gate will go high. This output is a pulse that indicates
that the address and status buses are now valid. This signal is applied to one input
of NAND GATES A and B.

sINTA is applied to the other input of NAND gate A so that the output of gate A
will go low for the duration of the pulse from C, when sINTA is high. This will
occur during the first interrupt acknowledge cycle which will set the flip-flop. The
Q output will go high and is inverted by the 7406 which drives the PHANTOM+
line low, disabling system memory. The Q output is applied to one input of gate D.
When pDBIN is asserted the other input of gate D will go low, causing the output
to go low. This becomes the INTA#* signal to the 8259A. Since the output of the

Chapter 13: INTERRUPTS 2 3 1

+5 Vector
Interrupt
28 Bus
Vee
087 1 PSS R7128 11 v
(VaVaVaVy 04““ <J
DB6 5 re 122 10
Data Bus 06 6 —-°<I—<) vie
Buffer D85 8] os RS Loq——ngs
$-100 0B4 1 os e l22 J 8 via
Data 0B3 8 21 7
Buses 03 R3 —od——-tha
D82 9 6
D2 IR2 L——OQ———GVIZ
5
el 1of Y AP q -l
a
vV 280 Yoo o8 o< vio
8259A
—r P1c 741504
From below
RDx 5 +5V
PORTRD® e RD
PORTWRe - Rrvey
26 10kQ
INTAs - INTA
cse » s ey A
N 27 1 73
A0) AQ INT —I7 >o—_c> INT#
GND 7406
14]
67
1° Q PHANTOM=
= 741574
99
PoCs O>— Dok —— & INTA-

74L832

® ¥ PORTRD+

Address
Decoder

-8 PORTWR*

RD«

BOSEL#

74L832

» 4 — CSe

74L832

- AQ

FIGURE 13-10. Priority Interrupt System Using the 8259A

2 3 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

flip-flop is latched, the next two pDBIN pulses will also cause INTA#* to go low,
causing the next two bytes to be issued from the 8259A. PHANTOM=# will also
remain asserted so that the system memory will not respond. The INTA* signal is
also applied to gate E so that the board’s data bus drivers will be turned on in the
proper direction.

The flip-flop will be cleared when sWO#* is asserted and there is a “‘status
valid’’ pulse at the input to gate B, causing B’s output to go low which resets the
flip-flop. This will inhibit further pDBIN signals from asserting the INTA# line, and
release the PHANTOM # line as well, allowing system memory to be active again.

A counter could have been used to count three pDBINs after sINTA# is first
asserted, but the 8259A has a mode that allows it to work with the 8086/8088
series of processors. These processors issue only two INTA# pulses, and this cir-
cuit allows the 8259A to work with any number of pulses. The 8088/86 pro-
cessor is currently the most popular 16-bit processor on the S-100 Bus, but this
circuit should also be compatible with the Z80O0O interrupt structure.

;ROUTINES FOR THE 8259A

;FIRST ROUTINE IS TO INITIALIZE THE 8259A

;SETS INTERRUPT VECTOR TABLE TO 200H

;ROUTINES AT 200H VECTOR TO A SERVICE ROUTINE (SERV)
;IN THIS EXAMPLE, ALL THE SERVICE ROUTINES ARE THE SAME
; IN THE REAL WORLD, YOU'D WANT THEM ALL DIFFERENT

;ALL I/0 PORTS ARE RELATIVE TO "BASE"

0010 = BASE EQU 10H

0010 = PORTO EQU BASE

0011 = PORT1 EQU BASE+1

0300 = SERV EQU 300H ;DUMMY SERVICE ROUTINE

0100 ORG 100H

0100 3E1F INIT MVI A,00011111B ;SET FOR AS5-7 OF SERVICE ROUTINE=0
;LEVEL TRIGGERED, ROUTINE INTERVAL=4
;SINGLE 8259, AND ICW4 NEEDED

0102 D310 ouT PORTO ;SEND IT (THIS IS ICWI1)

0104 3EQ2 MVI A,02H ;UPPER BYTE OF SERVICE ROUTINE TABLE

0106 D311 ouT PORT1 ;SEND IT (ICW2)

0108 3E00 MVI A,00H ;8259 HAS NO SLAVES

010A D311 ouT PORT1 ;SEND IT (ICW3)

010C 3E02 MVI A,00000010B ;SET NOT FULLY NESTED, NON-BUFFERED MODE
;USE AUTO END OF INTERRUPT AND NOT 8086

010E D31l ouT PORT1 ;SEND IT (ICW4)

0110 3EOQOC MVI A,00H ;ENABLE ALL INTERRUPTS (ALL MASK BITS=0

0112 D311 ouT PORT1 ;SEND IT (OCW1)

0114 3EAC MVI A,10100000B ;SET AUTO ROTATING PRIORITY MODE

0116 D310 ouT PORTO ;SEND IT (OCW2) NO OCW3 NEEDED

0118 FB EI ;ENABLE INTERRUPTS

;JMP TO MAIN SYSTEM TASK, NO MORE INITIALIZATION NEEDED
i

0200 ORG 200H ;SERVICE ROUTINE JUMP TABLE
; PUT JUMP EVERY FOUR BYTES

0200 C30003 ISRO JMP SERV

0203 00 NOP

0204 C30003 ISRl JMP SERV

0207 00 NOP

0208 C30003 ISR2 JMP SERV

020B 00 NOP

020C C30003 ISR3 JMP SERV

Chapter 13: INTERRUPTS 233

020F 00 NOP

0210 C30003 ISR4 JmP SERV

0213 00 NOP

0214 C30003 ISR5 JMP SERV

0217 00 NOP

0218 C30003 ISR6 JMP SERV

021B 00 NOP

021C C30003 ISR7 JMP SERV

021F 00 NOP

0300 ORG SERV ;LOCATION OF DUMMY SERVICE ROUTINE

; THESE ROUTINES SHOULD FIRST PUSH ALL THE REGISTERS
; THAT THE ROUTINE WILL USE, THEN SERVICE THE PERIPHERAL,
; POP ALL THE REGISTERS, THEN...

;
G300 FB EI ;REENABLE THE INTERRUPTS
0301 C9 RET ;AND RETURN TO THE MAIN SYSTEM TASK

8085 INTERRUPT SYSTEM

The 8085 has the same interrupt operation as the 8080. Further, it has four
interrupt request inputs in addition to the INTR input. These additional interrupt
inputs are labelled RST 5.5, RST 6.5, RST 7.5, and TRAP. The TRAP input has the
highest priority (for simultaneously occurring interrupts), RST 7.5 second highest
priority, and so on. INTR has the lowest priority. The INTR input functions in the
same manner as the INT input of the 8080. The RST inputs may be connected to
the Vllines. The TRAP input of the 8085 is typically connected to the NMI# line of
the S-100 Bus.

Each of the RST inputs, 5.5, 6.5, and 7.5, has a programmable bit mask which
allows each input to be selectively enabled or disabled using the SIM (Set Interrupt
Mask) instruction. It is also possible to read the state of the mask using the RIM
(Read Interrupt Mask) instruction. The TRAP input is nonmaskable, and can be
used for power failure or bus error detection.

The 8085 interrupt inputs cause a restart at the following addresses:

Priority Input Name Address called
Highest TRAP TRAP 24

RST 7.5 RST 7.5 3C

RST 6.5 RST 6.5 34

RST 5.5 RST 5.5 2C
Lowest INTR RST O - RST 7, same as 8080

The RST 5.5 and RST 6.5 inputs respond to high-level inputs. The RST 7.5
input responds to a positive-going edge which sets an internal interrupt request
flip-flop. The flip-flop is reset when the interrupt is serviced or by a SIM instruc-
tion or a RESET to the 8085. The TRAP input responds to a high-level input or a
positive-going edge. Since the S-100 interrupt lines are active low, these must be
inverted.

2 34 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

Z80 INTERRUPT SYSTEM

The Z80 has two interrupt request inputs, INT+ and NMl#. NMl* is a non-
maskable, negative-edge triggered interrupt input which has priority over both the
INT * interrupt and bus requests. Enabling NMI# causes a CALL to memory loca-
tion 0066,.. No RST vector is needed on the data bus. NMi* is typically
connected to the S-100 NMi# bus line.

INT * functions in the same manner as the INT # input on the 8080. This input is
connected to the INT # line of the S-100 Bus if there is no vectored interrupt cir-
cuit on the CPU board. Further, the interrupt response to INT # operates in one of
three possible modes: mode O, 1, or 2. The mode is established using the IM
instruction. When the processor is RESET the interrupts are set to operate in
mode 0. Mode O is the same as the 8080 interrupt operation.

When the Z80 is set for mode 1 operation, on receiving an interrupt it
immediately vectors to memory location 0066 . No external interrupt vector
need be provided. When in mode 2 operation, you must first create a table of 16-
bit interrupt address vectors, which can reside in any page of memory and then
initialize the | register. On receiving an interrupt via INT #, the CPU reads the data
bus (with memory off), as does the 8080, for the interrupt acknowledge vector.
The Z80 then combines the 8-bit data word with the contents of the 8-bit |
register to form the 16-bit address of the interrupt response vector. The CPU
then reads the data at the vector address and vector address + 1 to obtain the
effective memory location to vector to.

The interrupt address table in memory can therefore consist of up to 128 two-
byte address vectors. The interrupt response vector read from the data bus must
be even, with data bit O set to O, since two data bytes are accessed at one time.
For example, if the | register contains FF, and in response to an interrupt the CPU
reads a OO16 from the data bus, the CPU reads the 2-byte data at locations
FFOO, and FFO1 as the actual interrupt vector address for the ISR.

Again a word of caution is in order. When considering a system with a large
number of interrupts it will probably prove wise to break the system up into
smaller ones, each having its own processor, or to use a polling technique. These
alternatives are far easier to program and debug. Further, the software house-
keeping of a multiple-interrupt system may negate the usual time savings of an
interrupt system over a polled system.

POLLED INTERRUPTS

In some systems it is desirable to use interrupts in a ‘polled mode.” A polled
interrupt system usually causes only one ‘‘master’ interrupt. The software then
“polls” the interrupt controller or individual interrupt sources to identify the
source of the interrupt.

Chapter 13: INTERRUPTS 2 35

The 8259A can be used in the polled mode by setting a bit in one of its mode
registers. This causes the 8259A to ignore INTA # pulses, and it also generates no
CALL instructions. Instead, it waits for the next read from the device and creates a
special byte that contains a code that corresponds to the highest priority inter-
rupting device. The service routine then uses this code to determine what service
routine to branch to.

Since no CALL instructions are issued by the 8259A, the S-100 interface cir-
cuitry is a lot simpler. Figure 13-11 shows a circuit that can replace the S-100
interface portion of the schematic in Figure 13-10 that allows the 8259A to be
used in the polled mode. Like the simple interrupt system presented in Figure 13-
3, this circuit assumes the Data Input bus will float high during the interrupt
acknowledge cycle and the CPU will interpret this as an RST 7. (This is not recom-
mended for unterminated motherboards.) The circuit in Figure 13-5 could be
added if something other than an RST 7 is desired.

+5
L INTA®

78
pDBIN [Dc —8» PORTRD*
77

pwrs > # PORTWR«

Address
741832
A7 "NV Decoder ¢ — CS»
@ BDSEL*

Al NI 741832

79
o >
46
e > l_Do_l
45
souT >

- AOQ

FIGURE 13-11. Alternative S-100 Interface for 8259A
Using Polled Mode {See Figure 13-10)

236

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

The following program can be used with the circuit for an eight-level polled
interrupt system. The program assumes that an RST 7 will be generated. The pro-
gram consists of two parts: one is the routine to initialize the 8259A, which is
executed only once, and the other is the routine that reads the byte from the
8259A and then calculates a jump vector from it.

0010
0010
0011
0300
0200

0000
0000
0038

0038
0039
003A
003B
003D
003F
0041
0042
0045

0046
0049
004A
004cC
004D
0050
U051
0052
0053
0054
00

0056

0l00

0100

0102
0104
0106
0108
010A
010C

W nou

"

C30001

F5

D5

ES
3E0C
D310
DB10O
07
D25200
07

210002

115200
D5
E9
El
D1
Fl
FB
Cc9

3E1F

D310
3E02
D311
3E00
D311
3E02

;ROUTINES FCR THE 8259A WHEN USED IN THE POLLED MODE

; FIRST ROUTINE IS TO INITIALIZE THE 8259A
;SETS INTERRUPT VECTOR TABLE TO 200H,
;ASSUMES AN RST 7 INTERRUPT ROUTINE AT 38H

;THE

"VECTOR GENERATION"

BUT THAT IS A

"DUMMY"

VALUE

ROUTINE READS THE PRIORITY STATUS BYTE

;FROM THE 8259A AND USES THAT TO GENERATE A VECTOR TO A TABLE
;OF JUMPS TO THE ACTUAL SERVICE ROUTINES
;TO CHANGE THE ADDRESS OF THE TABLE,
;JUMPS IN THE TABLE ARE SPACED 4 BYTES APART

;ALL I/0 PORTS ARE RELATIVE TO "BASE"

BASE
PORTO
PORT1
SERV
TABLE

START

i
VCTRGN
PUSH
PUSH
MVI
ouT

IN

RLC
JNC
RLC

EXIT

INIT

EQU 10H
EQU BASE
EQU BASE+l
EQU 300H
EQU 200H
ORG OH

JMP 100H
ORG 38H
PUSH PSW

D

H
A,00001100B
PORTO

PORTO

EXIT

LXI H,TABLE
MOV E,A
MVI D,0
DAD D

LXI D,EXIT
PUSH D

PCHL

POP H

POP D

POP PSW

EI

RET

ORG 100H
MVI A,00011111B
OUT PORTO
MVI A,02H
OUT PORT1
MVI A,00H
OUT PORT1
MVI ~ A,00000010B

CHANGE

"TABLE"

;DUMMY SERVICE ROUTINE

;JUMP TO INIT ROUTINE

;RST 7 ADDRESS

; POLL COMMAND TO 8259A

;SEND IT

(OCW3)

;READ THE PRIORITY STATUS
;SHIFT BIT 7 INTO CARRY

;NO INTERRUPT,

LEAVE

; THERE WAS AN INTERRUPT
;SO WE SHIFT A AGAIN TO OFFSET THE BITS

;S0 WE CAN USE IT FOR THE LOW

IN EQUAT

BYTE

;OF THE TABLE BY PUTTING IT IN E
;ZERO HIGH BYTE FOR ADD

;ADD DE TO HL,

; SNEAKY WAY TO DO AN
; INDIRECT CALL

; TO ADDRESS

IN HL

;WITH A RETURN TO HERE
; POP THE REGISTERS
; FOR THE RETURN

;ENABLE THE
;AND RETURN

;INITIALIZE

INTERRUPTS

THE 8259A

RESULT IN HL

;SET FOR A5-7 OF SERVICE ROUTINE=0
;LEVEL TRIGGERED, ROUTINE INTERVAL=4
;SINGLE 8259, AND ICW4 NEEDED
;SEND IT (THIS IS ICW1}
;UPPER BYTE OF SERVICE ROUTINE TABLE
;SEND IT (ICW2)

;8259 HAS NO SLAVES
;SEND IT (ICW3)

;SET NOT FULLY NESTED,
; NON-BUFFERED MODE
;USE AUTO END OF INTERRUPT

ES

Chapter 13: INTERRUPTS 2 3 7

; AND NOT 8086

010E D311 ouT PORT1 ;SEND IT (ICW4)
0110 3E00 MVI A,00H ;ENABLE ALL INTERRUPTS

; (ALL MASK BITS=0)
0112 D311 ouT PORT1 ;SEND IT (OCW1)
0114 3EAO0 MVI A,10100000B ;SET AUTO ROTATING PRIORITY MODE
0116 D310 ouT PORTO ;SEND IT (OCW2) NO OCW3 NEEDED
0118 FB EI ;ENABLE INTERRUPTS

;JMP TO MAIN SYSTEM TASK, NO MORE INITIALIZATION NEEDED
H
0200 ORG TABLE ;SERVICE ROUTINE JUMP TABLE
H ;PUT JUMP EVERY FOUR BYTES
0200 C30003 ISRO JMP SERV

0203 00 NOP

0204 C30003 ISRl JMp SERV
0207 00 NOP

0208 C30003 ISR2 JIMP SERV
020B 00 NOP

020C C30003 ISR3 JMP SERV
020F 00 NOP

0210 C30003 ISR4 JMP SERV
0213 00 NOP

0214 C30003 ISRS JMP SERV
6217 00 NOP

0218 C30003 ISR6 JMP SERV
021B 00 NOP

021C C30003 ISR7 JMP SERV
021F 00 NOP

0300 ORG SERV ;LOCATION OF DUMMY SERVICE ROUTINE

;THESE ROUTINES SHOULD FIRST PUSH ALL THE REGISTERS
; THAT THE ROUTINE WILL USE, THEN SERVICE THE PERIPHERAL
; POP ALL THE REGISTERS, THEN...

7

0300 C9 RET i».. RETURN TO THE VECTOR GENERATOR ROUTINE

MAKING USE OF INTERRUPTS

Interrupts are a useful addition to any system where high throughput is essen-
tial, or where you wish to have some background task occurring concurrent with
the main task you are performing.

Higher throughput is achieved with interrupts because the CPU can be doing
something other than sitting in a loop waiting for a key to be pressed or a
character to be typed. If the peripheral or slave device is intelligent, meaning that it
can do some processing of its own, it can perform a task while the CPU is doing
something else. This is known as “’parallel processing.”” The interrupt in this case
would occur when the peripheral had completed its task.

In a multi-user system {where high throughput is essential), interrupts are
almost always a necessity. The CPU will usually get a recurring interrupt every
millisecond or so to tell it to quit working for this user and work for the next user
untit the next interrupt occurs, and so on. Thus every user gets an equal share of
the processor’s time. This type of interrupt is called an “interval clock interrupt.”

Another common use of the interval clock is to keep track of the “‘real time’’
(hours, minutes, date, etc.). f one knows the interval between interrupts, then

2 38 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

seconds, minutes, hours, etc. can be computed. The interval clock is used so often
to keep track of real time that many people call it a “‘real time clock.” In the strict-
est sense, this is a misnomer because it is the computer that computes real time,
not the clock itself. An actual “‘real time clock,’’ therefore, is a circuit that acts like
a wristwatch or wall clock because it keeps track of the real time (and usually the
date) all by itself. The computer can then read the date on command without the
need to do any computing.

For more information on interval clocks and a real time clock routine, see
Chapter 14, which discusses programmable timer/counters.

POWER FAILURE INTERRUPT

A power failure can have disastrous results in some systems. In such a case it is
wise to consider a power failure interrupt. The power failure interrupt is usually
activated at least 50 ms before the local voltage regulators drift out of specifica-
tion. This is usually enough time to execute a hundred or more instructions.

Typically, on sensing power failure the interrupt service routine saves all
registers, the stack, and possibly data buffers on disk. On restoration of power,
the system is initialized, all data is loaded from the disk back into registers, stack,
and buffers, and the CPU returns to the execution of the program.

The PWRFAIL# bus line (pin 13) is held low until the power-on clear signal is
activated. This means that either a normally closed relay or a battery powered cir-
cuit drives the PWRFAIL# line. The circuit driving this line must meet the electrical
specifications for an open collector circuit given in the IEEE specifications.

REFERENCES
Jigour, Robin. Using the 8259A Programmable Interrupt Controller, AP-59,
intel Corporation.

Leventhal, Lance. 8080A/8085 Assembly Language Programming, Berkeley:
Osborne/McGraw-Hill, 1978.

Leventhal, Lance. Z80 Assembly Language Programming, Berkeley:
Osborne/McGraw-Hill, 1979.

Osborne, Adam. An Introduction to Microcomputers, Volumes 1, 2 and 3,
Berkeley: Osborne/McGraw-Hill, 1976, 1979.

programmaiple
fimer,/counters

In previous chapters we saw numerous examples in which precise time inter-
vals or frequencies were developed by the processor as part of processing opera-
tions. These invariably required the use of delay loops and counting registers.
These routines often caused the CPU to spend most of its time in a counting loop.
This reduced the CPU’s useful processing time to a small percentage of its total
time. This is a distinct disadvantage. Further, these delay time routines add to the
software size and complexity and are dependent on the speed of the CPU.

It is therefore advantageous, particularly when it is necessary to increase
system data throughput, to relegate this timing/counting function to hardware.
Fortunately, several manufacturers produce timer/counter ICs specifically
designed for use with microprocessors.

The timer/counter circuit, when programmed to operate as a timer, is triggered
by either an internal or external clock signal. Also, most of the timer/counter ICs
allow the timer/counter circuits to be triggered by an external signal, and hence
can be used as event counters. These circuits may also be used as interval timers,
precisely measuring the time between events. These devices are directly
addressable as ports or memory locations and usually contain more than one
timer/counter, allowing simultaneous or overlapping delays to be generated.

We will look at some of these ICs and some timer/counter applications in this
chapter.

239

2 4 0 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

PROGRAMMABLE COUNTER/INTERVAL TIMERS

The Intel 8253 IC is an example of a powerful and flexible programmable
counter/interval timer device. Other ICs in this class are the Motorola MC6840
and Zilog CTC.

The 8253 contains three independent 16-bit counter/interval timers, as shown
in Figure 14-1. Each counter operates as a presettable down-counter capable of
either straight binary or binary-coded-decimal (BCD) counting. It can be operated
in six different modes, as follows:

Mode Function

Output = 1 on terminal count
Programmable one-shot

Rate generator; divide-by-N
Square wave generator
Software triggered strobe
Hardware triggered strobe

OapWN-=0

The counters are independent, so any combination of modes may be used.
Additionally, the current value of each counter may be read by the CPU.

Each counter has clock, gate, and output lines. Although their functions vary
with the operating mode, they generally operate as follows:

CLK Supplies the events to be counted or serves as a reference timing sig-
nal. The counter decrements on the falling edge of the CLK input (3
MHz maximum).

GATE Either inhibits or enables counting.
OUT Indicates the terminal count or supplies the divided CLK output.

Each counter is controlled by writing a control word to the control register and
then loading the counter with the desired count value. The format of the control
word is shown in Figure 14-2. Bits 6 and 7 specify which counter is being con-
figured. Bits 4 and 5 specify which counter byte is being addressed. Bits 1, 2, and
3 select the operating mode. Bit O selects either binary or BCD counting.

A typical S-100 to 8253 interface circuit is shown in Figure 14-3. The 8253 is
selected as four consecutive I/O ports, as follows:

OUT 10 = load counter O
OUT 11 = load counter 1

OUT 12 = load counter 2
OUT 13 = load control word
IN 10 = read counter O
IN 11 = read counter 1
IN 12 = read counter 2

Chapter 14: PROGRAMMABLE TIMER/ICOUNTERS 24 7

jeg-———— CLK O

Data

8
D7-DO~at—p—t] Bus —f— °°“(;“°' ——— GATE 0

Buffer

b OUT O

T I

RD) bs——— CLK 1
WR >—.
Read/
: Counter
5 >——» Write |/ ol et———— GATE 1
Logic 1
A1l >——-—
AQ Yt b———— OUT 1

3

fg——— CLK 2

Control
Word "+);+. Counter | g GATE2

Register 2

————y- OUT 2

FIGURE 14-1. Block Diagram of 8253 Programmable Interval Timer

Mode O operation. This mode can be used to provide programmed time inter-
vals. This is accomplished by connecting a timer output to an interrupt request
input. The CLK may be connected to the S-100 CLOCK signal. Control bits 4 and
5 are then used to load the counter register as follows:

B5 B4 Function

0] 1 Load low byte
1 0 Load high byte
1 1 Load low byte first, then load high byte

24 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

|B7] B6 le BdJBSJ BZJ B1IBOI

N

= Binary Count

1 = BCD Count
000 = Mode O
001 = Mode 1

X10 = Mode 2
X11 = Mode 3
100 = Mode 4
101 = Mode 5

00 = Latch Counter Value*

01 = Select Low Byte

10 = Select High Byte

11 = Select Register Twice; Low Byte,

then High Byte

00 = Select Counter O
01 = Select Counter 1
Select Counter 2
Do not use

"Refer to "'Reading a Counter Value” 11

FIGURE 14-2. 8253 Control Word Format

The following routine causes counter O to count 128 binary states before the
OUT terminal goes high.

;ROUTINE TO INITIALIZE COUNTER AND HAVE IT COUNT TO 128

; IN BINARY FORMAT, TIMER MODE = O

;COUNT = COUNTDOWN VALUE; LXI H,COUNT PUTS 16 BIT # IN HL
;LETS ASSEMBLER DO DECIMAL TO BINARY CONVERSION

; TIMER USES FOUR PORTS, BASE=FIRST PORT

;TO USE WITH OTHER PORT ADDRESSES, CHANGE BASE

‘

0010 = BASE EQU 10H ;BEGINNING PORT ADDRESS
0010 = CNTRO EQU BASE ;COUNTER 0 REGISTER
0011 = CNTR1 EQU BASE+1 ;COUNTER 1 REGISTER
0012 = CNTR2 EQU BASE+2 ;COUNTER 2 REGISTER
0013 = CONTROL EQU BASE+3 ;CONTROL WORD REGISTER
0080 = COUNT EQU 128 ;GETS COUNTDOWN AMOUNT

0000 3E30 START MVI A,00110000B ;SELECT COUNTER 0, TWO BYTE LOAD
;MODE O AND BINARY FORMAT

0002 D313 OUT CONTROL ;OUTPUT TO THE CONTROL PORT

0004 218000 LXI H,COUNT ;PUT COUNT VALUE IN HL

0007 7D MOV A,L ;PUT LOW BYTE IN A

0008 D310 OUT CNTRO ;SEND IT TO COUNTER

000A 7C MOV A,H ;PUT HIGH BYTE IN A

000B D310 OUT CNTRO ;SEND IT AND START COUNTING
; DONE

The following routine causes counter 1 to count 308 BCD states before the
OUT terminal goes high.

Chapter 14: PROGRAMMABLE TIMER/COUNTERS 2 4 3

+5V
o]
+5V
S &
> <
T24 :’ :: 47k
DB7 1 11
AN Data Bus D7 GATE 0 = O GATE O
Buffer DB6 2 14
D6 GATE 1 —O GATE 1
[s1:1} 1
3 D5 GATE 2 L O GATE 2
DB4 4
S-100 : DB3 b4
Data Buses . 5103 out o K2 M
DB2
8 D2
D81 -1
7 o1 ouT 1 13 D D FcAnvS 00
nterrupt Request Line
FaVaVaVaVaVy 0BO 8
Do
17
ouT 2
O RD= 8253 7406
Counter/
80 20 Timet
o > INEE —o0 ouTo
79 19
0 > A0 ouT 1
77 23| ——
pWRe > WR ———0 0uT 2
78 22 | = 9 CLK O
soBiN [RG CiK 0
15 CLK1
CiK 1
21 18 CLK 2
cs CLK 2
12
49
cLock > {>(>
74LS04 .
Address =
ANNNNS
A7 Decoder
. BDSEL*
.
.
A2 741832

SINP

sOUT

741502

FIGURE 14-3. 8253 Timer/Counter to S-100 Interface
With Interrupt Capability

When the terminal count (0000,) is reached, the OUT line goes high and

remains high until the counter is reloaded. Reloading a counter during a count
causes the counter to start decrementing from the new value loaded into the
counter. The GATE input can be used to enable (H) and disable (L) the counting.

;ROUTINE TO INITIALIZE COUNTER AND HAVE IT COUNT TO 308
; IN BCD FORMAT, TIMER MODE=0
; COUNT=COUNTDOWN VALUE, DIVIDED INTOC TWO BCD NUMBERS
;WHICH ARE HICNT AND LOCNT AND
;LETS ASSEMBLER DO ALL THE WORK
; TIMER USES FOUR PORTS, BASE=FIRST PORT
;TO USE WITH OTHER PORT ADDRESSES, CHANGE BASE
0010 = BASE EQU

10H ;BEGINNING PORT ADDRESS

244 INTERFACING TO S-100IEEE 696 MICROCOMPUTERS

0010 = CNTRO EQU BASE ;COUNTER 0 REGISTER
0011 = CNTR1 EQU BASE+l ;COUNTER 1 REGISTER
0012 = CNTR2 EQU BASE+2 ;COUNTER 2 REGISTER
0013 = CONTROL EQU BASE+3 ;CONTROL WORD REGISTER
0134 = COUNT EQU 308 ;GETS COUNTDOWN AMOUNT
0003 = HICNT EQU COUNT/100

0008 =

LOCNT EQU COUNT-HICNT*100

i
0000 3E71 START MVI A,01110001B ;SELECT COUNTER 1, TWO BYTE LOAD
;MODE 0 AND BCD FORMAT

0002 D313 OUT CONTROL ;OUTPUT TO THE CONTROL PORT

0004 3E08 MVI A,LOCNT ;PUT LOW BYTE IN A

0006 D311 OUT CNTR1 ;SEND IT TO COUNTER 1

0008 3E03 MVI A,HICNT ;PUT HIGH BYTE IN A

000A D311 OUT CNTR1 ;SEND IT AND START COUNTING
; DONE

Mode 1 operation. This provides a programmable one-shot, as shown in Figure
14-4. The OUT line goes low on the count following the rising edge of the GATE
input. The OUT line returns high on terminal count. If a new count value is loaded
into the counter before the terminal count is reached, the duration will not be
affected until the next gate trigger (Figure 14-4b). The one-shot can be retrig-
gered to extend the output pulse width (Figure 14-4c).

Mode 2 operation. This provides a programmable rate generator. The OUT line
goes low for one clock period, as shown in Figure 14-5. It returns high until the
counter reaches 00001 - The counter automatically reloads and repeats the
operation. If the counter is reloaded between output pulses the present period is
not affected, but subsequent periods reflect the new value. When GATE is low
the counter is disabled and OUT will be high. The counter is reset to the initial
value so that when GATE goes high the counter restarts. Thus the GATE input
can be used to synchronize the counter.

Mode 3 operation. This provides a square wave rate generator. Operation is the
same as Mode 2 except that the OUT line will be high for one of half the count
and low for the other half. If the count value is not an even number then QUT will
be high for an extra count.

Mode 4 operation. This provides a software triggered strobe. OUT will normally
be high. When the terminal count is reached, OUT will go low for one clock period
and then return high. Reloading the count between OUT pulses causes the subse-
quent period to reflect the new value. When GATE is low counting is inhibited.

Mode 5 operation. This provides a hardware triggered strobe. OUT will nor-
mally be high. The counter starts counting on the rising edge of the GATE input
and OUT will go low for one clock period when the terminal count is reached. The
counter is retriggerable.

Reading a counter value. The 16-bit count value of any counter may be read at
any time. If reading while the counter is counting, a write command must be
executed first to latch the count into a storage register from which the value can
then be read. This allows reading the count value “‘on the fly.”

Chapter 14: PROGRAMMABLE TIMER/COUNTERS 2 4 5

8 7 6 5 a 3 2 1 0
ClK
A
GALE
Gate Trigger Termunal
Count (Value = 8)
a 3 2 1 0 3 2 1 0
CLK
GATF
ouT
Gate Trgger \ Load New " Terminal Count Gate Tngger Termnal Count
Count (Value = 3 (01d Value = 4) (New Valse}
3 2 1 0 3 2 1 0 0(3) 2 1 0
c
Gate Trigger Terminal Gate Trigger \Ga(e Retrigger Terminal Count
Count {Retriggered
Value = 3 Valuel

FIGURE 14-4. 8253 Mode 1 Operation: (A) Normal One-Shot Operation,
(B) New Count Value Loaded During Count,
{C) Retrigger Operation

4 3 2 t 04} 3 2 1 0ta) 3 2 1 0{4) 3
CLK
A ouT
\ Load Value = 3+
4 3 2 1 0(a) 3 2 1 0(3) 2 1 0(3) 2 1
B CLK
ouT \
Load Value = 4 \ Load New
Value = 3
3 2 1 0{3) 2 3 2 1 0(3) 2 1 0(3)
CLK
GATE

ouT \ \
Load Value = 3 Reset Counter

FIGURE 14-5. 8253 Mode 2 Operation: (A) Normal Rate Generation,
(B) New Count Value Loaded During Count,
(C) Reset Operation

2 4 6 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

To read a count value that is not changing it is necessary to read the counter
only twice. For example, the following routine reads the value of counter O and
saves it in the BC register pair.

0010
0010

0100

0100
0102
0103
0105

non

;ROUTINE FOR READING 8253 COUNTER-0 AND SAVING
;IT IN BC REGISTERS

i

i
BASE
CNTRO

H

DB10

DB10
47

EQU
EQU

ORG

IN
MOV
IN
MOV

10H ;BEGINNING PORT ADDRESS
BASE ;COUNTER 0 REGISTER

100H

CNTRO ;READ COUNTER 0 LOW BYTE
C,A ;SAVE IT

CNTRO ;READ COUNTER 0 HIGH BYTE
B,A ;SAVE IT

To read a counter “‘on the fly,”” write a control word with bits 4 and 5 = O (refer
to Figure 14-3) while bits 6 and 7 specify the counter to be latched. Bits 0-3 are
not used. In the following example counter 1 is read ““on the fly"’ and its value
saved in the BC register pair.

0010
0011
0013

olo0

0100
0102
0104
0106
0107
0109

nmoawon

3E40
D313
DB11
4aF
DBl1
47

;ROUTINE FOR READING 8253 COUNTER 1 ON-THE-FLY
;AND SAVING IT IN BC REGISTERS

i

BASE
CNTR1
CNTRL

i

i

EQU 10H i STARTING PORT ADDRESS

EQU BASE+1 ;COUNTER 1 REGISTER PORT

EQU BASE+3 ; CONTROL REGISTER PORT

ORG 100H

MVI A,40H ;SET CODE TO LATCH COUNTER 1
OUT CNTRL

IN CNTR1 ;READ COUNTER 1 LOW BYTE
Mov C,A ;SAVE IT

IN CNTR1 ;READ COUNTER 1 HIGH BYTE
MOV B,A ;SAVE IT

APPLICATIONS OF PROGRAMMABLE TIMER/COUNTERS

Programmable timer/counter ICs lend themselves to a wide variety of applica-
tions: event counters, baud rate generators, frequency generators, rate multi-
pliers, real time clocks, complex motor controllers, etc. The following are three
typical examples, utilizing the 8253 IC.

Chapter 14: PROGRAMMABLE TIMER/ICOUNTERS 24 7

Measuring Speed

A timer, in conjunction with a CPU, can be used to measure time intervals with
great accuracy. In this example we will measure a camera’s shutter “’speed’’ from
1/1000 of second to 10 seconds. The circuitry is quite simple and is shown in
Figure 14-6. A phototransistor is used to sense light passing through the open
camera shutter. A 7414 Schmitt Trigger Inverter is used to minimize noise inter-
ference. The S-100 crystal-controlled clock signal is used as the reference.

Counter O divides the 2 MHz clock signal by 2000 to produce 1 kHz clock
inputs for counters 1 and 2. Counters 1 and 2 decrement from their programmed
count values. Counter 1 will stop counting when the shutter closes, and hence
measures the time period of the open shutter {shutter ‘“‘speed’’). Since the counter
counts down in binary it holds a value that is the difference between the initial
programmed value (2710, . = 10,000,). Counter 2 will continue to count to its
terminal value and then produce an interrupt. This occurs when 10 seconds have
elapsed.

The interrupt routine reads the binary count value of counter 1 and subtracts it
from 2710, {10,000 decimal) to produce the true time value. Since counter 1 is
clocked by the 1 kHz clock it provides shutter ““speed’’ measurement in thou-
sandths of seconds, up to a maximum of 10 seconds.

Any $-100
Interrupt Request Line

8263 Counters
P g ————
ouT 2
+5V Counter 2 Counts 10
GATE 2 Mode 1 unts 10 s
Camera Count = 271 H then Interrupts
4 CLK 2
+V 2.2k —_
% 7414
N GATE Counter 1
Mode 0 Measures Time
Light CLK 1 Count = 271 H
Source 2ek 4 | T T
Photo Transistor Vv 1T

outo
1kHz Counter O 5
GATEO | Mode 2 vide Clock

. Count = C8 H by 200
- — S-100 49
CLOCK
{2 MHz)

FIGURE 14-6. Using Programmable Counter/Timer to Measure
a Camera’s Shutter Speed

248 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

The measurement process begins by calling the initialization routine, which
programs the timer/counters and returns to the main program. The opening of the
shutter starts the measuring process, which is completed when timer 2 times out,
generating the interrupt. The interrupt service routine reads the time value from
counter 1 and does the necessary subtraction, storing the data in a pair of
memory locations before returning to the main program.

7 CAMERA SHUTTER SPEED MEASUREMENT PROGRAM
;USING 8253 COUNTER/TIMER

H

BASE EQU 10H ;BEGINNING PORT ADDRESS

0010 =
0010 = CNTRO EQU BASE ;COUNTER 0 REGISTER
0011 = CNTR1 EQU BASE+l ;COUNTER 1 REGISTER
0012 = CNTR2 EQU BASE+2 ;COUNTER 2 REGISTER
0013 = CNTRL EQU BASE+3 ; CONTROL PORT
1000 = TABLE EQU 1000H ; TABLE POINTER

i

;

i
0100 ORG 100H
0100 3E35 INITL MVI A,35H ;CONTROL WORD FOR COUNTER O
0102 D313 OUT CNTRL
0104 3EC8 MVI A,0C8H ;SET COUNTER O
0106 D310 OUT CNTRO ; VALUE=2000 COUNTS
0108 3E07 MVI A,07H
010A D310 OUT CNTRO
0loc 3E70 MVI A,70H ;CONTROL WORD FOR COUNTER 1
010E D313 OUT CNTRL
0110 3E10 MVI A,10H ;SET COUNTER 1
0112 D311 OUT CNTR1 ; VALUE=10,000 COUNTS
0114 3E27 MVI A,27H
0116 D311 OUT CNTRI1
0118 3EB2 MVI A,0B2H ; CONTROL WORD FOR COUNTER 2
011A D313 OUT CNTRL
011C 3E10 MVI A,10H ;SET COUNTER 2
0llE D312 OQUT CNTR2 ; VALUE=10,000 COUNTS
0120 3E27 MVI A,27H
0122 D312 OUT CNTR2
0124 C9 RET

;

;

; INTERRUPT SERVICE ROUTINE

’
0125 E5 ISR PUSH H ;SAVE REGISTERS
0126 D5 PUSH D
0127 C5 PUSH B
0128 F5 PUSH PSW
0129 210010 LXI H,TABLE ;SET TABLE POINTER
012C 111027 LXI D,2710H ;SET MINUEND=10,000 DECIMAL
012F A7 ANA A ;CLEAR CARRY BIT
0130 DB1l1 IN CNTR1 ;READ & STORE TIME VALUE
0132 77 MOV M,A ;LSB
0133 23 INX H
0134 DB11 IN CNTR1 ;MSB
0136 77 MOV M,A
0137 79 Mov A,C ;FETCH MINUEND LOW-BYTE
0138 2B DCX H ;SUBTRACT TIME VALUE LOW-BYTE
0139 9E SBB M
013A 5F MOV E,A ;SAVE DIFFERENCE LOW-BYTE
013B 78 MOV A,B ;FETCH MINUEND HIGH-BYTE

; PAGE 2

013C 23 INX H ; SUBTRACT TIME VALUE HIGH-BYTE
013D 9E SBB M

013E 77 MOV M,A ;SAVE DIFFERENCE HIGH-BYTE

Chapter 14: PROGRAMMABLE TIMER/ICOUNTERS 2 4 9

013F 2B DCX H ; SAVE VALUES BACK IN TABLE
0140 73 MOV M,E

0141 CD0OO0O1 CALL INITL ;RESET COUNTERS

0144 F1l POP PSW ;RESTORE REGISTERS

0145 C1 POP B

0146 D1 POP D

0147 E1 POP H

0148 FB EI ;ENABLE INTERRUPTS

0149 C9 RET

Baud Rate Generation

A popular use of programmable counter/timers is for programmable baud rate
generation. As such, the timer provides the clock for a UART or USART. Obtain-
ing this clock is a simple matter in an S-100 system. A single timer driven from
the S-100 CLOCK signal can be programmed to provide the desired baud rate
clock. The timer’'s gate input must be high. The CLK input is connected to the
S-100 CLOCK line and the timer's OUT line is connected to the clock inputs of
the UART transmitter and receiver. The timer is set for mode 3 operation and a
binary count and then the counter divisor is loaded as follows:

; SOFTWARE ROUTINE FOR PROGRAMMABLE BAUD
;RATE GENERATION USING 8253 TIMER/COUNTER

i
BASE EQU 10H ; PORTS STARTING ADDRESS

0010 =

0010 = CNTRO EQU BASE ;COUNTER O REGISTER PORT
0013 = CNTRL EQU BASE+3 ;CONTROL REGISTER PORT

0000 = LSB EQU O ;DUMMY VALUES FOR

0000 = MSB EQU O ;i DIVISOR

0100 ORG 100H

0100 3E36 MVI A, 36H ;SET CONTROL CODE

0102 D313 OUT CNTRL ; FOR COUNTER 0

0104 3E00 MVI A,LSB ;SET LOW-BYTE DIVISOR VALUE
0106 D310 OUT CNTRO

0108 3E00 MVI A,MSB ;SET HIGH-BYTE DIVISOR VALUE
010A D310 OUT CNTRO

The divisors (LSB and MSB) for the baud rates and different UART and USART
modes of operation are shown in Table 14-1.

Real Time Clocks

At the end of the previous chapter we discussed the use of a Real Time Clock
(RTC). The RTC interrupts the processor at a regular time interval so that the pro-
cessor performs operations at accurately timed intervals or keeps track of the
passage of time.

2 5 0 INTERFACING TO S-100/lEEE 696 MICROCOMPUTERS

TABLE 14-1. Baud Rate Divisors (2 MHz clock)

Divisors

UART Baud UART 0 mal)
Mode Rate (Hz) | Clock (Hz) (Decimal) Hexadecimal
MSB LSB

50 800 2500 09 ca

110 1760 1136 04 70

150 2400 833 03 41

300 4800 417 01 Al

X16 800 9600 208 00 DO
1200 19.2 k 104 00 68

2400 384k 52 00 34

4800 76.8 k 26 00 1A

9600 1536 k 13 00 0D

50 3200 625 02 71

110 7040 284 01 1C

150 9600 208 00 DO

x64 300 19.2 k 104 00 68
600 384 k 52 00 34

1200 76.8 k 26 00 1A

2400 153.6 k 13 00 oD

300 300 6667 1A 0B

600 600 3333 0D 05

1200 1200 1667 06 83

2400 2400 833 03 41

X1 4800 4800 417 01 Al
9600 9600 208 00 DO

192 k 19.2 k 104 00 68

384k 384 k 52 00 34

56 k 56 k 36 00 24

A typical RTC circuit, using an 8253 timer, is shown in Figure 14-7. The 8253
derives its clock input from the S-100 CLOCK signal and divides it down to
develop the interrupt signal.

The circuit shown in Figure 14-7 is arranged so that timer O and timer 1 are
cascaded to develop a time-of-day clock interrupt signal. Timer O divides the 2
MHz CLOCK signal by 2000 and timer 1 divides timer O’s signal by 1000 to yield
a total division of 2 million. The result is a 1 pulse-per-second interrupt of the pro-
cessor.

The following program is used to store and update the values for hours,
minutes, and seconds. A flowchart for this program is shown in Figure 14-8. The
program can be expanded to include dates, day of the week, etc. The time-of-day
interrupt should have a very high priority since delays in servicing this interrupt
will cause time errors.

fermporary master
cCccess and empordry
ous masters

Using interrupts improves the efficiency of a computer system, allowing better
utilization of processor time while handling I/O operations. However, processing
interrupts requires an amount of time which in some applications may be intolera-
ble. In applications where data is transferred directly between 1/O and memory,
the TMA (Temporary Master Access) technique affords transfers that are limited
only by the access time of the I/O and memory. TMA is particularly desirable in
applications where data is transferred in blocks between memory and I/0 devices
(e.g., disk and cassette storage). TMA in effect replaces software with hardware.

A TMA controller (TMAC) circuit is required to manage the transfer operations.
The TMAC takes over the entire I/O-memory transfer operation from the CPU,
usually transferring entire data blocks. When a data block is transferred this is
called a “‘burst mode,’’ since several data bytes are moved in one burst. The burst
mode is the fastest /0 method.

A basic S-100 TMA system is shown in Figure 15-1. The associated timing
signals are shown in Figure 15-2. Upon receiving a TMA request from a peripheral
device the TMAC circuit signals the permanent master, via the Hold (HOLD#) line,
that it wishes to take control of the address, data, and control buses. The TMAC
then waits for the permanent master to finish the execution of its current instruc-
tion, which is signalled by the hold acknowledge signal (pHLDA). The TMAC then
takes control of the address, data, status, and control buses. This is done by the
TMAC turning off the permanent master’s tri-state bus buffers and turning on the

255

2 5 6 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

- _16 Address Bus (A0-A15)
-t e -
. 8 ‘ Data Out Bus {DOO-DO7) .
- - 1] >\ 5100 Bus to
8 Data In Bus (DIO-D7) o { Bus Slaves
- >
. y Control and Status Bus -
- va] > —
16 |8 S 8 |16
y y ¥
A A KA A A4
ADS8»
DODSB* 3
L
SDSB« A 3
8 i
o —
CDSB*

HOLD

@
(2]
N
S
o
\
j |
W
w
w0
(=]
@

A 1 4 A pHLDA
mE 2885 ¢ B3 T Dx v s o sT
© ngEgao&) D%““%‘“’Bg.?;é ge
© 5° 5§ T % & 24 2 8x<z £ 20°5 34
]
2 © <8 o © o @ 2
@
3«
=g x
CPU TMA Controller 2832
afe £«
Permanent Bus Master Temporary Bus Master

S

V8

/

/o
Peripheral
Device

FIGURE 15-1. Block Diagram of Basic TMA System for S-100 Bus

TMAC's tri-state bus buffers to the buses. The TMAC now provides the necess-
ary address, 1/0, and memory read/write control signals to transfer a data byte or
block of data bytes between memory and I/0. Upon completing the data transfer
the TMAC returns control to the permanent master.

The TMAC becomes the master of the system during the TMA operation and is
therefore called a ‘‘temporary bus master.” The memory and I/O devices follow
the commands given by the permanent bus master (CPU) or temporary bus
master (TMAC), and hence memory and |/O devices are called ‘‘bus slaves.”

Although TMA provides the advantage of higher speed data transfer, it has the
disadvantage of considerably more complex circuitry. Further, the permanent
master is disabled so that no interrupts can be acknowledged while TMA is occur-
ring. Thus the permanent master cannot handle any time-dependent operations
such as an interrupt-driven time-of-day routine. Suspending interrupts would
cause errors to occur in such a system. Further, a power-failure interrupt request
during a TMA operation would not be serviced.

Chapter 15: TMA AND TEMPORARY BUS MASTERS 2 5 7

.

/ T\

ADSB* }

»

SDSB+
DODSB+

CDSB»

pSYNC

pDBIN / _ /
pWR» \ [/

tp

o
DONE /CS/

HOLD+

Permanent master

" Transfer Transfer Temporary
recognizes request Temporary master has control al
and idles (Bus Cycle) master idles

tset = 30 ns minimum
toy = 83 ns minimum/1 us maximum
trel = 20 ns minimum
tpy = 33 ns minimum/400 ns maximum

FIGURE 15-2. Timing of Bus Transfer Between Permanent
and Temporary Masters

Another caution should be given. Dynamic memory systems may not operate
properly with TMA. In such a system, the TMA devices cannot continuously use
the address and data buses for more than a millisecond or so, since memory con-
trol logic must be able to use the buses to refresh the dynamic memory cells.

One last caution. The TMA transfer process is inherently complex and hence
there is a complex interaction between all the parts of the system. Timing prob-
lems are likely to occur, and extra circuitry, careful design, and extensive testing
are required to develop a reliable TMA system.

2 5 8 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

TMA TECHNIQUES

Two basic techniques are used for TMA: the “‘cycle-stealing”” and the "‘direct
TMA" methods. One kind of cycle-stealing method does the TMA transfer opera-
tion during clock cycle times when the permanent master is not accessing
memory or 1/0. For example, the 8080 CPU accesses memory and |/O during
states T2 and T3, leaving two or three T-states during which the TMA transfer
may be made. Circuitry is required to identify the proper T-states. While this type
of cycle-stealing does not slow down the operation of the processor or affect
time dependent operations, it does require complex timing circuits and does slow
down the TMA transfer rate. If this type of cycle-stealing TMA were to be imple-
mented on the S-100 Bus, it would more properly be called “‘bus state stealing.”

Another kind of TMA that is quite popular on the S-100 Bus is another type of
cycle-stealing TMA. In this case we mean “‘bus cycle-stealing.”” It does slow the
system down, but if a peripheral’s data rate is not very high then this type of TMA
is preferred over the burst mode. Even the data rate of a floppy disk controller is
slow compared to the maximum data transfer rate on the bus. This form of cycle-
stealing TMA allows the processor to execute quite a few instructions between
TMA transfers.

In a system with one permanent master and one temporary master the perma-
nent master normally has control of the bus. The temporary master may request
control by generating an “IWANT"' signal indicating that it wants the bus. A tim-
ing transfer circuit, such as the one shown in Figure 15-3, then generates a
HOLD+ signal to the permanent master. The permanent master completes its cur-
rent instruction cycle, goes into an idle mode and sets the Hold Acknowledge sig-
nal (pHLDA) true, which causes MINE to be asserted. The timing transfer circuit
then performs an orderly transfer of bus control from the permanent master to
the temporary master. The permanent master is disconnected from the bus by
enabling the ADSB#*, SDSB+, and DODSB+* lines. These disable the permanent
master’s address, status, and data out bus drivers and enable the control drivers
of the temporary master.

Both the permanent and temporary masters are now driving the control output
bus lines. This is necessary to prevent spurious signals from being generated on
the control lines. This is shown as the “‘transfer’’ state in Figure 15-2. During this
transfer time the control lines must have the following levels: pSYNC and pDBIN
must be low, while pSTVAL#, pWR#, and pHLDA must be high. The transfer state
ends when CDSB# is enabled, disabling the permanent master’s control drivers
and enabling the address, status, and data out drivers of the temporary master.
The temporary master is now signalled that it has complete control of the bus and
can begin its first cycle.

The temporary master signals that it is finished using the bus by generating a
DONE signal. The timing transfer circuit then does a mirror-image transfer

Chapter 15: TMA AND TEMPORARY BUS MASTERS 259

N $:100 Bus
IWANT
-
. HOLD
PR REQUEST» 26
D alb— ¢ ﬁij 94 = LA
JaLs74 _J 741504
- 74LS10 74
— cx Q Dc > HoLps
CLR 7406
pHLDA®
MINE
741527 =
PR ASSERT
—0 Q —PRIORITY +5V +5 v
FF
74LS74
— 14
ck__Q F—D& +— —<J TMA3.
CLR
7406 7406
> oL
+5V -
MATCH3 741832
+5 V
ISME +5V
741520 [»—D: D 57 TMAZe
1
7406 I_o/ 74L800 7407
c 01_
MATCH2
+5V
+5V 741532
56
[TMAT»
1
7406 LO/ 74L810 7407
s oL
MATCH1
+5V
+5V 741832
55
TMAO*
7406 [_o/‘ 7ats20 7407
2 0L
MATCHO - CB

All resistors 1 k12 741832

Switches Shown in Device 15 Position (Highest Priorty)

FIGURE 15-3. Arbitration Logic for S-100 TMA Controller

sequence from the temporary master to the permanent master. At the same time
it releases the HOLD # line to the permanent master.

MULTIMASTERS

Up to 16 temporary masters may be accommodated on the S-100 Bus. To
accomplish this, an arbitration circuit is necessary to determine which temporary
master will be allowed to control the bus at any given time. The S-100 Bus uses a

260 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

four-fine arbitration bus for arbitrating among the 16 temporary masters. The
lines are TMAO#* (55), TMA1+ (56), TMA2+ (57), and TMA3#* (14). These lines
are driven by open collector drivers and are pulled high by pull-up resistors some-
where in the system. Each temporary master has a unique priority which it asserts
{active low) on the arbitration bus at an appropriate time. A typical arbitration con-
troller circuit is shown in Figure 15-3.

Each temporary master has its own arbitration controller. The controller circuit
contains either a switch register or a programmable register which establishes the
priority of the temporary master. All switches open (OFw) is the highest priority.
No two temporary masters may have the same priority.

The controllers compare the priority appearing on the bus with the priority they
are asserting, starting with the most significant bit. If disagreement occurs at any
bit position, another temporary master or controller is asserting that priority bit
and thus must have a higher priority. in that case, all less significant bits are
removed by the temporary master with the lower priority. All more significant bits
agree and thus need not be removed, and the bit which disagreed must have been
a logical zero and thus was not asserted. Having the agreeing bits asserted
reduces system noise caused by the redistribution of driving currents in the bus
and speeds settling of the correct priority on the arbitration bus. This process is a
continuous parallel process in which the incorrect comparisons occur and are

removed.
A temporary master or controller requests the bus by asserting its internal

IWANT line. If pHLDA is not asserted {permanent master has bus) and HOLD» is
not already asserted, the temporary master or controller may assert its priority
and enable the HOLD+# line. This process guarantees ample time to settle the
arbitration bus before the granting of the bus on the rising edge of pHLDA.

This scheme usually results in the first requestor winning the bus. Only if
simultaneous bus requests occur will the arbitration have any effect. This,
however, is not improbable, since multiple requestors will become synchronized
by waiting for the falling edge of pHLDA.

The master or controller that is successful in gaining control of the bus will
have asserted its MINE line. Thereupon the bus transfer, as described earlier, must
begin. All requestors will continue to assert their priorities on the arbitration bus
until the falling edge of pHLDA. Thus the priority number of the current bus
master is available on the TMA arbitration bus while pHLDA is asserted. A master
or controller that loses the bus continues to assert its priority bits, but removes its
assertion of the HOLD# line so that the winner may indicate that it is done by
releasing HOLD #.

Figures 15-4 and 15-5 show two possible cases of bus arbitration. In Figure
15-4 the requestor has no competition. It requests the bus and the bus is granted.
In Figure 15-5 the requestor waits for the bus to be free, arbitrates for the bus and
loses, then arbitrates again and wins.

Chapter 15: TMA AND TEMPORARY BUS MASTERS 261

| WANT

HOLD#

pHLDA /
ASSERT
PRIORITY
WIN
IS ME / \ / \ / ;

MINE

/_\

f

FIGURE 15-4. Arbitration Timing — No Competition

IWANT

HOLD+

pHLDA

ASSERT
PRIORITY

ISME

MINE

Wait i Try 1 % Try $#2

FIGURE 15-5. Arbitration Timing — Wait, Lose, then Win

26 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Looking at this in more detail, in Figure 15-4 a temporary master asserts its
IWANT line and finds pHLDA unasserted {permanent master has bus) and HOLD #
unasserted (no other temporary masters requesting bus). The temporary master
or controller asserts HOLD # and its priority on the TMA arbitration bus. The ISME
signal is asserted if none of the bit comparisons on the arbitration bus fails. ISME
is clocked on the rising edge of pHLDA, creating the MINE signal. When the tem-
porary master is finished with the bus the IWANT signal is released, releasing
HOLD* and resetting MINE. The permanent master releases pHLDA, gaining con-
trol of the bus.

In Figure 15-5 the requestor raises its IWANT line but finds the bus already
busy and must wait to assert its request and priority until the falling edge of
pHLDA. The requestor arbitrates for the bus during try 31, but another requestor
has a higher priority and ISME is low at the rising edge of pHLDA, indicating a loss
in the arbitration process. The losing requestor removes its assertion of the
HOLD# signal, but continues to assert its losing priority until the falling edge of
pHLDA. The process repeats, but this time results in a win for the requestor.

S$-100 TMA CONTROLLER CIRCUIT

After the arbitration interval, assuming that this particular master is the winner,
the MINE signal will be asserted high. This signal originates in the arbitration cir-
cuit shown in Figure 15-3. This is an indication to the rest of the TMAC circuitry
that it may begin to take control of the bus.

This takeover has to be synchronized to the master system clock (). The cir-
cuitry to perform this task is shown in Figure 15-6. Timing diagrams for this
circuit appear in Figures 15-7 and 15-8. In the following discussion, it may be
helpful to refer to these timing diagrams.

On the first falling edge of @ after MINE is asserted, the XFERI signal will be set
high. This signal is applied to the CLR#* input of flip-flop 2 (FF2), so when XFERI
goes high it will allow flip-flop 2 to be clocked. The following rising edge of & will
then clock the MINE signal through flip-flop 2, setting the XFERII signal high. At
the same time, XFERI is clocked through flip-flop 3 to produce SYNC, which later
becomes pSYNC, signifying the beginning of a bus cycle.

XFERIl is applied to ﬂ:e PR input of flip-flop 6, which was holding point C low.
This line (point C) is applied to one input of an OR gate, the other input of which is
the SYNC signal. Since one input is low and SYNC is now high, the output of the
OR gate {point D) will be high. At the next rising edge of @ this high will be clocked
through flip-flop 4, which sets STB high. STB will later become either pDBIN or
pWR#, depending on the direction of the data transfer. The other output of flip-
flop 4, STB#, will reset SYNC to a low because it is tied to the CLR# input of
flip-flop 3, which will end SYNC. This connection also ensures that SYNC will be

Chapter 15: TMA AND TEMPORARY BUS MASTERS 26 3

+5V
PR

PR
MINE)- b) alb— [} a - XFERI
FF1 FF2
4701504 741578
4 cK Q ckDP—Pex = XFERIi®
cLK R CLR
.
CLK - l > XFERI
- XFERIe
39 N
& CLEAR
poc > 1> .
& SYNC
+5V +5V
T T - STB
PR 741832 PR R
° a o a D af— cvcie
FF3 FF4 FF5
741574 741574 clxe 741574 ovele
a h— ck g .
oLk Y- pck @ ckp—Pek _ a Dek G e
CLR CLR CLR
+5V
CLEAR«»)—J T I

LY - STBe
N
XFERI 7
s L
XRDY
J2 FF6

741508
RO¥ 741574

CLK D— ek a
CIR

+5V

FIGURE 15-6. Timing Logic for S-100 TMA Controller

inhibited during the data strobes should it become extended by a wait state.

If point B was still high at that last rising edge of ®, then point C will still be low.
Since SYNC is now low, point D will also go low. On the next rising edge of ®d, this
low will be clocked through flip-flop 4, ending STB.

Meanwhile, the inversion of the SYNC signal {point A) sets the output of flip-
flop 5 high, causing the CYCLE signal to be asserted. This signal indicates that a
bus cycle has started, since it goes high right after SYNC goes high {point A goes
low). On the falling edge of the clock during SYNC, nothing will happen to the out-
put of flip-flop 5 because its clock input will be overridden by point A being low.
When point A returns high (when SYNC goes away), the STB signal that is applied
to the D input will also go high. Since the PR# input is now high, the flip-flop may
be clocked. But since the STB signal at the D input is high, the next falling edge of
@ (the one during STB) will clock the STB signal through, and the output (CYCLE)
will remain high.

264 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

BM";_/\/ ?\é\/ﬁ
e

XFERI

[~

XFERI

SYNC

—

u
~ \

\

©

® |
- \jg““

FIGURE 15-7. Timing Diagram for Logic of Figure
15-6 — No Wait States

—~_

At the next rising edge of d, STB will be clocked low, so that at the next falling
edge of & the CYCLE output will go low, indicating that the bus cycle is complete.
The half-cycle delay after STB falls is to cause the information being asserted on
the S-100 Bus to remain stable, as indicated in the IEEE specification. When the
signal CYCLE#* goes high, this becomes the "DONE"’ indicator to the rest of the
controller circuitry. If there are no more bytes to be transferred, the controller will
drop its IWANT signal, causing MINE to go low. At the next rising edge of @ this
low will be clocked through flip-flop 2, ending XFERII.

Since MINE is now low, the next falling edge of & will clock it through flip-flop
1 and end XFERI. At the same time the permanent master will regain control of the
bus, thus ending the TMA transfer.

Chapter 15: TMA AND TEMPORARY BUS MASTERS 26‘5

ISME

/7 7]
A

]
XFERI (j
SYNC J

)

®

T

/

o l

o Y]
y

STB

CYCLE

FIGURE 15-8. Timing Diagram for Logic of Figure
15-6 — 3 Wait States

The above discussion assumes that no wait states were requested by the bus
slave (neither RDY nor XRDY was low). The timing diagram in Figure 15-8 shows
the same TMA cycle except with three wait states added. If a wait state is
requested the following occurs.

Assume that SYNC has just been asserted high. XFERII will have just risen as
well, which will allow flip-flop 6 to be clocked. Point C was set low by XFERII,
which allows point D to go high. Sometime after SYNC is asserted, one of the
RDY lines will go low, causing point B to go low. The next rising edge of & is going
to do two things: it will clock point D through flip-flop 4, starting STB, and it will
clock point B through flip-flop 6, setting point C high.

2 6 6 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

The next rising edge of ¢ would normally clock STB low, but since point C is
high, STB will remain high. If point B is still low at this rising edge, point C will still
be high. As long as point B is low at succeeding rising edges of ®, STB will con-
tinue to remain high. This is the object of the wait state: to extend the strobes.
When point B finally goes high, the next rising edge of & will set point C low.
Since SYNC is low and point C is now low, point D will go low. The last rising edge
of & which clocked point C low, would still clock a 1 into flip-flop 4 because point
D was still high at the time of the rising edge. STB will therefore remain high until
the next rising edge of ®, which will clock point D through flip-flop 4, when STB
will end.

The next falling edge of ® will clock CYCLE low, indicating the end of the bus
cycle. If this is the last byte of data or the circuit is cycle-stealing, the transfer will
end, as above.

This circuit is capable of either cycle-stealing (bus cycle) or burst mode. If MINE
is not dropped after the rising edge of CYCLE#* (indicating the end of the bus
cycle), then the rising edge of ® that would have clocked XFERII low will instead
start another SYNC and leave the XFER lines asserted. As long as MINE remains
asserted, multiple bus cycles will be executed. It is therefore up to the rest of the
circuit to either drop its IWANT signal in response to DONE or leave it asserted,
causing another cycle to be executed.

Now that we have seen how the timing transfer circuitry works, we can discuss
the rest of the TMA controller circuitry.

Figure 15-9 shows the address decoder circuitry, address counters, and bus
buffers for the S-100 address lines. The port decoder is used along with the neg-
ated-input NAND gates (really 74LS32 OR gates) to provide four I/O write
strobes. Three are used to load data into the 74LS191 counters to preset them to
the desired starting address of the TMA transfer. This is done by writing the data
as three separate bytes to three successive port locations. This must be done
prior to starting the TMA transfer.

When XFERI goes high the output of the 7406 will go low, asserting ADSB+,
which will cause the address lines from the permanent master to float. At the
same time XFERI# will go low, which will cause the address in the counters to be

asserted on the address lines.

The value written into the counters will be incremented when the CYCLE # sig-
nal goes high, which it will do at the end of the bus cycle. Thus the counters now
hold the next address and are ready for the next transfer to occur.

CONTROL# is the fourth write strobe, and is used to program the TMAC with
direction of transfer information (R/W+#), as well as issue a start transfer com-
mand (START#) to the TMAC. This circuit is shown in Figure 15-10. At the end of
the CONTROL#* strobe, the information on DB1 (internal data bus bit 1) will be
latched into flip-flop 1. The output becomes the R/W+ signal, which will be low
for TMA writes (transfer of data from the TMAC to memory}. Thus, if a write
occurs to the control port with bit 1 high, the TMAC will be set to the read mode,

Chapter 15: TMA AND TEMPORARY BUS MASTERS 26 7

$-100 Bus
4
087) S Qb ——S—D A23
1
D86 P—— A ac L 83> a2
|| 7as100 62
DB5 Y- ~ 8 Qs ———"> a2
$-100 Bus 15 61
B4)~ A o _Q ———2 > a20
s0UT sOuT. A LOAD
7 741532 T
SWRe 7415244
741832
CLK OUT
083) o ao L 59> a9
B2) < ——D“" Al8
{ 7418191 ~N 17
D81)- QB 1> O a7
4 16
D8O) Ak QA ——">> a6
(OAD
8 _l—!
CLK OUT
o ap 320 a1s
NM—c ac 350> aua
7418191
NM—s a8 S LY > J
M———Ac QA —-——ﬁsz
LOAD
741532
7418244
CLK ouUT
NM— 0 Qo —MD Al
N—t c Qc —ﬂD Al0
7418191
 —) QB D————iD A9
M—a o A 84~ s
[0AD
8 P l
CLK ouT a3
— Qo > a7
NM—c Qac _—]82 > A6
74LS191
M—s QB 29 A5
M—a o 0a ——D3° As
O\ LOAD
741832]
Address | ST1D*] 7415244
IRV VYV B 12
StLCe o[couT 1
NM—io Qo ————"> a3
. @ SELBe A} 104, ac B\C a2
. 1| 7asr
o =] B QB D——ED At
AD AN LA+
15 3 79
1A ck QA > »o
O\ [0AD
BOSFL* 14 In I
741832 CVC'E'>_‘
- CONTROL=
741532
RN WRITE»
sOQUT P
XFERI® D=
« 7406 22
XEERI D> % —{> Apss-

Al counters have pins 4 and § grounded

FIGURE 15-9. Address Counters and Port Decoding Logic
for S-100 TMA Controller

2 68 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

START#*

PR PR
o1 »——0 a—a=r/wWe XFREQ ———— D a -+ IWANT
FE1 FF2
741574 741574
CONTROLe pok_ OfF— cycles———Pek @
CIR IR
¥5V
CLEAR« $-100 Bus
7406 23
XFERI)———D(‘r {"> poose*
DBO STARTe
741832 0
D07
29 bos
9
39> 005
38
{> oo
7415244 80
3 003
88 {—> po2
35 D01
~N 36
D
> 00
74L832
XFERI» |
R/W+ *
7415244
4
<}
~N
*—
WRITE= - l]
43
DB7) o7
93
DB6 D— DI6
92
DBS H- <Joss
91
bBa)- 741.2244 <Jou
S 42
083)- » DI3
DB2 P— 2o
94
DB1)— <} oi
95
DBO - <J oo
XFERI)| |
R/W= e
741500

FIGURE 15-10. Data Bus Control Logic; Start Pulse
and Direction Bit Logic

Chapter 15: TMA AND TEMPORARY BUS MASTERS 26 9

and if a write occurs with bit 1 low the write mode will be selected. The TMAC is
in the read mode at power-on.

If a write occurs to the control port (CONTROL# low) with DBO low, a low will
appear at the output of the negated-input NAND gate (really an OR gate). This sig-
nal, called START#, will remain low for the duration of the CONTROL # strobe.
This signal is used to start the TMA transfer cycle or cycles. How this occurs will
be discussed later.

To set the TMAC to the read mode and begin the transfers, a CPU will write to
the control port with bit 1 high (sets read mode) and bit O low (starts transfer). To
set the TMAC to the write mode and begin transfers, the CPU will write bit 1 low
{write mode) and bit O low (starts transfer). To change the read/write mode with-
out starting the transfer, the write should occur with bit O set high.

Another portion of the circuit that appears in Figure 15-8 is the circuitry to
handle the data bus direction and provide buffering. The data bus of a TMAC is
quite different from that of a normal slave device. A normal slave always receives
data on the data output bus and transmits data on the data input bus. A master
must do just the opposite: it must transmit its data on the data output bus and
receive data on the data input bus. However, a TMAC must look like a slave to the
bus at times (when the address counters are being loaded, for example) and look
like a master when it is doing TMA transfers.

This particular TMAC has no readable registers. The WRITE#* signal will go low
when any of the four ports is selected and an output cycle is occurring {OUT # and
BDSEL#* iow in Figure 15-9). WRITE+ is applied to the tri-state controls of buffer
4 in Figure 15-10. This enables the data on the data output bus to appear on the
internal bidirectional data bus so that it may be written to the address counters
and the control port. When WRITE# is high, buffer 4 is disabled.

When XFERI is high, DODSB#+ will be asserted low by the 7406, and the data
output bus will float. When XFERI* is low and R/W=# is low, buffer 3 will be
enabled, and the data on the internal bus will be asserted on the data output bus. It
is up to the peripheral device to place data onto the internal data bus. It should use
the CYCLE signal to do this. If R/W#* had been high (signifying the read mode)
then buffer 3 would have been disabled.

When XFERLl is high and R/W* is high, the output of the NAND gate will go low,
enabling buffer 5. This will allow the data on the data input bus to appear on the
internal data bus (TMAC is reading data from memory) so that the peripheral
device may read the data. It may use any of the available control signals (e.g., STB
ANDed with R/W#) to determine that data from memory is valid. This will depend
on the peripheral involved. When XFERI goes low, buffer 5 will be floated.

To start the transfer of data, the TMAC will assert the IWANT signal high. The
TMAC does this via the START # pulse, which was discussed previously. START #
is applied to the preset input of flip-flop 2, setting IWANT high. The peripheral
device should have the transter request line (XFREQ) asserted high. If this is to be

2 70 INTERFACING TO S-100/lIEEE 696 MICROCOMPUTERS

a single byte, then XFREQ should go low about the time the STB signal goes
away. When CYCLE#* goes high, this low will be clocked into flip-flop 2 and
IWANT will go low, causing the transfer to end.

If this is to be a burst or multiple-byte transfer, the peripheral should leave
XFREQ asserted high. When CYCLE#* goes high, IWANT will also remain high,
causing another transfer to occur, and so on until XFREQ goes low.

Figure 15-11 shows the last two sections of the TMAC: the circuits for driving
the control output and status buses. When XFERI+ goes low, both the 74LS367A
and the 74LS244 will be enabled, and XFERI will cause SDSB#+ to go low, dis-
abling the permanent master’s status bus. Both the status and control buses will
be driven by the TMAC, and the control bus will also be driven by the permanent
master.

At this time SYNC and STB will both be low. This will cause pSYNC to be low,
pSTVAL# high, pDBIN low, and pWR# high. pHLDA will always be high because
its buffer's input is always high. This is called for in the |EEE standard. When
XFERIN goes high CDSB#* will go low, floating the permanent master’s control bus.
At the same time SYNC will go high, causing pSYNC to go high, starting the bus
cycle. When pSYNC is high and CLK# is high pSTVAL# will go low. SYNC will
then go low, causing pSYNC to go low and pSTVAL# to return high. At the same
time STB will go high. If R/W# is high, pDBIN will go high. If R/W# is low, pWR#
will go low. After a while STB will go low, causing either pDBIN or pWR#* to stop
being asserted.

On the status bus, the buffer sections that drive sOUT, sINP, sHLTA, sINTA,
and sM1 have their inputs tied low, so when the 74LS244 is enabled all those
lines will be driven low on the bus. sSXTRQ#* will be driven high. If R/W# is high,
then sMEMR will be high and sWO+# will be high, signifying a memory read cycle.
if R/W= is low, then sMEMR and sWO# will be low. sWO# low and sOUT low sig-
nifies a memory write status.

When XFERIl goes low CDSB# will return high, allowing both masters to drive
the control bus. When XFERI goes low {and XFERI# goes high) the two buffers will
be floated and SDSB+ will go high, allowing the permanent master to again drive
the status bus.

This completes the description of the circuitry. What we have not shown is the
peripheral device that receives data from and transmits data to the TMAC. This
could be anything from a floppy disk controller to a high-speed hard disk. It is the
responsibility of the peripheral to drive the internal data bus with data (at the right
time) when it wants to transfer data to memory, and to read the data from the
internal bus (at the right time) when it wants data from memory. The peripheral
must assert XFREQ high to transfer data in either direction. If a single byte is to be
transferred, XFREQ must be low before CYCLE#* goes high. If a burst of data is to
be transferred, XFREQ must be asserted until all the data has been transferred.
The peripheral must know when all transfers have been completed and stop

Chapter 15: TMA AND TEMPORARY BUS MASTERS 2 77

+5V

T $-100 Bus
‘—ZGD pHLDA
sYNG) L 79~ pswae

74LS00

25
CLK.)_T__D___ 74L8367A |————{"> pSTVAL=

741508 SEELY W
STB
N 77 C> oWrs

R/W=* 74LS32

STB#

XFERI* D~

N 19
XFERIl D bc —> coss+

R/W» - * 4TS smEmR
L _WD SWO»
—%D sINP
5
—{> sout
—ﬁo SHLTA
9
_6D sINTA

+5V 44

> o

—D——SBD SXTRQ*

XFERI* H— l I

g 7406 18
XFERI) D& > soss+

74LS244

FIGURE 15-11. Control and Status Bus Logic for S-100
TMA Controller

asserting XFREQ. A master must load the address counters with the starting
address at which the transfer will occur and select the direction of the transfer.
The master must also start the transfer.

When used in burst mode, the permanent master will know that the transfer is
completed because it will get the bus back when it is done. When cycle-stealing,
however, the peripheral must signal the controlling master that the transfer is
complete. This may be done with an interrupt (usually from some kind of terminal
count output from the peripheral), or a status register may be added to allow the
master to read the peripheral’s status.

2 72 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

You may well ask “Why didn’t you use one of the LS| DMACs that are availa-
ble?”” The answer is because:

1. None of them has more than a 16-bit address counter.

2. Most of them have trouble running at speeds beyond 4 MHz.
3. They need address and data buffers anyway.

4. None of them can easily be made to meet the S-100 standard.

DUMMY MASTERING

In cases where a number of processors coexist in a single system as temporary
masters, it may prove inefficient, from a systems point of view, to implement a
permanent master.

Another important consideration is that any temporary master must synchron-
ize its operations with the master system clock. Therefore, the speed of the tem-
porary master is limited by the speed of the permanent master.

in such cases, it is permissible that the permanent master be implemented as a
dummy — that is, a device that conducts no bus cycles, but only supplies the
master system clock and an arbitration interval so that the TMA control bus may
settle. The dummy master takes control of the bus between temporary masters,
asserting the control output bus in the null state, and passes the bus to the next
requestor after an arbitration interval of one clock cycle.

Output signals required for dummy masters are the control output signals and
the system clock (®). Input signals required are HOLD # and CDDSB+.

MULTIPROCESSING

As the cost of CPUs drops and the complex demands on the computer system
increase, it becomes advantageous to use more than one CPU in the computer
system. For example, one CPU might be assigned the task of communicating with
1/0 devices, another searching memory, another editing, another checking, and so
on. The use of separate, interconnected CPUs, each having a dedicated, sole task,
reduces the complexity of the operating system software and improves reliability
and backup.

Multiprocessing is a form of TMA. In standard TMA the master CPU relin-
quishes its control of the bus to a controller whose sole function is to transfer
data between memory and an |/O device. The TMAC is thus a temporary master,

Chapter 15: TMA AND TEMPORARY BUS MASTERS 2 7 3

—

1 - Out

Single-CPU System

Task | Task | Task | Task | Task | Task

g Time

n CPU CPU » CPU & Out

Task | Task [Task | Task
A A A A CPU1 Multiple-CPU System with

\\\\ = Time Pipeline Processing

Task | Task | Task | Task
B B B B cPuU2

\\\ - Time
Task | Task | Task | Task

Cc C C C CcPuU3
- Time

In —————— cPy p———————— Qut

o g CPU O} eOut

cPU Multtiple-CPU System with
- - Out Y
3 Parallel Processing

In ————————————{

Task | Task'| Task | Task
A A A A CPU1
= Time

Task | Task | Task f Task
B B8 B B CPU2
- Time

Task | Task | Task | Task
Cc o Cc c CPU3
= Time

FIGURE 15-12. Multiprocessing Techniques Compared

2 74 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

while the memory and /O devices act as slaves, following the commands of
whichever master is in control of the bus. Multiprocessing is essentially the same
as TMA except that the temporary master is also a CPU or CPU-like device.

MULTIPROCESSING SYSTEMS

in an S-100 based multiprocessing system there is actually more than one CPU
on the S-100 Bus, and the bus serves as the communicating link between the
CPUs. Each CPU contains its own memory and possibly I/0 circuits. Each CPU is
assigned a function to which it is best suited. For example, an 8-bit CPU with its
own ROM, RAM, and I/0 on the CPU card may be assigned to execute the DOS
(Disk Operating System) and I/0 handling, while another 16-bit CPU card with its
own ROM and RAM may be assigned to execute a high-level language such as
BASIC. Tasks are therefore partitioned in the system.

Since each CPU has local resources it may access the bus only when it needs
to communicate with other masters or slaves. In many applications less than 10%
of the time is taken by system bus accesses. The IEEE S-100 Bus standard
therefore provides facilities for up to 16 prioritized masters on the bus. These
masters may be either other CPUs or dedicated controllers.

In a multiprocessing system CPUs may share resources such as a high-speed
mathematics board or a disk controller. In addition, throughput can often be
enhanced by using ‘‘pipeline’’ or “‘parallel’” processing techniques. These are
shown in Figure 15-12. In the pipeline system, system functions (tasks) are
divided among CPUs, so that data flows through the system serially. Each CPU
performs its portion of the system functions. It then calls upon the other pro-
cessors to perform other sets of functions. For example, one CPU may do data
acquisition and buffering while another CPU processes the data.

In the parallel processor system each CPU performs a separate task without
any dependence on the other CPUs.

REFERENCES

Barthmaier, Joseph P. “Multiprocessing System Mixes 8- and 16-Bit
Microcomputers,”” Computer Design, February 1980.

Kane, Jerry, and Osborne, Adam. An Introduction to Microcomputers: Volume
3 — Some Real Support Devices, Berkeley: Osborne/McGraw-Hill, 19786,
1979.

some useful circuits

This chapter examines some useful circuits that didn’t quite fit into any of the
other chapters. Three of these circuits are used for debugging, another is an
ERROR# trap circuit, and the last is a Jump-on-Reset circuit.

ADDING LED’S TO MONITOR S-100 SIGNALS

When debugging an S-100 system it is usually useful to “‘see’” what is hap-
pening on the various signal lines. This can be accomplished with a simple logic
probe, an oscilloscope, or even a logic analyzer. Moving the logic probe or scope
lead around to examine all the lines can quickly become tedious; therefore it is
very convenient to attach LEDs to the signal lines to monitor their state. The LEDs
can be attached permanently, like a front panel, or on a board that is plugged into
the bus for trouble-shooting.

The basic circuit shown in Figure 16-1 is the recommended way of monitoring
an S-100 signal line with an LED. The inverter can be a tri-state type buffer with
its enable input tied so that the buffer is permanently enabled, or a high current
TTL inverter, such as a 7406 (open collector inverters will work just fine). The
incoming signal line is inverted, causing current to flow through the current limit-
ing resistor and LED to ground. Thus when the signal line is high, the LED will light.
TTL type devices can sink current much better than they can source it, so it is not
recommended that the LED current be sourced by the TTL device.

Any number of these circuits may be used to view as many signal lines as you
need to monitor. The most common choices would be the address, status, and
data buses.

275

2 76 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

+5V
1800
LD
Any S-100
Bus Pin
{Except Power) Tri-state Inverting Buffer

{Permanently Enabled)
or High Output Current
TTL Inverter

FIGURE 16-1. Adding LEDs to Monitor S-100 Signal Lines

A SINGLE STEPPER

Being able to see what is happening on the S-100 signal lines with LEDs is not
of much use if the lines are changing states millions of times a second. What we
need is a circuit to stop the processor between bus cycles so that we can examine
the state of the LEDs. This circuit is called a *'single stepper,” and is shown in
Figure 16-2. Here's how it works. If the RUN/STOP switch is closed, one input to
the 74LS38 will be low. This will cause the other input to be ignored and the
XRDY line will never be driven low. This will cause the CPU to run just as if this cir-
cuit did not exist. When the first pSYNC pulse on the bus occurs, the flip-flop will
be preset and the Q output will be high. Each succeeding pSYNC will set the out-
put high. This output forms the other input to the 74LS38. If we want the CPU to
stop, the RUN/STOP switch is opened. Both inputs to the 74LS38 will now be
high and the output driving XRDY will go low. This will cause the CPU to stop in
an indefinite wait state. The address, data, and status buses will no longer be
changing and we can now examine the LEDs connected to them. To step the pro-
cessor to the next bus cycle, push the SINGLE STEP button. The cross-coupled
gates debounce the switch (otherwise the CPU would advance hundreds or thou-
sands of bus cycles instead of one) and clock a low out of the flip-flop. This
causes XRDY to go high, allowing the CPU to run again. When pSYNC goes high
at the beginning of the next cycle the flip-flop’s output will be set high, stopping
the CPU again. We may then examine the next bus cycle’s information.

This whole process may be repeated as often as desired, ‘‘single stepping”’
through the program. When we wish the CPU to run again, the RUN/STOP switch
should be closed.

Chapter 16: SOME USEFUL CIRCUITS 2 77

RUN/STOP
Close Switch to Run
Open Switch to Stop

$-100 Bus 741504 74LS38
pSYNC C>76 D& J 3 XRDY
PR
> o
74LS00 = 74L874
s o af—
, CLR
—_— O = Pull-up resistor
74LS00

FIGURE 16-2. Single Stepper for the S-100 Bus

A HARDWARE BREAKPOINT TRAP

The previous circuit did not allow us to choose where in the program we
wishgd to stop {unless the RUN/STOP switch is open at power-on, in which case
the single stepper will stop the CPU in its first cycle). To stop the processor at a
specific point in the program requires that we set a “‘breakpoint.”” The term break-
point is used because it is the point at which the program execution breaks.

A circuit to stop the processor at a predetermined memory address is shown in
Figure 16-3. The address at which we want the program to stop is set in the
switches, in binary. A closed switch will match a high on a particular address line.
When the TRAP on/off switch is open the breakpoint trap is enabled. When the
address set in the switches appears on the bus, the XRDY line will go low, causing
the processor to stop. It may then be single stepped with the circuit in Figure
16-2.

To restart the processor, press the RESTART button. This will cause the XRDY
line to go high again, causing the CPU to run. If the TRAP on/off switch is closed,
the breakpoint circuitry will have no effect on the XRDY line.

Here’s how the circuit works: the address lines are compared to the settings of
the address switches by the 74LS136 exclusive-OR gates, exactly the same as
they are in our address decoder circuits. (See Chapter 5 for a discussion of how
this works.) The XOR gate outputs are tied together in three separate groups. This
was done to minimize the load on the outputs. The three outputs are combined
and inverted by a 74LS10. This output will go low only when there is a match on

2 78 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

+5V

Trap C[Trap
Address < Address
Switches >1 kO 1 KD Switches
"25’25)) >
7418136
TRAP
h Open Switch to Trap
74L538

] -[:——<r” 3
741510 - xROY

7a1s04[l

oE&)D——" 74L810 PR
D Q

741574
>ck afp—
ClR

W@W

k;

i
Y

74L5136

741504

FIGURE 16-3. S-100 Breakpoint Trap Circuit

all of the address lines. This signal is inverted by a 74LS04 and applied to one
input of another section of the 74LS10. One of the other inputs to this gate is the
pSYNC signal, and the third input is the inverted clock (). When all three inputs
are high (which will occur at the beginning of a bus cycle if there is a match) the
output will go low, presetting the output of the flip-flop high. This will cause the
XRDY line to be driven low (if the TRAP on/off switch is open) and the CPU will be
stopped. To restart the processor, press the RESTART button. This will be
debounced by the cross-coupled gates and will clock a low out of the flip-flop,
causing the XRDY line to return high again, and the CPU to continue.

The three circuits discussed above {LEDs, single stepper, and breakpoint trap)
can be combined on a single circuit board to make a powerful debugging tool.

Chapter 16: SOME USEFUL CIRCUITS 2 79

AN ERROR+ TRAP CIRCUIT

In some of the earlier chapters we discussed the possibility of an error occur-
ring somewhere in the system. In response to that condition we stated that the
ERROR=* line should be asserted and that some form of hardware should latch the
information from the bus so that the error may be attended to. But we never
showed you any hardware to implement this ““trap.”” The circuit in Figure 16-4 is
one such solution.

The idea behind this circuit is to latch the address bus on every M1 or instruc-
tion fetch cycle. When an error occurs (ERROR#* goes low) the address in the
latches is frozen. This means that no further latching will occur. The latches will
then contain the address of the most recently executed instruction. The error
recovery routine may then read the contents of the latches to determine what
caused the error. Without the address of the most recent instruction, the system
may never be able to determine the cause of the error. The error recovery routine
must reenable the trap circuit so that new M1 cycles may be latched again. This
will usually be the last thing the recovery routine does before returning to the
system.

Here's how the circuit works: the address bus is connected to the inputs of
three 74LS374 octal latches. When the system is powered up the 74LS74 will be
preset by POC#. The flip-flop Q output is applied to one input of an AND gate,
allowing the other input to pass through to the output. The other input is a signal
consisting of pSYNC, inverted pSTVAL#, and sM1. All these signals will go high
near the beginning of the bus cycle in which an instruction fetch is occurring. The
output of the AND gate will go high as pSTVAL# falls {indicating a valid status)
and will latch the addresses into the 74LS374s.

When ERROR# falls, a low will be clocked out of the 74LS74 and will set one
input to the AND gate low. This will inhibit further M1 cycles from latching the
address, and therefore the error-related address will be preserved. ERROR* low
will also cause a nonmaskable interrupt which should cause the error recovery
routine to be invoked.

The error recovery routine can then read the data in the latches by addressing
the three input ports that are decoded by the address decoder and the 74LS32
gates. The fourth I/0 port location is used to reset the error latch so that new M1
cycles may be latched and another error can be detected.

A JUMP-ON-RESET CIRCUIT

A very useful circuit to have in a system is one that will automatically cause the
processor to jump to a specific memory location at power-up and every time a
reset occurs. All processors have some mechanism for doing this, but the starting

280 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

$-100 Bus

A20 >—————— 7415374
Latch
a Oo————

$-100 Bus

“D D7

33> o6

92

20> o

iD D4

42> o
> o

=> on

74L8374
Latch

7418374
Latch

pSTVAL*

psYNC >

741811

sM1

ERROR#

NMI=

FIGURE 16-4. ERROR#* Trap Circuit

741532

741832

74LS32

74LS00

SELD»

SELC+ @

SELB»

S’ SELA+

S50 oo

46 sINP

oDBIN

NN A7

NANNSU AQ

% POC*

Chapter 16: SOME USEFUL CIRCUITS 28 ’

+5V

430 D17
> o6
2> o

“C3 hex” 5 91
JMP opcode {04

7415244 a2
> o3
2> oon
24 oit

D 95
$-100 Bus D oio

741504 —
78 =
pDBIND—Dc @: l]
74LS32
—0" 0~ -
Set Switches ’_O/O_O“ -y
for “Low™ Byte
of Jump »—o/o—o—

Addi)
ress ~ :

74L5244

74L832

Set Switches
for “High” »—o/o—<>—— -
Byte of

-4 Jomp $—0" O~
Address ’_'O/O—O— 7

741874

> o« @ - 74LS244

CLl

+5V F'O/

j»—o/o—o———{>

75 —
RESET*| < 1 I
74LS125A _@ O = Pull-up resistor

- 74L832

PHANTGOM«

FIGURE 16-5. Jump-On-Reset Circuit

2 8 2 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

address is usually "hard-wired’’ inside the CPU chip itself. This address may not
be convenient to use. The circuit in Figure 16-5 allows the CPU to jump to any
address. This will occur at power-up and every time RESET # is asserted (usually
by pushing the RESET button).

The “jump’’ op-code for 8080/8085/Z280 processors is hard-wired to the
inputs of buffer 5 (in this case a C316). If other processors are used, a different
op-code may be selected. The low byte of the jump address is set with the
switches connected to the inputs of buffer 6 and the high byte of the address is
set with the switches connected to the inputs of buffer 7. An open, or off, switch
represents a 1 in the jump address, and a closed, or on, switch represents a O.

Here's how the circuit works: when a RESET#* occurs {remember that a
RESET * will be generated along with POC#* at power-up), flip-flop 1's output will
be set low, and the outputs of flip-flop 2, 3, and 4 will be set high. The output of
flip-flop 4 is inverted by the 74086, which will drive PHANTOM# low, disabling all
the memory on the bus. The low at the output of flip-flop 1 is applied to one input
of a low-true AND gate (74L.S32). The other input gets the inverted pDBIN. When
pDBIN goes high, the output of the OR gate will go low, enabling buffer 5. This
places the JMP op-code onto the data input bus, which the processor will read.

When pDBIN falls, the low at the output of flip-flop 1 will be clocked into flip-
flop 2, setting its output low. Flip-flop 1's output will now be high, which will
inhibit buffer 5. Buffer 6 will now turn on when the next pDBIN is high, driving the
low byte of the jump address onto the data input bus. When this pDBIN falls, the
low at the output of flip-flop 2 will be clocked into flip-flop 3 and will in turn ena-
ble buffer 7 which will drive the high byte of the jump address onto the data input
bus. When this read cycle is complete, flip-flop 3's output will go high, which will
clock a low into flip-flop 4 (which has been high all this time, driving PHANTOM
low). This will cause PHANTOM#* to return high, enabling the system memory and
causing the processor to continue execution from the desired address.

The flip-flops will all remain in this state until another RESET # occurs, which
will restart the process.

circuﬁs not covered
N this book

In this book we have presented many circuits and interfaces, but there are cer-
tain kinds of devices that we didn’t describe or show how to construct. Some of
these devices are: video and graphics circuits, dynamic memory interfaces, floppy
and hard disk interfaces, cassette interfaces, CPU boards, and S-100 interfaces
for non-S-100 based computers. The purpose of this chapter is to briefly explain
why these items were not addressed in this text.

The basic reason is that the circuits we have presented are fairly complex in
nature; the above circuits are much more complex than the ones we have shown
you. Another reason is that most of the peripherals involved in the above inter-
faces li.e., a hard disk drive or a dynamic memory IC) are tricky enough by them-
selves. Up to 90% of the S-100 card circuitry may be dedicated to accommodat-
ing the peripheral device and only 10% to the actual S-100 interface. We did not
feel it was worthwhile to explain the 90% so that the 10% relevant to this text
would be understandable. Most of that 10% ends up looking like a few parallel
ports anyway, so you will still understand the underlying concepts should you ever
encounter such interfaces.

We did not tell you how to build a cassette interface for two reasons: 1) There
is no real “‘standard’’ for cassette interchange in the S-100 world, and 2) you
should not waste your time with cassettes. We recommend that you buy a floppy
disk system instead. You will quickly recover the cost of the floppy disk system in
the time you won't spend waiting for the cassette to load.

We did not show you how to build a CPU board because each CPU iC has
different problems associated with getting it on the S-100 Bus and meeting the
IEEE standard. Some of these problems are minor and some are major. In any
case, not only is building a CPU board a complex task (one error here can mess up

283

2 8 4 INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

your whole system’s timing), but if we showed you how to use CPU ““A’’ then you
would still need information on CPU “B"”’, etc. You are much better off buying a
CPU board from a manufacturer who guarantees it to meet the |EEE standard.

We did not show you how to interface a non-S-100 based computer (such as
a TRS-80) to the S-100 Bus for several good reasons. One is that although the
actual hardware interface may not be too difficult, the software considerations
are usually overwhelming. Another is that the hardware interface might not be
easy. In fact, it may take radical modifications to some of these computers to
make an S-100 interface meet the |EEE standard (and even then some would not
meet it). The last reason is that the expansion signals of most other computers are
not standardized, and may change from model to model. Trying to keep up with
that would be a nightmare.

We did not show you how to interface dynamic memory to the S-100 Bus
because the problems involved would require almost a whole book by themselves.
In addition to timing, board layout plays a major part in the proper operation of a
dynamic memory card. A wire-wrapped dynamic memory board would be unrelia-
ble at best.

We did not show you how to interface floppy and hard disks to the S-100 Bus
because the interface to the drives themselves is quite complicated. As with
dynamic memories, the problems and considerations here would take a whole
book. You are much better off taking advantage of a manufacturer’s expertise in
this area and buying a floppy or hard disk system that is already designed and
debugged.

Finally, we did not show you how to build video and graphics interfaces.
Devices of this type are best left to those who know the intricacies of video inside
and out. If you are interested in graphics or video displays, the basic concepts we
have presented in this text should help you in interfacing those circuits to the
S-100 Bus. We recommend that you refer to The CRT Controller Handbook by
Gerry Kane (Osborne/McGraw-Hill, 1981). Also, a number of excellent video and
graphics boards are available commercially.

the ASCII]
character codes

b7 —M—— 0 0 (¢] 1 1 1 1
b —— 0o 0 1 1 (4] 0 1 1
b —— 0 1 0 1 Y] 1 1
Column
b4 b3 b2 b1 0 1 2 3 4 5 6 7
Row
0 0 0 0 0 NUL | DLE | SP 0 @ P ’ p
] 0 0 1 1 SOH | DC1 ! 1 A Q a q
(o} 0 1 o 2 sTX { bC2| 2 B R b r
o 0 1 1 3 ETX | DC3| # 3 C S c s
4] 1 o 0 4 EOT | DC4 $ 4 D T d t
0 1 o 1 5 ENQ | NAK|[% 5 E u e u
o 1 1 Y 6 ACK | SYN| & 6 F \ f v
0 1 1 1 7 BEL | ETB ‘ 7 G W g w
1 0 0 0 8 BS CAN| 8 H X h X
1 0 0 1 9 HT EM i 9 | Y i y
1 0 1 0 10 LF suB| * : J z i z
1 o 1 1 1 VT | ESC| + ; K [k !
1 1 0 0 12 FF FS < L N\ | i
1 1 o 1 13 CR | GS - = M) m !
1 1 1 (V] 14 {e] RS . > N A n ~
1 1 1 1 15 St us | / ? 0 — | o |DEL
NUL Nuil DC1 Device control 1
SOH Start of heading DC2 Device control 2
STX Start of text DC3 Device control 3
ETX End of text DC4 Device control 4
EOT End of transmission NAK Negative acknowledge
ENQ Enquiry SYN Synchronous idle
ACK Acknowledge ETB End of transmission block
BEL Bell, or alarm CAN Cancel
BS Backspace EM End of medium
HT Horizontal tabulation SuB Substitute
LF Line feed ESC Escape
VT Vertical tabulation FS File separator
FF Form feed GS Group separator
CR Carriage return RS Record separator
SO Shift out us Unit separator
i:.E 22;: Ili:k escape SP Space
DEL Delete

285

hex decimal octal,
binary conversion table

Y 0000 0001 0010 0011 0100 0107 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Binary

X [} 1 2 3 4 5 6 7 8 9 A B C D E F Hex
0000 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 Decimal
0 000 001 002 003 004 005 006 007 010 OmN 012 013 014 015 016 017 OQctal
0001 1016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 O3 Decimal
1 020 Oo21 022 023 024 025 026 027 030 O3 032 G633 034 035 036 037 Octal
0010 | 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 Decimal
2 040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057 Oclal
0011 (048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 Decimal
3 060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077 Octal
0100 |064 085 066 067 068 063 070 o7 072 073 074 075 076 077 078 079 Decimal
4 100 101 102 103 104 105 106 107 110 ARA 112 13 114 115 118 117 Qctal
0101 |080 081 082 083 084 085 086 087 088 089 030 091 092 093 094 095 Decimal
5 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137 Octal
0110 |096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 Decimai
6 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 Octal
o111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 Decimal
7 160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177 Ocial
1000 [128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 Decimal
8 200 201 202 203 204 205 206 207 216 211 212 213 214 215 218 217 Octal
1001 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 Decimal
9 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237 Octal
1010 | 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 Decimal
A 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257 Octal
1011 |176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 Decimal
B 260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277 Octal
1100 | 192 193 194 195 196 197 198 199 200 20% 202 203 204 205 206 207 Decimal
Cc 300 301 302 303 304 305 306 307 310 3N 312 313 314 315 316 317 Ocual
1101 [208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 Decimal
D 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337 Octal
1110 |224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 Decimal
E 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357 Octal
1111 {240 241 242 243 244 245 246 247 248 249 250 251 252 263 254 255 Decimal
F 360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377 Octal

286

memory addressing,
hexadecimal/decimal

Extended Address Byte High Byte Low Byte
Hex Decimal Hex Decimal |[Hex Decimal Hex Decimal| Hex Decimal Hex Decimal
o] 0 0 0 0 0 o] 0 0] 0 0
1 1,048,576 1 65,636 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 | 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 | 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 | 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680} 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393,216 | 6 24,576 6 1,636 6 96 6 6
7 7.340,032 7 458,752 | 7 28,672 7 1,792 7 112 7 7
8 8,388,608 8 524,288 | 8 32,768 8 2,048 8 128 8 8
9 9,437,184 9 589,824 | 9 36,864 9 2,304 9 144 9 9
A 10,485,760 A 655,360 | A 40,960 A 2,560 A 160 A 10
B 11,534,336 8 720,896 | B 45,056 B 2,816 B 176 B 1
C 12,682,912 C 786,432 | C 49,152 C 3,072 C 192 C 12
D 13,631,488 D 851,968 | D 53,248 D 3,328 D 208 D 13
E 14,680,064 E 917,504 | E 57,344 E 3.584 E 224 E 14
F 15,728,640 F 983.040 | F 61,440 F 3.840 F 240 F 15
Examples
1. Hex-to-Decimal Hex = C31B 49,152 C
768 3
16 1
+ 11 B
Decimal = 49,947
2. Decimal-to-Hex Decimal = 43,390
-40,960 A
- 2,430
-2304 9
126
- 112 7
Hex = A97E 14 E
3. Extended Address Hex-to-Decimal Hex = 2B5F6A 2,097,152 2
720,896 B
20,480 5
3.840 F
96 6
+ 10 A

Decimal = 2,842,474

287

8O80/80O85
Instructions

AND+ 87 80 81 82 83 84 85 86 C6 Add register to A

ADC+ 8F 88 89 BA 8B 8C 8D 8E CE Add register to A with carry
ANA* A7 A0 A1 A2 A3 A4 A5 A6 E6 AND register with A

CMP» BF B8 B9 BA BB BC BD B8E FE Compare register with A
DCR#» 3D 05 OD 15 1D 25 2D 35 - Decrement register

INR*# 3C 04 OC 14 1C 24 2C 34 - Increment register

MOV A 7F 78 79 7A 7B 7C 7D 7E 3E A — register

MOV B 47 40 41 42 43 44 45 46 06 B — register

MOV C 4F 48 49 4A 4B 4C 4D 4E OE C — register

MOV D 57 50 51 52 53 54 55 56 16 D — register

MOV E 5F 58 59 5A 5B 5C 5D 5E 1E E — register

MOV H 67 60 61 62 63 64 65 66 26 H — register

MOV L 6F 68 69 6A 6B 6C 6D 6E 2E L — register

MOV M 77 70 71 72 73 74 75 - 36 (HL) — register

ORA* B7 BO B1 B2 B3 B4 B5 B6 F6 OR register with A

SBB* 9F 98 99 9A 9B 9C 9D 9E DE Subtract register from A with borrow
SUB+ 97 90 91 92 93 94 95 96 D6 Subtract register from A
XRA#* AF A8 A9 AA AB AC AD AE EE Exclusive-OR register with A

B7 BO
[S I z l IAcI | P I | C }4——Flag Register

Carry

Parity

Auxiliary Carry

Zero

Sign

+ Change last letter of mnemonic to |, in most cases (e.g., ADI instead of ADD}

288

Appendix D: 8080/8085 INSTRUCTIONS 289

DAD###+ - 09 19 29 39 Add pair to HL
DCX## - OB 18 2B 3B Decrement register pair
INX*# - 03 13 23 33 Increment register pair
LDAX - 0A 1A 7E - Load A indirect (register pair holds address)
STAX - 02 12 77 - Store A indirect {register pair holds address)
LXI - 01 11 21 31 Load register pair immediate
POP F1 c1 D1 E1l - Pop register pair from stack
PUSH FS Cb D5 ES - Push register pair onto stack
LHLD - - - 2A - Load HL direct (addr)
SHLD - - - 22 - Store HL direct {addr)
0 1 2 3 4 5 6 7
RST i [c7 CF D7 DF E7 EF F7 FFj Restart call to location (i x 8)

z NZ C NC P M PE PO
Not Not Even Odd
Uncond. Zero Zero Carry Carry Plus Minus Parity Parity

C(ALL) CcD CC C4 DC D4 F4 FC EC E4 Call subroutine if condition is true
JIMP) Cc3 CA C2 DA D2 F2 FA EA E2 Jump if condition is true

RIET) c9 c8 CO D8 DO FO F8 E8 EO Return if condition is true
CMCr»s 3F Complement carry flag PCHL E9 Jump to (HL)

CMA 2F Complement A RAL 17 Rotate A left through carry
DAA* 27 Decimal adjust A RAR 1F Rotate A right through carry
DI F3 Disable interrupts RLC 07 Rotate A left circular

El FB Enable interrupts RRC OF Rotate A right circular

XCHG EB Exchange DE and HL STC#»+ | 37 | Setcarry flag

XTHL E3 Exchange HL and top of stack STA 32 | Store A

HLT 76 Halt processor LDA 3A | Load A

IN Port DB Input to A SPHL F9 Load SP with HL

OUT Port D3 Output from A RIM 20 Read interrupt mask } 8085
NOP 00 No operation SIM 30 Set interrupt mask only

* Al flags affected
#» All flags except carry flag affected
##% Only carry flag affected

Copyright S. Libes 11-78

/80 instructions with
3080 cross references

8080

Mnemonic Mnemonic

ADO
ADC
ANA

CMP
DCR
INR

MOVA
MOVB
MOVC
MOVD
MOVE
MOVH
MOVL
MOVM

ORA

sS88

sus
XRA

290

280

ADD
ADC
AND
BITO
BIT1
BIT2
8IT3
8IT4
8IT5
BIT6
8IT7
cP
DEC
INC
IN(C)

LDA

LDB

LDC

LDD

LDE

LDH

LDL
LD(HL}
LDOX+d)
LDOY +d)
OR
ouTIC)

RESO
RES1
RES2
RES3
RES4
RES5
RES6
RES?7
RL
RLC
RR
RRC
SBC
SETO
SET1
SET2
SET3
SET4
SETS
SETE
SET7
SLA

SRA

SRL

sus
XOR

A B c D E H L M Immed (X +d) (1Y + d)
87 80 81 82 83 84 85 86 cé DD86 FD86
8F 88 89 8A 88 8C 8D 8E CE DDBE FD8E
A7 AO Al A2 A3 A4 AS A6 E6 DDAG6 FDA&
CB47 CB40 CB41 CB42 CBA3 (844 (B4t CB46 DDCB46 FDCB46
CB4F CB48 CB49 CB4A CB4B CBAC CB4D CB4E DDCB4E FDCB4E
CB57 CB50 CB51 CB52 CB53 (B54 CB55 CBS56 DDCB56 FDCBS6
CB5F CB58 CB59 CBS5A CB5B CB5C CB5D CBSE DDCBSE FDCBSE
CBB7 CB6O CB61 CBB2 CB63 CB64 CBBS CB66 DDCB66 FDCB66
CB6F CB68 CB69 CB6A CB6B CB6C CB6D CBBE DDCB6BE FDCB6E
CB77 CB70 CB71 CB72 CB73 (CB74 CB75 CB76 - DDCB76 FDCB76
CB7F CB78 CB79 CB7A (B78 CB7C CB7D CB7E - DDCB7E FDCB7E
8F a8 89 BA B8 B8C 8D BE FE DDBE FDBE
3D 08 oD 15 10 25 20 35 - DD35 FD35
3C 04 oc 14 1C 24 2C 34 - DD34 FD34
ED78 ED4O ED48 ED50 ED58 EDSO EDE8 - - - -

7F 78 79 7A 78 7C 7D 7E 3 DD7E FD7E
a7 40 41 42 43 44 45 48 08 DD46 FD46
4F 48 49 4A 4B 4c 4D 4E OF DDA4E FD4E
57 50 51 52 53 54 55 56 16 DD56 FD56
5F 58 59 5A 58 5C 5D 5€ 1E DD5E FD5E
67 60 61 62 63 64 65 86 286 DD66 FD66
6F 68 69 BA 68 86C 6D 6E 2E DD8E FD6E
77 70 71 72 73 74 75 - - - -

DD77 DD70 DD71 DD72 0OD73 DD74 DD75 OD36 - -

FD77 FD70 FO71 FD72 FD73 FDO74 FD75 - FD36 - -

B7 [:1¢] Bt B2 B3 B4 85 B6 F6 [al]:1) FDB6
ED79 ED41 ED49 ED51 ED59 ED61 EDEY9 - - - -

CB87 CB8O CB81 (CBB82 CB83 (B84 (B85 CBS86 DDCB86 FDCB86
CB8F (CB88 (B89 CBBA (CB8B CBBC CB8D CBSE DDCBBE FDCBSE
C897 CBYO CB91 CB9Y92 CB93 CB94 CBI95 CB96 DDCBY96 FDCB96
CBOF CB98 CB93 CBSA CBY9B (BSC CB9D CBOE DDCBY9E FDCB9E
CBA7 CBAO CCA1 CBA2 CBA3 CBA4 CBA5 CBAG6 DDOCBA& FDCBAG
CBAF CBAB CBA9 CBAA CBAB CBAC CBAD CBAE DODCBAE FDCBAE
CBB7 CBBO CBB1 CBB2 CBB3 CBB4 CBBS5 CBB6 DDCBB6 FDCBB6
CBBF CBB8 CBBS CBBA CBBB CBBC CBBD CBBE DODCBBE FDCBBE
CcB17 CB10 CB11 CB12 CB13 CB14 CB15 CB16 - DOCB16 FDCB16
CB07 CBOO €801 CBO2 CBO3 CBC4 CBO5 CBO6 DDCBO6B FDCBO6
CB1F CB18 CB19 CB1A CB1B CB1C CBI1D CB!'E - DOCB1E FDCBI1E
CBOF CBO8 CBO3 CBOA CBOB CBOC CBOD CBOE - DOCBOE FDCBOE
9F 98 99 9A 98 ac 9D SE DE DD9E FDSE
CBC7 CBCO CBC1 CBC2 CBC3 CBC4 CBC5 CBC6 - DDCBCE FDCBCE
CBCF CBC8 CBC3 CBCA CBCB CBCC CBCD CBCE - DDCBCE FDCBCE
CBD7 CBDO CBD1 CBD2 CBD3 CBD4 CBD5 CBD6 - DDCBDE FOCBD6
CBDF CBD8 CBDYS CBDA CBDB CBDC CBDD CBDE - DDCBDE FDCBDE
CBE7 CBEQ CBE1 CBE2 CBE3 CBE4 CBES CBE6 - DDCBE6 FDCBEG
CBEF CBE8 CBES CBEA CBEB CBEC CBED CBEE - DDCBEE FDCBEE
CBF7 CBFO CBF1 CBF2 CBF3 CBF4 CBF5 CBF6 - DDCBF6 FDCBF6
CBFF CBF8 CBFS CBFA CBFB CBFC CBFD CBFE - DDCBFE FDCBFE
CB27 CB20 CB21 CB22 CB23 (CB24 CB25 CB26 - DDCB26 FDCB26
CB2F CB28 CB29 CB2A CB2B CB2C CB2D CB2E - DDCB2E FDCB2E
CB3F CB38 CB39 CB3A CB3B CB3C CB3D CB3E - DDCB3E FfDCB3E
47 90 81 92 93 94 95 96 o1} 0D96 FDY6
AF A8 A9 AA AB AC AD AE AF DDAE FDAE

E:] 8080 cross references

Description

Add to A

Add with carry to A

AND with A

Test bit O

Test bit 1

Test bit 2

Test bit 3

Test it 4

Test bit 6

Test it 6

Test bit 7

Compare with A
Decrement

Increment

Input to register from port
addressed by C

Move to A

Maove to B

Move to C

Move to D

Move to E

Move to H

Move to L

Move to memary

Move to memory (IX + d)
Move to memory {IY + d}
OR with A

Qutput register to port
addressed by C

Reset bit O

Reset bit 1

Reset bit 2

Reset bit 3

Reset bit 4

Reset bit 5

Reset bit 6

Reset bit 7

Rotate left through carry
Rotate left with branch carry
Rotate right through carry
Rotate right with branch carry
Subtract from A with borrow
Set bit 0

Set bit 1

Set bit 2

Set bit 3

Set bit 4

Set bit 5

Setbit &

Set bit 7

Shift left into carry and
clear LSB

Shift nght into carry and
preserve MSB

Shift nght into carry and
clear MSB

Subtract contents from A
Exclusive-OR contents with A

Appendix E: Z80 INSTRUCTIONS 2 9 1

L 2
8 @ o L ;
3= S E »n
© = NE 2 (BC) (DE) (HL) sP IX Y
DAD ADD HL - 09 19 29 39 - - Add to HL
ADD IX - DDO9 DD19 - DD39 DD29 - Add to IX
ADD IY - FDO9 FfD19 - FD39 - FD29 Add to IY
ADC HL - ED4A EDS5A ED6A ED7A - - Add to HL with carry
SBC HL - ED42 £ED52 ED62 ED72 - - Subtract from HL with borrow
DCX DEC - 0B 1B 2B 38 DD2B FD2B Decrement register pair
INX INC - 03 13 23 33 DD23 FD23 Increment register pair
LDAX LDAIN - O0A 1A 7E - - - Load A from memory (register pair)
STAX LD {r) A - 02 12 77 - - - Store A in memory (register pair)
LXi LD -0 11 21 31 DD21 FD21 Load register pair immediate
POP POP F1 C1 D1 E1 - DDE1 FDE1 Pop register pair from stack
PUSH PUSH F5 C5 D5 ES - DDE5 FDES Push register pair onto stack
LHLD LD r,{addr} - ED4B ED5B 2A ED7B8 DD2A FD2A Load register from memory
SHLD LD (addr),r | - ED43 ED53 22 ED73 DD22 FD22 Store register in memory
o =z - T T
R
g 5 H @ 2 o
o [5 5 o 153
&8s _f =z£E o8 582
cP EDA1 EDOB1 EDAY EDBY Compare A to memory (HL), increment or
decrement HL, decrement BC; stop when BC = O or
match is found
LD EDAO EDBO EDAS8 EDBS8 Move from memory (HL) to memory (DE),
increment or decrement address, decrement BC;
stop when BC = 0
ouT EDA3 EDB3 EDAB EDBB QOutput memory (HL} to port, increment or
decrement BC; stop when BC = 0
IN EDA2 EDB2 EDAA EDBA Input to memory (HL) from port, increment or
decrement HL, decrement BC; stop when BC = 0
8080 Z80
Mnemonic Mnemonic] 1 2 3 4 5 6
RST RST c7 CF D7 DF E7 EF F7 FFJ Restart call at location (i x 8)
> o
‘g ‘€ .
g g g] > >
82 g2 § % zp E sE 8 £ E% 3%
@ N S5 N 28 &8 28 =z & ad o¢&
CALL CALL ch cCC c4 DC D4 F4 FC EC E4 Call subroutine if condition is true
JMP UP C3 CA C2 DA D2 F2 FA EA E2 Jump if condition is true
JR 18 28 20 38 30 - - - - Jump relative if condition is true

o-100 bus electrical
specifications

(0°Cto 70°C)
POWER BUS
Instantaneous Average
Line Max. Min. Max. Min.
+8V +25V +7V +11V --
+16 V +35V +145V +215V -
-6V -145V -35V -215V --
alt logic 5V ov +5V oV
DRIVERS
Output Voltage
Low state: VoL < 405V@Ig =24mA
High state: VouloH = +24V@lgy=-2mA
{except open collector types)
Leakage current {high state): <425 uA
Rise time: 5-50 ns (at rated capacitive load)
RECEIVERS
Source current: <05 mA @05V
Sink current: <50 nA @24V

Voltage low state: >08V
Voltage high state: <20V

INTERNAL CAPACITIVE LOADS (@ 25° C}

Drivers: <15 pF
Receivers: <10 pF
Transceivers: <20 pF

Card level inputs: <25 pF

292

standard specifications

for S-100 bus

INnterface devices

This proposed standard eliminates many of the problems
in the S-100 bus and upgrades it for 16-bit microprocessors.
It is offered here for public comment before submission

to the IEEE Standards Board.

IEEE Task 696.1 / D2
Kells A. Elmquist, InterSystems Inc.
Howard Fullmer, Parasitic Engineering Inc.
David B. Gustavson, Stanford Linear Accelerator Center
George Morrow, Thinker Toys

Introductory comments by
Robert G. Stewart, Chairman,
IEEE-CS Computer Standards Committee

The following draft of a proposed standard for the
S-100 bus is the culmination of over a year and a half
of effort to eliminate many of the bus’s problems and
to upgrade it to be suitable for 16-bit microproces-
sors. The address bus has been extended to 24 bits,
the data in and data out buses ganged to form a 16-bit
wide data bus for 16-bit transactions, and two addi-
tional handshaking lines added to permit intermixing
of 8- and 16-bit memory cards.

A binary encoded multiple master arbitration bus
permits up to 16 masters on the bus. The necessary
logic can be implemented in one chip. Additional
ground lines, a power fail line, and an error line have
been added. Three lines termed NDEF —for not to be
defined—have been allotted to allow leeway to im-
plementers for specialized use. Such use must be
specified in all literature. Five lines are RFU—re-
served for future use. Some lines formerly used for
front panel purposes have been deleted, with the in-
tention that such lines can best be handled by a
jumper cable from the CPU card to the front panel. A
DMA protocol is specified which provides overlap of
the control lines at the beginning and end of the tran-
sition between permanent and temporary masters.
This allows the address, data, and control buses to
settle before information is transferred.

As a bit of personal testimony, I implemented the
new DMA protocol on my own system, which in-
cludes a Digital Systems dual floppy disk interfaced
toa MITS Altair 8800, using DMA for disk transfers.
The soft error rate, presumably due to glitching on

the positive true logic lines, dropped from a situation
where a file would be seriously munged in a few hours
to the present situation where I can work for days on
end without an observable error.

We have observed a new typographic convention in
publishing the proposed standard. The use of an over-
bar to denote electrically low active or negative true
logic lines has been replaced by a postfix asterisk to
avoid confusion with Boolean negation and permit
typing on word processing systems. This is verbal-
ized by the word ‘‘star,” replacing the prior word
“bar.”” The Boolean negation overbar can be optional-
ly replaced by a prefix minus sign, with parenthesesif
needed.

The named authors of the standard were evenly
divided as to whether the asterisk should be included
in logic equations and state diagrams as well as in
electrical signal names and timing diagrams. Two
authors believe that the asterisk, when thought of as
a designator rather than as the negation operator,
adds clarity and consistency, and lessens the need to
remember or look up the electrically active level when
converting from logic to electrical representations.
Such use makes logic state diagrams more directly
useful for interpreting oscilloscope or logic analyzer
waveforms.

The other two authors feel that the inclusion of the
asterisk in the name of a logic state or variable is like-
ly to carry with it the implication of logical negation,
thus causing the logic statements to be interpreted
incorrectly. Furthermore, they assert that many de-
signers think mostly in terms of electrical levels, with
high being true, which again causes logic statements
to be interpreted incorrectly. They propose toresolve
this hazard by removing the electrical information,
i.e., the asterisk, from the variable name when it isus-

© 1979 IEEE. Reprinted, with permission, from Computer, July 1979, pp. 28-52.

293

294

INTERFACING TO S-100//EEE 696 MICROCOMPUTERS

ed in a logic context as opposed to an electrical or tim-
ing context.

A compromise has been reached where the asterisk
is not used in the context of logic equations, but is in-
cluded elsewhere in the document. We solicit feed-
back from the readers on these two points of view.

The S-100 bus subcommittee has been ably chaired
by George Morrow and Howard Fullmer. Both of
them provided invaluable technical insights which
have been incorporated throughout the draft stan-
dard. John Walker of Marinchip Systems suggested
the method of using 16-bit memory and interface
cards interchangeably with 8-bit cards. David
Gustavson and Leo Paffrath of SLAC suggested the
bus arbitration scheme which has also been im-
plemented on the Department of Energy’s Fastbus.
Howard Fullmer suggested the DMA overlap pro-
tocol which lowers glitching noise. Kells Elmquist of
InterSystems offered a critique of the draft pub-
lished in May 1978 in Computer and provided many
useful suggestions for improvement. He carefully in-
vestigated numerous timing and electrical alterna-
tives and resolved many open questions relating to
the standard. Kells wrote the final version of the draft
for submission to and revision by the subcommittee.

The IEEE Computer Society is publishing this
standard in draft form to allow you to comment upon
it prior to submission to the IEEE Standards Board
for adoption as an IEEE standard. For example,
should the data bus be extended to 32 bits, and if so,
how? Your comments should be sent to George Mor-
row by August 15,1979, with copies to Gordon Force.
Mr. Morrow's address is:

George Morrow
Thinker Toys
5221 Central Avenue
Richmond, California 94804

If you would like to participate in other standard-
ization efforts of the Microprocessor Standards Com-
mittee, please contact its chairman:

Gordon Force
Logical Solutions
1128 Amur Creek Court
San Jose, California 95051
Finally, preparation of this proposed standard has
benefited from the contributions of many individuals
and companies. We indeed thank them all.®

The proposed standard
1.0 General
1.1 Scope

This standard applies to interface systems for com-
puter system components interconnected via a 100-
line parallel backplane commonly known as the S-100
bus.

It applies to microprocessor computer systems, or
portions of them, where

July 1979

1) Data exchanged among the interconnected
devices is digital (as distinct from analog).

2) The total number of interconnected devices is
small (22 or fewer).

3) The total transmission path length among inter-
connected devices is electrically short (25" or
less). That is, transmission line propagation
delays are not important.

4) The maximum data rate of any signal on the bus
is low (less than or equal to 6 MHz).

1.2 Object

This standard is intended:

1) To define a rational, general-purpose interface
system for designers of new computer system
components that will ensure their compatibility
with present and future S-100 computer
systems.

2) Toprovide the microprocessor computer system

user with compatible device families which will

communicate in an unambiguous way without
modification, from which a modularly expand-
able computer system may be constructed.

To enable the interconnection of independently

manufactured devices into a single system.

4) To specify terminology and definitions related
to the system.

5) Todefine a system with the minimum number of
restrictions on the performance characteristics
of devices connected to the system.

6) To define a system that, of itself, is of relatively
low cost, and allows the interconnection of low
cost devices.

7) To define a system that is easy to use.

3

1.3 Definitions

The following definitions apply for the purpose of
this standard. This section contains only general
definitions. Detailed definitions are given in other
sections as appropriate.

1.3.1 General system terms

Compatibility. The degree to which devices may be
interconnected and used without modification, when
designed as defined in Sections 2, 3, and 4 of this
standard.

Interface. A shared boundary between parts of a
computer system, through which information is con-
veyed.

Interface system. The device independent func-
tional, electrical, and mechanical elements of an inter-
face necessary to effect unambiguous communica-
tion among a set of devices. Driver and receiver cir-
cuits, signal line descriptions, timing and control con-
ventions, message transfer protocols, and functional
logic circuits are typical interface system elements.

PreJiminarnyulfecl 1o Revision

System. A set of interconnected elements con-
stituted to achieve a given objective by performing
specified functions.

1.3.2 Signals and paths

Assert. To drive a signal line to the true state. The
true state is either a high or low state, as specified for
each signal.

Bidirectional bus. A bus used by any individual
device, or set of devices, for the two-way transmis-
sion of messages, that is, both input and output.

Bit-parallel. A set of concurrent data bits present
on a like number of signal lines used to carry informa-
tion. Bit-parallel data bits may be acted upon concur-
rently as a group or independently as individual data
bits.

Bus. A set of signal lines used by an interface
system, to which a number of devices are connected,
and over which messages are carried.

Byte. A set of bit-parallel signals corresponding to
binary digits operated on as a unit. Connotes a group
of eight bits where the most significant bit carries the
subscript 7 and the least significant bit carries the
subscript 0.

Byte-serial. A sequence of bit-parallel data bytes
used to carry information over a common bus.

High state. The electrically more positive signal
level used to assert a specific message content
associated with one of two binary logic states.

Low state. The electrically less positive signal level
used to assert a specific message content associated
with one of two binary logic states.

Signal. The physical representation which conveys
data from one point to another. For the purpose of
this standard, this applies to digital electrical signals
only.

Signal level. The magnitude of a signal when con-
sidered in relation to an arbitrary reference
magnitude (voltage in the case of this standard).

Signal line. One of a set of signal conductors in an
interface system used to transfer messages among in-
terconnected devices.

Signal parameter. That parameter of an electrical
quantity whose values or sequence of values convey
information.

Unidirectional bus. A bus used by a device for one-
way transmission of messages, that is, either input
only or output only.

Word. A set of bit-parallel signals corresponding to
binary digits and operated on as a unit. Usually con-
notes a group of 16 bits where the most significant bit
carries the subscript 15 and the least significant bit
carries the subscript 0.

1.4 State diagram notation

Each state that an interface function can assumeis
represented graphically by a circle. A mnemonic is
used within the circle to identify the state.

All permissible transitions between states of an in-
terface function are represented graphically by ar-

Preliminary—Subject to Revision

IEEE S-100 STANDARD 295

rows between them. Each transition between states
may be qualified by an expression whose value must
be either true or false. If a state transition is not
qualified by an expression it is assumed that transi-
tion from one state to another will occur after a mini-
mum time period, as indicated in the timing specifica-
tions. An interface function must enter the state
pointed to if and only if the driving expression
becomes true, or in the case of a time dependent tran-
sition, as soon as the minimum specified time has
passed.

EXPRESSION 1

EXPRESSION 2

An expression consists of two parts, a driving ex-
pression and a driven expression, separated by a
slash {/). The driving expression is mandatory and
specifies the conditions necessary for the state tran-
sition. The driven expression is optional and is used
to indicate signal transitions as a result of the state
transition. A signal transition is indicated by the
signal name followed by an equal sign (=), followed
by an indication of the state attained by the signal as
a result of the transition. A driving expression con-
sists of one or more messages used in conjunction
with the operators AND (a+b), OR (a+b), and NOT
(—a). Precedence is defined by parentheses. An exam-
ple expression is: (driving/driven)

A - (B+C) / D=F(ALSE), E=T(RUE)
If AAND(BORC)istrue, thenDis forced false and E
is forced true, and the state transition takes place.

1.5 Logical and electrical state relationships

This standard makes a distinction between the
logical function of a signal and its electrical im-
plementation. All equations in this standard are logic
equations, not electrical equations {unless otherwise
stated), and are written in terms of logic states. The
use of the term "‘active” for the purpose of this stan-
dard is synonymous with the logic state true.

There are two types of electrical implementation of
the logic states:

Active high signals. Active high signals are
represented without a suffix after the signal name
mnemonic (i.e. ABCD).

BINARY ELECTRICAL ELECTRICAL
LOGIC STATE STATE SIGNAL LEVEL STATE
CORRESPONDS TO
FALSE (F) 0 <.8V, CALLED THE L
LOW STATE.
CORRESPONDS T0
TRUE(T) 1 >2.0 V,CALLED THE H
HIGH STATE.
COMPUTER

2 96 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

Active low signals. Active low signals are
represented with an asterisk suffix after the
mnemonic (i.e. ABCD*),

BINARY ELECTRICAL ELECTRICAL
LOGIC STATE STATE SIGNAL LEVEL STATE
CORRESPONDS TO
FALSE (F) 0 22.0V, CALLED H
THE HIGH STATE.
CORRESPONDS TO
TRUE(T) 1 <.8V, CALLED L

THE LOW STATE.

In translating a logic equation into an electrical im-
plementation, care must be taken to account for the
active-high or active-low character of the electrical
signal. For example, the logic equation

MWRT = pWR + —sOUT, (logic equation)
when implemented electrically, becomes
MWRT = (—pWR*) « —sOUT, (electrical equation)

since pWR* is the electrical signal carrying the pWR
information on the bus.
Note that this is equivalent to

MWRT = —(pWR* + sOUT), (electrical equation)

by deMorgan’s theorem; consequently, a single two-
input NOR gate is sufficient to implement MWRT, if
it meets the loading and drive requirements.

The edge or change of electrical value of an elec-
trical signal on a timing diagram which causes a tran-
sition change of the variable as a logic variable from
false to true is:

Signal Edge
active high rising
active low falling

Logic equations in state diagrams are written in
terms of logic state, not electrical state.

The suffix asterisk ‘“*’" is not a negation operator.
It is a designator {like a comment or footnote) at-
tached to a name, telling the reader what the relation-
ship is between the truth state and the electrical
state. That is, this variable is true when the line on the
bus is low.

A prefix minus sign ‘" represents the logical
negation operator and is equivalent to the use of an
overbar. Parentheses are used to enclose the negated
variable when required for clarity.

1.6 Interface system overview
1.6.1 Interface system objective

The overall purpose of the interface system is to
provide an effective communication link over which
messages are carried in an unambiguous way among

a group of interconnected devices.

July 1979

Messages in an interface system belong to either of
two broad categories:

1) Messages used to manage the interface system
itself, called interface messages.

2) Messages used by the devices interconnected by
the interface system, and carried by that sys-
tem, but not part of the interface system itself
(i.e. data). These are called device dependent
messages.

The interface system herein described comprises
the necessary functional and electrical specifications
for interface messages to effect the objective of this
standard, but it is beyond the scope of this standard
to specify the nature or meaning (other than electrical
signal level) of device dependent messages.

1.6.2 Fundamental communication capabilities

An effective communication link requires two basic
functional elements to organize and manage the flow
of information among devices:

1) A device acting as a bus master.
2) A device acting as a bus slave.

All data transfer communications between a bus
master and a bus slave are carried out in terms of a
generalized bus cycle generated by the bus master
and responded to by the addressed bus slave.

In the context of the interface system described by
this standard:

1) A device acting as a bus master has the capabili-
ty to address all bus slaves, or some portion of
them, by generating all interface messages nec-
essary to effect a bus cycle, and has the capabil-
ity to transfer device dependent messages to or
from the addressed slave as a part of that bus cy-
cle.

2) A device acting as a bus slave monitors all bus
cycles, and has the capability, thus, to be ad-
dressed by the bus master and to transfer device
dependent messages to or from the bus master.

Bus master and bus slave capabilities occur both
individually and collectively in devices intercon-
nected via the S-100 interface system.

1.6.3 Message paths and bus structure

The S-100 interface system consists of a set of
signal lines used to carry all information, interface
messages and device dependent messages among in-
terconnected devices.

The bus structure is organized into eight sets of
signal lines:

1) Data bus—

2) Address bus—

3) Status bus—

4) Control output bus—

5) Control input bus—

6) DMA control bus—

7) Vectored interrupt bus--
8) Utility bus—

16 signal lines.

16 or 24 signal lines.
8 signal lines.

5 signal lines.

6 signal lines.

8 signal lines.

8 signal lines.

20 signal lines.

Preliminary — Subject to Revision

2.0 Functional specification
2.1 Functional partition

Functional devices interconnected via the interface
system are divided into two broad classifications, bus
masters and bus slaves, according to their relation-
ship to the generation and reception of interface
messages.

Devices acting as bus masters are responsible for
the initiation of all bus cycles, and for the generation
of all signals necessary for the conduction of an unam-
biguous bus cycle. These signals are termed type M
signals, and consist of the address, status, and con-
trol buses. Device dependent messages are transmit-
ted and received on the data bus.

Bus masters are subdivided into two classifica-
tions, permanent masters and temporary masters. A
permanent bus master (generally a CPU) is the high-
est priority master in the interface system. A tem-
porary master may request the bus from the perma-
nent master for an arbitrary number of bus cycles,
and then returns control of the bus to the permanent
master. The transfer of bus control from a permanent
master to a temporary master and back to the perma-
nent master is termed a DMA cycle.

The difference between a permanent bus master
and a temporary bus master is that:

1) Only one permanent master may exist within
the interface system, whereas up to 16 tempo-
rary masters may co-exist in a single system.

2) A temporary master is not subject toa DMA cy-
cle, that is, there are no nested DM A operations.

Devices acting as bus slaves are bus cycle recep-
tors. A bus slave monitors all bus cycles and, if ad-
dressed during a particular bus cycle, accepts or
sends the requested device dependent message on
the data lines. While bus masters must generate a
specific set of signals in order to assure an unam-
biguous bus cycle, a bus slave need only examine and
generate that subset of bus signals necessary to com-
municate with bus masters.

2.2 Signal lines
2.2.1 General

The bus is a collection of message paths defined
relative to the current bus master. They are:

1) Address bus.

2) Status bus.

3) Data input/output bus.
4) Control output bus.

5) Control input bus.

6) DMA control bus.

7) Vectored interrupt bus.
8) Utility bus.

The nature and use of each bus is specified in the
following sections.

Preliminary —Subject to Revision

JEEE S-100 STANDARD 29 7

2.2.2 Address bus

The address bus consists of 16 or 24 bit-parallel
signal lines used to select a specific location in
memory or a specific input/output device for com-
munication during the current bus cycle.

All bus masters must assert at least 16 address
bits, but may assert 24 address bits if extended ad-
dress capability is desired. Validity of the address
bus is defined in 2.7.3.

Table 1 summarizes address usage for various bus
cycles.

Table 1.
Address usage for different bus cycles.

STANDARD EXTENDED
CYCLE TwPE ADDRESSING ADDRESSING
MEMORY READ
MEMORY WRITE AO-A15 A0-A23
M1 (OP-CODE FETCH)
INPUT
oUTPUT | no-a7t AO-A15
INTERRUPT ACKNOWLEDGE NONE NONE
HALT ACKNOWLEDGE NONE NONE

tsee2.2.23

2.2.2.1 Standard memory addressing

The standard memory address bus consists of 16
lines specifying 1 of 64K memory locations. These 16
lines are named AOQ through A15, where Al5 is the
most significant bit.

2.2.2.2 Extended memory addressing

The extended memory address bus consists of 24
lines specifying 1 of 16 million memory locations.
These 24 lines are named A0 through A23, where A23
is the most significant bit.

2.2.2.3 Standard input/output device addressing

The standard 1/O device address bus consists of 8
lines, A0 through A7, specifying 1 of 256 I/O devices.
A7 is the most significant bit.

NOTE: The 1/O device address has traditionally
been duplicated onto the high order address byte,
Al5-A8. While this is considered acceptable pro-
cedure, it is not recommended for new designs as it
complicates expansion to extended I/O device ad-
dressing.

2.2.2.4 Extended input/output device addressing
The extended I/O device address bus consists of 16
lines, AO through A15, specifying 1 of 64K devices.
A15 is the most significant bit.
2.2.3 Status bus
The status bus consists of eight lines which iden-
tify the nature of the bus cycle in progress, and

qualify the nature of the address on the address bus.

COMPUTER

2 98 INTERFACING TO S-100/IEEE 636 MICROCOMPUTERS

The mnemonics for status lines always begin with a
lower-case s.
The 8 status lines are:

1) Memory read— sMEMR.
2) Op-code fetch— sM1.

3) Input— sINP.

4} Output— sOUT.
5) Write cycle— sWO*,
6) Interrupt acknowledge— sINTA.
7) Halt acknowledge— sHLTA.

8) Sixteen-bit data transfer request— sXTRQ*.

The 8 lines on the status bus must be generated by
the current bus master.
Validity of the status bus is given in 2.7.3.

2.2.3.1 Status memory write

One relevant status signal is not directly available
on the bus, but may be created by the combination of
two others. Status Memory Write is defined as:

sMemory Write =
{(—sOUT) - sWO, (logic equation)

that is, status memory write is true when sOUT is
false and sWO (write) is true.

2.2.3.2 Status usage chart

Table 2 gives the status word definition for all
possible bus cycles. (W) refers to word {16-bit data
path) operations; (B) refers to byte (8-bit data path}
operations. H=high state. L=low state. X=don't
care.

Table 2.
Status usage chart.
£ < &
T o522 5¢E
STATUS BITS 23323333
CYCLE TYPE
MEMORY READ B H L H L L L L H
W)y H L H L L L L L
OP-CODE FETCH B H H H L L L L H
W) H H H L L L L L
MEMORY WRITE ® L L L L L L L H
W) L L L L L L L L
OUTPUT ® L L L H L L L H
W) L L L H L L L L
INPUT B L L H L H L L H
W) L L H L # L L L
INTERRUPT B L X H L L H L H
ACKNOWLEDGE (W) L X H L L H L L
HALT ACKNOWLEDGE X X H L L L H X
WHERE:
= HIGH STATE
= LOW STATE
= DON'T CARE

16-BIT OPERATION
8-BIT QPERATION

H
L
X
w
B

2.2.4 Data bus

Data input and data output are always specified
relative to the current bus master. Data transmitted

July 1979

by the current bus master to a bus slaveis called data
output. Datareceived by the current bus master from
a bus slave is called data input.

The data bus consists of 16 lines grouped as two
unidirectional 8-bit buses for byte operations and as a
single bidirectional bus for 16-bit word operations.

2.2.4.1 Byte operations

Two unidirectional 8-bit buses are used for byte
data transfers. Data output appears on the data out-
put bus (DO0-DO7), where DO7 is the most signifi-
cant bit.

Data input appears on the data input bus
{DIO-DI7), where DI7 is the most significant bit.

2.2.4.2 Word operations

For 16-bit data transfers the DI and the DO buses
are ganged together, creating a single 16-bit bidirec-
tional bus. Two signal lines control the ganging of the
data buses, sixteen request (sXTRQ*) and sixteen
acknowledge (SIXTN*). When both of these lines are
true (in the low state), the data buses are ganged with
DOO corresponding to DATA 0 and DI7 corre-
sponding to DATA 15, the most significant bit.

Complete specification of the 8/16-bit protocol is
given in 2.6.

2.2.5 Control output bus

The 5 lines of the control output bus determine the
timing and movement of data during any bus cycle.
The mnemonics for the control output lines always
begin with a lower-case p.

The five lines are:

1) pSYNC, which indicates the start of a new bus
cycle.

2) pSTVAL*, which in conjunction with pSYNC
indicates that stable address and status may be
sampled from the bus in the current cycle.

3) pDBIN, a generalized read strobe that gates
data from an addressed slave onto the data bus.

4) pWR*, a generalized write strobe that writes
data from the data bus into an addressed slave.

5) pHLDA, the hold acknowledge signal that in-
dicates to the highest priority temporary master
that the permanent master is relinquishing con-
trol of the bus.

The control output signals are subject to the func-
tional and timing disciplines givenin 2.7,3.8,and 3.9.

2.2.6 Control input bus

The six lines of the control input bus allow bus
slaves to synchronize the operations of bus masters
with conditions internal to the bus slave (e.g., data
not ready), and to request operations of the perma-
nent master (e.g., interrupt or hold).

The six control input lines are:

1) RDY
2) XRDY

Preliminary —Subject to Revision

3) INT*
4) NMI*
5) HOLD*
6) SIXTN*

2.2.6.1 Ready lines

The ready lines are used by bus slaves to syn-
chronize bus masters to the response speed of the
slave. Thus cycles are suspended and wait states in-
serted until both ready lines are asserted.

The RDY line is the general ready line for bus
slaves. It is specified as an open collector line.

The XRDY line is a special ready line commonly
used by front panel devices to stop and single step
bus masters. As it is not specified as an open collector
line, it should not be used by other bus slaves, since a
bus conflict may exist.

2.2.6.2 Interrupt lines

The two interrupt lines, INT* and NM1*, are used
to request service from the permanent bus master.

The INT* line may be masked off by the bus
master, usually via an internal software operation. If
the master accepts the interrupt request on the INT*
line, it may respond with an interrupt acknowledge
bus cycle, accepting vectoring information from the
data bus. The INT* line is often implemented as a
““group interrupt” line in conjunction with the vec-
tored interrupt bus. In this case, INT* indicates the
presence of one or more vectored interrupt requests.

The NMI* line is a non-maskable interrupt request
line, that is, it may not be masked off by the bus
master. Accepting an interrupt on the NMI* line
need not generate an interrupt acknowledge bus cy-
cle.

Aninterrupt request on the INT*lineis asserted as
alevel, that is, the line is asserted until interrupt ser-
vice is received. An interrupt request on the NMI*
line, on the other hand, is asserted as a negative going
edge, since no interrupt acknowledge cycle need be
generated.

Both these lines are specified as open collector
lines.

2.2.6.3 Hold request

The hold request line, HOLD*, is used by tem-
porary bus masters to request control of the bus from
the permanent bus master. The HOLD* line may be
masked by the permanent bus master to prevent tem-
porary masters from gaining bus control.

The HOLD* line is specified as an open collector
line, and may only be asserted at certain times. See
2.8.3.

2.2.6.4 Sixteen acknowledge

The sixteen acknowledge line, SIXTN*, is a
response to the status signal sixteen request
(sXTRQ*), and indicates that the requested 16-bit
data transfer is possible.

Preliminary—Subject to Revision

IEEE S-100 STANDARD 299

The SIXTN* line is specified as an open collector
line. Detailed specification of the use of this line is
given in 2.6.

2.2.7 DMA control bus

The eight lines of the DMA control bus are used in
conjunction with control bus signals HOLD* and
pHLDA. They arbitrate among simultaneous re-
quests for control of the bus by temporary masters
and disable the signal drivers of the permanent bus
master, thus effecting an orderly transfer of bus con-
trol.

All eight lines of the DM A control bus are specified
as open collector lines.

The eight DMA control lines are:

1) DMAO*
2) DMA1*
3) DMA2*
4) DMA3*
5) ADSB*
6) DODSB*
7) SDSB*
8) CDSB*

Detailed specification of the use of these lines is
given in 2.8.

2.2.7.1 DMA arbitration

The four lines that arbitrate among simultaneous
requests for bus control by temporary masters are
DMAO* through DMA3*. The encoded priority of
requesters is asserted on these lines and, after set-
tling, they contain the priority number of the highest
priority requester.

Detailed specification of this process is given in
2.8.3

2.2.7.2 Bus transfer signals

Four signals are available on the bus to disable the
line drivers of the permanent bus master. They are:

1) ADSB*, address disable.

2) DODSB¥, data out disable.

3) SDSB*, status disable.

4) CDSB*, control output disable.

Use of these lines is tightly specified during the
transfer of the bus from a permanent master to a tem-
porary master, as given in 2.8.2, and any transfer in-
volving the control output lines should follow a
similar protocol.

The address, data, and status signals from the per-
manent master may be disabled and replaced using
these signals as long as the contents of these buses is
valid for the current bus cycle as though no replace-
ment had occurred.

2.2.8 Vectored interrupt bus

The eight lines of the vectored interrupt bus are
used in conjunction with the generalized vectored in-

COMPUTER

300 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

terrupt request, INT*, to arbitrate among eight
levels of interrupt request priorities. They are
typically implemented as inputs to a bus slave which
masks and prioritizes the requests, asserts the
generalized interrupt request to the permanent bus
master, and responds to the interrupt acknowledge
bus cycle with appropriate vectoring data.

The eight lines of the vectored interrupt bus are
VIO* through VI7*, where VIO* is considered the
highest priority interrupt.

The vectored interrupt lines should be im-
plemented as levels, that is, they should be held ac-
tive until service is received.

2.2.9 System utilities
2.2.9.1 System power

Power in S-100 systems is distributed to bus de-
vices as unregulated voltages. A total of nine bus
lines are used:

1) +8 volts, 2 lines.
2) +16 volts, 1 line.
3) —16 volts, 1 line.
4} GROUND, 5 lines.

Ground lines are distributed across the edge
connector such that low impedance grounds are
available on both sides of the edge connector, and on
both sides of the circuit cards.

Power lines are subject to the specifications given
in 3.2,

2.2.9.2 System clock

The system clock, ®, is generated by the permanent
master. The control timing for all bus cycles, whether
they are cycles of the permanent master or cycles of
temporary masters in control of the bus, must be
derived from this clock.

This signal is never transferred during a bus ex-
change operation.

2.2.9.3 CLOCK

This clock is specified as a 2-MHz (0.5 percent
tolerance) signal with no relationship to any other bus
signal. It is to be used by counters, timers, baud-rate
generators, etc.

2.2.9.4 System reset functions
System reset functions are divided into three lines:

1) RESET#*, resets all bus masters.

2) SLAVE CLR*, resets all bus slaves.

3) POC*, power-on clear is active only on power-on,

and asserts SLAVE CLR* and RESET*.

The POC* signal is specified as having a minimum
active period of 10 msec.

RESET* and SLAVE CLR* are specified as open
collector lines.

July 1979

2.2.9.5 Memory write strobe

The memory write strobe, MWRT, must be gener-
ated somewhere in the system. It is usually generated
by front panel type devices, but is optionally
generated by permanent masters or mother boards in
systems without front panels. Care must be taken
that it is generated at only one point in a given
system.

Memory write is defined as:

MWRT = pWR - —sOUT (logic equation)
2.2.9.6 Phantom slaves

A line, PHANTOM*, is provided for overlaying
bus slaves at a common address location. When this
line is activated phantom bus slaves are enabled and
normal bus slaves are disabled.

This line is specified as an open collector line.

2.2.9.7 Error

The line ERROR* is a generalized error line that is
asserted when an error of some sort (i.e., parity, write
to protected memory) is occurring in the current bus
cycle.

This line is specified as an open collector line.

2.2.9.8 Manufacturer specified lines

Three lines which can be specified by individual
manufacturers are provided on the bus. These lines,
termed NDEF (not to be defined), should only be im-
plemented as options, and shall be provided with
jumpers so that possible conflicts may be eliminated.

Any manufacturer MUST specify in detail any use
of these lines. Signals on these lines are limited to 5
volt logic levels.

2.2.9.9 Power fail (PWRFAIL*)

The power fail line indicates impending power fail-
ure, and remains true until power is restored and
POCH* is true.
2.2.9.10 Reserved lines (RFU)

The five remaining lines are reserved for future use
and may not be used for any purpose.

2.2.10 Pin list

Pin connections to the card edge connector shall
conform to the list given in Table 3.

2.3 The permanent master interface
2.3.1 General
The permanent master interface provides the capa-

bility to transfer device dependent messages to and
from all bus slaves. It is responsible for the genera-

Preliminary—Subject to Revision

IEEE S-100 STANDARD 30 1

Table 3. S-100 bus pin list.

PIN NO. SIGNAL & TYPE ACTIVE LEVEL DESCRIPTION

1 +8 VOLTS (B) instantaneous minimum greater than 7 voits, instantaneous maximum less
than 25 volts, average maximum less than 11 volts.

2 +16 VOLTS (B) Instamtaneous minimum greater than 14.5 volts, instantaneous maximum
less than 35 volts, average maximum less than 21.5 volts.

3 XROY (S) H One of two ready inputs to the current bus master. The bus is ready when
both these ready inputs are true. See pin 72.

4 VIO*(S) L 0.C Vectored interrupt line 0.

5 VI1*(S) L 0.C Vectored interrupt line 1

6 VI2*(S) L 0.C Vectored interrupt line 2.

7 VI3*(S) L 0.C Vectored interrupt line 3.

8 VI4*(S) L 0.C Vectored interrupt tine 4.

9 VIS*(S) L 0.C Vectored interrupt line 5.

10 VI6*(S) L 0.C Vectored interrupt line 6.

11 VI7*(S) L 0.C Vectored interrupt line 7.

12 NMI*(S) L 0.C Non-maskable interrupt.

13 PWRFAIL*(B) L Power fail bus signat. (See Section 2.10.1 regarding pseudo open-
collector nature)

14 DMA3* (M} L 0.C. Temporary master priority bit 3.

15 A18 (M) H Extended address bit 18.

16 A16 (M) H Extended address bit 16.

17 M7 (M) H Extended address bit 17.

18 SDSB* (M) L 0.C. The control signal to disable the 8 status signals.

19 CDSB* (M) L 0.C. The control signal to disable the 5 control output signals.

20 GND (B) Common with pin 100.

21 NDEF Not to be defined. Manufacturer must specify any use in detail.

22 ADSB* (M} L. 0.C The control signal to disable the 16 address signals.

23 DODSB* (M) L 0.C The control signal to disable the 8 data output signals.

24 & (B) H The master timing signal for the bus.

25 pSTVAL*(M) L Status valid strobe.

26 pHLDA (M) H A control signal used in conjunction with HOLD* to coordinate bus master
transter operations.

27 RFU Reserved for future use.

28 RFU Reserved for future use.

29 A5 (M) H Address bit 5.

30 A4 (M) H Address bit 4.

31 A3 (M) H Address bit 3.

32 A15 (M) H Address bit 15 (most significant for non-extended addressing.)

33 A12 (M) H Address bit 12.

34 AS (M) H Adaress bit 9.

35 DO1 (M)/DATA1 (M/S) H Data out bit 1, bidirectional data bit 1.

36 DOO (M)/DATAQ (M/S) H Data out bit 0, bidirectional data bit 0.

37 A10 (M) H Address bit 10.

38 D04 (M)/DATA4 (M/S) H Data out bit 4, bidirectional data bit 4.

39 D05 (M)/DATA5 (M/S) H Data out bit 5, bidirectional data bit 5.

40 DO6 (M)/DATAB (M/S} H Data out bit 6, bidirectional data bit 6.

41 DI2Z (S)/DATA10 (M/S) H Data in bit 2, bidirectional data bit 10.

42 DI3 (S)/DATAt1 (M/S) H Data in bit 3, bidirectional data bit 11.

43 DI7 (S)/DATA15 (M/S) H Data in bit 7, bidirectional data bit 15.

44 sM1 (M) H The status signal which indicates that the current cycle is an
op-code fetch.

45 sOUT (M) H The status signal identifying the data transfer bus cycle to an
output device.

46 SINP (M) H The status signa! identifying the data transter bus cycle from an
input device.

47 SMEMR (M) H The status signal identifying bus cycles which transfer data from memory
to a bus master, which are not interrupt acknowledge instruction
fetch cycle(s).

48 sHLTA (M) H The status signal which acknowledges that a HLT instruction has been
executed.

49 CLOCK(B) 2 MHz (0.5%) 40-60% duty cycle. Not required to be synchronous with
any other bus signal.

50 GND (B) Common with pin 100.

51 +8 VOLTS (B) Common with pin 1.

52 —16 VOLTS (B) Instantaneous maximum less than — 14.5 volts, instantaneous minimum
greater than — 35 voits, average minimum greater than —21.5 voits.

53 GND (B) - Commen with pin 100.

54 SLAVE CLR* (B) L 0.C. Areset signal to reset bus slaves. Must be active with POC* and may also
be generated by external means.

55 DMAD™ (M) L 0.C. Temporary master priority bit 0.

Preliminary — Subject {o Revision

COMPUTER

302 INTERFACING TO S-100/EEE 636 MICROCOMPUTERS

PIN NO. SIGNAL & TYPE ACTIVE LEVEL

DESCRIPTION _

Temporary master priority bit 1

Temporary master priority bit 2

The status signal which requests 16-bit slaves to assert SIXTN*.
Extended address bit 19.

0.C. The signal generated by 16-bit slaves in response to the 16-bit request

signal sXTRQ*.

Extended address bit 20.
Extended address bit 21.
Extended address bit 22
Extended address bit 23.
Not 1o be defined signal.
Not to be defined signal.
A bus signal which disables normal slave devices and enabies phantom

slaves—nprimarily used for bootstrapping systems without hardware
front panels.

PWR- —sOUT (logic equatien). This signal must follow pWR* by not more

than 30 ns. (See note, Section 2.7.5.3)

Reserved for future use.

Common with pin 100.

Reserved for future use.

See comments for pin 3.

The primary interrupt request bus signal.

The control signal used in conjunction with pHLDA to coordinate bus

master transfer operations.

The reset signal to reset bus master devices. This signal

must be active with POC* and may also be generated by
external means.

The control signal identifying BSy.
The control signal signifying the presence of

valid data on DO bus or data bus.

The control signal that requests data on the DI

bus or data bus from the currently addressed slave.

Address bit 0 (least significant).

Address bit 1.

Address bit 2.

Address bit 6.

Address bit 7.

Address bit 8.

Address bit 13.

Address bit 14.

Address bit 11.

Data out bit 2, bidirectional data bit 2.
Data out bit 3, bidirectional data bit 3.
Data out bit 7, bidirectional data bit 7.
Data in bit 4 and bidirectional data bit 12.
Data in bit 5 and bidirectional data bit 13.
Data in bit 6 and bidirectional data bit 14.
Data in bit 1 and bidirectional data bit 9.
Data in bit O (least significant for 8-bit data) and

bidirectional data bit 8.

The status signal identifying the bus input cycle(s) that may

follow an accepted interrupt request presented on INT*.

The status signal identifying a bus cycle which transfers

data from a bus master to a slave.

56 DMAT* (M) L 0.c.
57 DMA2* (M) L 0.c.
58 SXTRQ* (M) L

59 A19 (M) H

60 SIXTN® (S) L

61 A20 (M) H

62 A21 (M) H

63 A22 (M) H

54 A23 (M) H

85 NDEF

86 NDEF ;

67 PHANTOM* (M/S) L 0.C.
68 MWRT (8) H

69 RFU

70 GND (B)

71 RFU

72 RDY (S) H 0C
73 INT* (S) L 0.
74 HOLD* (M) L 0.c
75 RESET*(B) L 0.C.
76 pSYNC (M) H

77 OWR* (M) L

78 POBIN (M) H

79 A0 (M) H

80 AT (M) H

81 A2 (M) H

82 A6 (M) H

83 AT (M) H

84 A8 (M) H

85 A13 (M) H

86 A4 (M) H

87 AT1 (M) H

88 D02 (M)/DATA2 (M/S) H

89 DO3 (M)/DATA3 (M/S) H

90 DO7 (M)/DATAZ (M/S) H

9 DI4 (S)/DATAT2 (M/S) H

92 DI5 (S)/DATA13 (M/S) H

93 016 (S)/DATA14 (M/S) H

94 DI (S)/DATAS (M/S) H

95 DI (S)/DATA8 (M/S) H

9 SINTA (M) H

97 SWO* (M) L

98 ERROR* (S) L 0.c
99 POC* (B)) L

100 GND(B) "

The bus status signal signifying an error condition during
present bus cycle.

The power-on clear signal for all bus devices; when this
signal goes low, it must stay low for at least 10 msecs.

System ground.

tion and timing of all bus cycles while it has control of
the bus, and is capable of generating all possible bus
cycles.

The permanent master normally has control of the
bus. It may relinquish bus control to a temporary bus
master via a hold operation for an arbitrary number
of cycles. Upon completion of the hold operation con-

July 1979

trol of the bus is always returned to the permanent
master.

2.3.2 Permanent master state diagram
The permanent master interface shall be im-

plemented so as to conform to the state diagram
given in Figure 1.

Preliminary - Subject to Revision

2.8.3 Permanent master state descriptions
2.3.3.1 Bus state 1

The initial bus state, BS,, is the state in which the
status and address buses are in transition to their
values for the new bus cycle. pSYNC goes true in the
middle of the BS, state, indicating the beginning of a
new bus cycle.

2.3.3.2 Bus state 2

Bus state 2, BS,, is the state during which the ad-
dress and status lines become stable. When they are
guaranteed stable the pSTV AL*, status valid strobe,
is activated.

The ready lines and the sixteen acknowledge line
are sampled during the BS, state.

2.3.3.3 Wait state

The wait state, BS,, is entered if the ready line
sampled in BS, indicates that the addressed bus
slave is not ready for data transfer. The ready line is
sampled once every clock cycle until a ready condi-
tion is indicated. When the ready condition is in-
dicated the BS, state is completed and the BS; state
entered.

The BS,, state is thus used to synchronize bus
cycles generated by bus masters with the response
speed of assorted bus slaves.

2.3.34 Bus state 3
Bus state 3, BS;3, is the bus state during which the

data transfer actually takes place between the master
and the addressed slave.

—HOLD" /7 pHLDA=F
1 There 1s a mimmum specified time delay between hold and hoid acknowiedge.
(1] instruction execution complete » INT enable » INT request / interrupt accept
{2} instruction execulion not compiate + INT disabiec + no interrupt request
(3} (instruction execution complete « ~HOLD® » —interrupt accept) +
(insiruction execution not complete » ~IDLE)

Figure 1. Permanent master state diagram.

Preliminary—Subject to Revision

IEEE S-100 STANDARD 303

2.3.3.5 Idle bus states

After completion of the BSj state, the master may
enter one or more idle bus states.

While in an idle bus state the generalized data
strobes, pWR* and pDBIN, must not be active, and
pSTVAL* must not be asserted in conjunction with
pSYNC active.

2.3.3.6 Hold accept

Permanent masters must be configured to condi-
tionally accept hold operations from temporary
masters. This function may be gated off under hard-
ware or software control, to allow indivisible test and
set operations. If hold is enabled and active, the per-
manent master will enter the hold state HS following
a BS; state, and pHLDA will be asserted.

The permanent master remains in the hold state un-
til the hold request HOLID* becomes false.

Hold operations always take priority over inter-
rupt operations.

2.3.3.7 Interrupt accept

If hold request is not active, if execution of the cur-
rent instruction is complete, and if interrupts are
enabled and an interrupt is being requested, then the
permanent master accepts the interrupt request at
the end of the BS; state. In the case of a vectored in-
terrupt, the next bus cycle may be an interrupt
acknowledge bus cycle. In the case of a non-maskable
interrupt, the response is usually a transfer to a
predetermined location.

2.3.4 Required signals for permanent masters
2.3.4.1 Output signals

The following signals are output signals from per-
manent masters to bus slaves:

1) A0-A23t.

2) All status signals.

3) All control output signals.

4) Data output signals (8 or 16 depending on pro-
cessor type).

5) @, the system clock.

2.34.2 Input signals

The following signals are required input signals to
permanent masters:

1) The control input signals, except NMI* and
SIXTN*.

2) Data input signals (8 or 16 depending on pro-
cessor type).

3) The four disable signals ADSB*, DODSB*,
SDSB*, CDSB*.

4) RESET*.

1 A16 through A23 are optional on permanent masters.

COMPUTER

304

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

2.3.5 Dummy mastering

In cases where a number of processors co-exist in a
single system as temporary masters, it may prove in-
efficient from a systems point of view toimplement a
permanent master.

In such a case it is permissible that the permanent
master be implemented as a dummy, that is, as a
device that conducts no bus cycles, but only supplies
an arbitration interval so that the DMA control bus
may settle.

The dummy master takes control of the bus be-
tween temporary masters, asserting the control out-
put bus in the null state, and passes the bus to the
next requester after an arbitration interval of one
clock cycle.

Required output signals for dummy masters are
the control output signals, and the system clock ¢.
Input signals are HOLD* and CDSB*.

2.4 The temporary master interface
24.1 General

The temporary master interface provides the
capability to transfer device dependent messages to
and from a selected set of bus slaves. The temporary
master thus differs from the permanent master in
that it need not generate all possible bus cycles.

The temporary master requests control of the bus
from the permanent master. If the bus is granted, the
temporary master is responsible for the generation
and timing of all bus cycles until it returns control to
the permanent master.

Since up to 16 temporary masters may co-exist in a
single system, a protocol has been developed to ar-
bitrate among simultaneous bus requests. Detailed
specification of this protocol is given in 2.8.3.

2.4.2 Temporary master state diagram

The temporary master interface shall be im-
plemented so as to conform to the state diagram
given in Figure 2.

2.4.3 Temporary master state descriptions
2.4.3.1 Arbitration (ARB)

If more than one temporary master is present in the
system, bus requesters must arbitrate for the bus as
given in 2.8.3.

During the arbitration sequence, bus requesters
try to assert their priorities on the arbitration bus,
and the contents of the arbitration bus are compared
with each requester’s priority.

If the contents of the arbitration bus is of higher
priority than the locally attempted priority asser-
tion, then a higher priority requester is present in the
system, and the low priority requester removes its
low order bits from the arbitration bus. Thus, after
some settling time, the priority of the highest priority
requester is present on the arbitration bus. This re-

July 1979

quester is granted the bus on the rising edge of hold
acknowledge.

2.4.3.2 Bus transfer states (XS I and XS 11)

Since the bus has positive polarity control signals,
extreme care must be taken in bus transfer opera-
tions to avoid erroneous pulses on the control lines.

In general terms, this is accomplished by specify-
ing that both the permanent master and the tem-
porary master drive the control lines in specified logic
states during the bus transfer.

Detailed specification of this operation is given in
2.8.2.

Proposed S-100 bus layout—Quick reference

pin1 +8 Voits (B) pin 51 +B Volts (B)
pin2 +16 Voits (B) pin52 - 16 Volts (B)
pin3 XRDY (S) H pin 53 GND
pin4 VIO* (S) L pin 54 SLAVE CLR" (B) L
pins VIt* (§) L pin 55 DMAO* (M) L
pin6 Vi2® (S) L pin 56 DMA1* (M) L
pin7 VI3* (S) L pin 57 DMA2* (M) L
pin8 Via* (S} L pin 58 sXTRQ* (M) L
ping VI5* (S) L pin 59 A19 H
pin 10 ViB* (S) L pin 80 SIXTN* (S) L
pin 11 VI7* (§) L pin 81 A20 (M) H
pin 12 NMI* (S) L pin 82 A21 (M) H
pin 13 PWRFAIL* (B) L pin 83 A22 (M) M
pin 14 DMA3" (M} L pin 64 A23 (M) H
pin 15 A18 (M) H pin 65 NDEF
pin 18 A16 (M) H pin 68 NDEF
pin 17 A7 (M) H pin 67 PHANTOM® (M/S) L
pin 18 SDSB* (M) L pin 88 MWRT (B) H
pin 19 CDSB* (M) L pin 62 RFU
pin 20 GND pin70 GND
pin21 RFU pin 71 NDEF
pin22 ADSB* (M) L pin 72 RDY () H
pin23 DODSB* (M) L pin73 INT* (S) L
pin24 ©(8) ‘H pin 74 HOLD® (M) L
pin 25 PSTVAL® (M} L pin 75 RESET* (&) L
pin28 pHLDA (M) H pin 78 pSYNC (M) bl
pin 27 RFU pin77 pWR* (M) L
pin 28 RFU pin 78 pDBIN (M) H
piR28 AS(M) H pin 78 AG(M) H
pin 30 A4 (M) H pin 80 A1 (M) H
pin 31 A3 H pin 81 A2 (M) H
pin 32 A15 (M) H pin 827 A8 (M) H
pin 33 A12{M) M pin 83 A7 (M) H
pin34 A9 (M) H pin 84 A8 (M) H
pin 36 DO1(MYDATA1 (M/S) H pin 85 A13 (M) H
pin 38 DOD (MYDATAO (W/S) H pin 88 A4 (M) H
pin37 A10 (M) H pin 87 A11 (M H
pin 38 DO4 (MYDATA4 (MIS) H pin 88 DO2 (MYDATA2 (M/S} H
pin 38 DOS (MYDATAS (MIS) H pin 89 DO3 (MYDATA3 (MIS) W
pin 40 DOS (MyDATAS (W/8) H ¢+ pin90 DO7 (MIDATA7 (W/S) H
pin 41 Di2 BYDATAIO (M/S) H pin 91 DI4 (SVDATAI2(MIB) H
pin 42 D3 (SYDATA11 (M/S) H pin 92 DIS (SYDATA13 (WS} H
. pin43 DI7 (SYDATAIS (M/IS) H pin 83 DIB (SVDATA14 (M/S} H
pin 44 sM1 (M) H pin 84 DIt (SYDATAG (M/S) M
pin 46 sOUT (M) H pin 95 DIO (SYDATAS (M/S) H
pin 468 SINP (M) H pin 96 SINTA (M) H
pin 47 sMEMR (M) H pin 87 sWQ* (M) L
pin 48 sHLTA (M) H pin 98 ERROR" (8) L
pin 49 CLOCK (B) pin 98 POC* (B) L
pin 50 GND pin 100 GND

Preliminary—Subiject to Revision

2.4.3.3 Bus cycle

The definition of bus cycle states is the same as
that for the permanent master interface, given in
2.3.3.1 through 2.3.3.5.

An arbitrary number of bus cycles may be per-
formed by the temporary master before returning
control to the permanent master.

2.4.4 Required signals for temporary masters
2.4.4.1 Output signals

The following are required output signals for a tem-
porary master interface:

1) Address lines A0-A2371.

2) All status signals.

3) All control output signals 1.

4) Data output lines.

5) DMA arbitration lines DMAQO*-DMA3*.
6) Hold request, HOLD*,

2.4.4.2 Input signals

The following are required input signals for a tem-
porary master interface:

1 Note: Temporary masters must generate A16-A23; they need only
generate falses or lows on these 8 lines, however.

1t Note: Temporary masters should provide a jumper on the
pSTVAL* line, as 8080 CPUs of old design do not transfer this line
with the control output lines. In this case all bus masters use the
same pSTVAL* signal.

{1} (~ DONE) »~IDLE
(2] (- DONE) +-1DLE

Figure 2. Temp y

state diag

Preliminary—Subject to Revision

JEEE S-100 STANDARD 305

1) The ready lines, RDY and XRDY.
2) Hold acknowledge, pHLDA.

3) Data input lines.

4) The system clock, ®.

2.5 The slave interface

A slave deviceresponds to a bus cycleinitiated by a
bus master. Memory and input/output devices are ex-
amples of bus slaves.

A slave device may request service by a bus master
by generating an interrupt request.

2.5.1 Slave interface state diagram

The slave interface shall conform, in general, to the
state diagram givenin Figure 3. Slave interfaces need
not have both read and write capability.

2.5.2 Slave state definitions
2.5.2.1 Slave idle state

The slave idle state, S, is a passive state with
respect to the bus.

The slave monitors the stream of bus cycles to
determine if it is selected for the current bus cycle.

The slave may be performing internal operations
while in the idle state.

The assertion of SLAVE CLR* forces all slaves in-
to the idle state.

2.5.2.2 Slave setup
A slave moves from the slave idle state to the setup
state, S,, when it has been addressed by the current

bus cycle. This is an operation internal to the slave
which sets up a data transfer with a bus master. If a

mrznauw
INTERRUPT REQUEST
SERVICE

+ SLAVE'CLR”, G

!
i
[

(-pseL)}
+SLAVE \
CLR*

DSEL/RDY

WrERE:
“e 8l SLAVEID

S, = SLAVE SETUP

S, - = SLAVE READ

iSy . = SLAVE WRITE

1Sipr. = SLAVE INTERRUPT

DSEL = DEVICE SELECT (INTERNAL TO SLAVE)
1DLE

Figure 3. Slave interface state diagram.

COMPUTER

30 6 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

slave can tolerate spurious transitions from the idle
state to the setup state, then the device select signal
may be decoded statically from the address and status
buses. If a device cannot tolerate spurious transitions,
the device select line should be decoded in conjunction
with the status valid strobe, pSTVAL*.

If synchronization is required by the slave before
the data transfer may take place, the ready line is
asserted false during this state until the device is
ready for data transfer.

2.5.2.3 Slave read

Data from the addressed slave is gated onto the
data bus during the slave read state, S,. The gener-
alized read strobe governs the transition to this state.

When device select becomes false the slave returns
to the idle state.

2.5.2.4 Slave write

Data from the current bus master is written into
the slave during the active period of the generalized
write strobe, pWR*,

When device select becomes false the slave returns
to the idle state.

2.5.2.5 Interrupt request state

If a slave requires service by a bus master, an inter-
rupt request may be generated by the slave. The in-
terrupt should be held active until the slave is ser-
viced, or until SLAVE CLR* is asserted.

2.5.3 Required signals for slave interfaces

Slave interfaces need only receive and generate
that subset of bus signals necessary for communica-
tion with masters.

2.6 8/16-bit data transfer protocol
2.6.1 General

Implementation of the 8/16-bit data transfer pro-
tocol allows both 8-bit and 16-bit parallel data
transfers over the bus, and hence allows both 8-bit
masters and 16-bit masters and slaves to co-existina
single system. For 16-bit transfers the two unidirec-
tional 8-bit data buses are ganged to form a single
16-bit bidirectional data bus.

Two lines are assigned to control the ganging of the
data bus:

1) sXTRQ*, status output from the master, which
indicates a request for a 16-bit data transfer.

2) SIXTN*, an acknowledge input to the master,
which indicates that a 16-bit data transfer is
possible.

Use of the sixteen acknowledge line SIXTN* per-
mits the use of current design 8-bit memory boards
without modification. When SIXTN* is false, a 16-bit

July 1979

transfer may be accomplished by two sequential
single-byte transfers.

2.6.2 8-bitdata paths

The current bus master requests an 8-bit transfer
by not asserting sXTRQ*.

Byte data output from the master to the addressed
slave is asserted on the data output bus, DOO
through DO7.

Byte data input from the addressed slave to the
current bus master is asserted on the data input bus,
DIO through DI7.

2.6.3 16-bit data paths

The current bus master requests a 16-bit transfer
by asserting sXTRQ*.

If the addressed slave is capable of a 16-bit parallel
data transfer, it asserts SIXTN*, as shownin the tim-
ing diagram (see page 52).

Sixteen-bit data transfer is then conducted via the
ganged data buses, where DO0 = DATAOQ, and DI7
= DATAIS.

2.6.4 Memory organization

Memory devices capable of both 8-bit and 16-bit
parallel data transfers are organized, as shown in
Figure 4, as two banks of 8-bit memory, a high-byte
bank and a low-byte bank. These data banks may be
activated either together or separately, depending on
the condition of the sixteen request status line,
sXTRQ*.

2.6.4.1 Byte references

When sXTRQ* is not asserted, memory references
are single-byte transfers.

TRI-STATE DRIVERS
WITH ENABLE
2]

HIGH BYTE
WRITE

T
Hwn

LOW BYTE

WRITE
! T
Lwa

A1-A23

SEL selects A for word references. B for byte references.

Output enables A= 16,5 + (8,4 —AO)
= 84 A0
[
Hyr= 1By + (Bys o = AO)
Lurm W + (B o AD)
Where 16rg= Device select « SXTRQ® « pDBIN

Device select «(—sXTRQ*) « pDBIN
Device select « SXTRQ* » pWR*
Device seigct « (~SXTRA*) « pWR*

Brg=
16w =
Bwr=

Figure 4. 8/16-bit memory organization.

Preliminary— Subject to Revision

The proper location in memory is selected by the
address output on address lines Al through Al5
(A23 for extended addressing systems), while the A0
line selects the high byte or the low byte. A0 equals 0
selects the high byte of the 16-bit word, while A0
equals 1 selects the low byte of the word.

See Figure 5 for address usage.

In the 8-bit mode, data output from the master, on
the DO bus, is connected to the data input lines of
both memory banks; the low-byte data input lines are
connected directly to the DO bus, and the high-byte
data input lines are connected to the DO bus via a
two-to-one multiplexer controlled by sXTRQ*.

Data output from the memory banks is routed to
Tri-Statet bus drivers A and B in Figure 4. One of
these drivers is enabled when the read strobe is ac-
tivated, depending on the condition of AO. The se-
lected byte is thus available to the master on the DI
bus.

2.6.4.2 Word references

When sXTRQ* is asserted by the master, and
SIXTN* is asserted by the slave, memory references
are double-byte transfers.

Address lines Al through A15(A23 inextended ad-
dress systems) select the proper word from memory.
The condition of the A0 bit does not enter into the
decoding or addressing for word references.

See Figure 5 for address usage.

In the 16-bit mode, data output from the bus
master is asserted on the 16 signal lines of the DO bus
and the DI bus. The multiplexer on the data input
lines now routes the high-byte data, on the DI bus, to
the data input lines of the high-byte bank. Low-byte
data, on the DO bus, is connected to the data input
lines of the low-byte bank.

Data output from the memory banks is routed
through buffers A and C to their respective data

tTri-State is a trademark of National Semiconductor.

16 m DATA TMNSFEQ?
a2
DON'T CARE LOW BYTE 0o
8:BiT DATA TRANSFER)
A28 LA S
ADDRESS

HIGH BYTE LOW BYTE
AD=F AD=T

D15 08 D7 00
DATA WORD FORMAT

Figure 5. 8/16-bit address and data usage.

Preliminary —Subject to Revision

IEEE S-100 STANDARD 30 7

paths. Both A and C will be enabled by the read
strobe.

2.6.5 Sixteen acknowledge (SIXTN*)

Implementation of the sixteen acknowledge line
allows the use of 8-bit memory boards in a 16-bit
system without modification, but with a reduction in
maximum system bandwidth.

If a 16-bit master requests a 16-bit transfer, but the
addressed slave is not capable of such a transfer, the
sixteen acknowledge lines will not be asserted.

The master will respond in one of two ways, by gen-
erating an error trap or by conducting the transfer in
byte-serial fashion.

2.6.5.1 Byte-serial response

If the sixteen acknowledge line is not activated
after a specified period, circuitry may be included on
bus masters to conduct the requested 16-bit transfer
as two consecutive byte operations, thus assembling
the requested 16-bit word while holding the master in
a wait state.

For this process to occur, the sixteen acknowledge
line must meet the timing specifications for the ready
line inputs.

2.6.5.2 Error response

If circuitry does not exist on the master to conduct
therequested 16-bit transfer as two consecutive byte
operations, an error condition shall result immediate-
ly, with ERROR¥* asserted.

2.7 Fundamental bus cycle timing
2.7.1 General

This section deals with the fundamental timing
concepts involved in the standard bus cycle. Detailed
specification of the timing parameters discussed in
this section is given in 3.8 and 3.9.

The standard bus cycle is a pseudo-synchronous cy-
cle, that is, the timing of the control signals bears a
specified relationship to the master system clock ®.

All data transfers, including read or write cycles, 8-
or 16-bit transfers, memory or input/output device
transfers, and interrupt acknowledge are conducted
on the bus as a standard bus cycle.

Figure 6 shows the fundamental timing for a stan-
dard bus cycle, with a single wait state inserted by
the addressed slave.

2.7.2 Address and status buses

The beginning of a new bus cycleis indicated by the
rising edge of the pSYNC signal, which closely fol-
lows the rising edge of the system clock, ®.

The address and status buses are changing to their
values for the new cycle during the beginning of the

T See possible exception, section 2.7.5.3.

COMPUTER

308 INTERFACING TO S-100IEEE 696 MICROCOMPUTERS

pSYNC interval. Shortly after they can be guaran-
teed stable on the bus, the status valid strobe,
pSTVAL*, is asserted. pSTVAL*, decoded in con-
junction with pSYNC, indicates to all bus slaves that
stable address and status may be sampled from the
bus.

The position of the status valid strobe within the
pSYNC interval is independent of the system clock,
®. This affords the designer of bus masters con-
siderable flexibility in interfacing different pro-
cessors to the bus. The status valid strobe should be
positioned within the pSYNC interval such that the
delay between guaranteed status on the bus and the
activation of the status valid strobe is as close to the
minimum specification as possible, thus maximizing
memory and device access time. T

In order to prevent false cycle starts in bus slaves,
only one negative edge of the status valid strobe may
occur while pSYNC is asserted.

Address and status information is thus stable on
the bus from the negative transition of the status
valid strobe during pSYNC, and is held stable until a
specified period after the trailing edge of the data
strobe {pDBIN in the read case, and pWR* in the
write case). This hold time ensures that false
decoding of the address and status information will
not occur at the end of the bus cycle.

2.7.3 Ready and sixteen acknowledge lines

The sixteen acknowledge line, since it may be used
to place the bus master in a wait state while a re-
quested 16-bit transfer is conducted in byte-serial
fashion, is subject to the same timing constraints as
the ready lines.

The ready lines are first sampled by the bus master
on therising edge of the system clock during the BS 2
state, and if active, the master enters a wait state,
sampling the ready line once every clock cycle on the
rising edge of the system clock until the slaveis ready
for data transfer.

A minimum setup time before the rising edge of the
system clock, and a minimum hold time after samp-
ling must be met for the proper operation of the ready
lines.

The time between the active edge of the status
valid strobe and the sampling of the ready line may be
very short. Hence, it is recommended practice not to
make assertion of the ready line dependent on
pSTVAL*.

Data output, address, and status are held stable
during wait states.

2.7.4 Read cycles
2.7.4.1 General

There are four types of read cycles: op-code fetch
(M1), memory read, input, and interrupt acknow-

ledge. These cycles are all similar with respect to tim-

TNote: The @1 signal output from current 8080 processor boards
meets all the specifications as a status valid strobe. Hence, these
boards meet the bus cycle specification without modification.

July 1979

ing, but make different use of the status bits and the
address bus. See Tables 1 and 2.

2.7.4.2 The read strobe

The generalized read strobe pDBIN is used to gate
data from an addressed slave onto the data bus dur-
ing a read operation. The read strobe is asserted true
by the bus master after a minimum specified time
from the assertion of the status valid strobe.

It is held true during any inserted wait states, and
returns to the false state, returning the data bus to
the high impedance state, shortly before the address
and status buses are allowed to change.

2.7.5 Write cycles
2.7.5.1 General

There are two possible types of write cycles on the
bus, a memory write cycle and an output cycle.

These two cycles are similar with respect to timing,
but make different use of the status bits and address
bus. A special write strobe, MWRT, is generated for
memory cycles.

2.7.5.2 The write strobe

The generalized write strobe, pWR*, is used to
write data from the data bus into the addressed bus
slave. The write strobe may be asserted by the master
after the completion of the pSYNC interval.

Data out on the data bus must be guaranteed valid
for a specified period both before and after the activa-
tion of the write strobe. Hence, either the leading or
the trailing edge of the write strobe may be used to
strobe data into the addressed slave.

Address and status information must be held valid
for a specified period of time from the trailing edge of
the write strobe.

|as. ,ss‘, las,, | 85 ‘ 8s |
®
PSYNC
pSTVAL*
ADDRESS &
STATUS ~
ROY ______Xl_/ N
w 5
o fooBIN / \
>
<
S [oatain (XsmeLE
w |
o pWR*
(5]
w
£ | paTA OUT X saBle O X |

Figure 6. Bus cycle fundamental timing relationships.

Preliminary—Subject to Revision

2.7.5.3 Memory write strobe

While the generalized write strobe is activated for all
write cycles, the memory write strobe is activated for
memory write cycles only. The memory write strobe is
usually generated by front-panel devices, if they exist
in the system, as a function of bus memory write or a
front-panel deposit. If front-panel devices do not exist
the memory write strobe must be generated
somewhere in the system, but at only one point. This
circuit should be designed such that it generates the
memory write strobe for all bus masters. Jumpers
shall be provided to allow extra circuits to be disabled.

The memory write strobe, MWRT, is defined as:

MWRT = pWR + —sOUT, (logic equation)

that is, memory write is true when pWR is true and
sOUT is false.

The memory write strobe must follow the pWR*
strobe by not more than a specified period.

2.8 Special bus operations
2.8.1 General

This section describes two special bus operations
related to DMA operations, that is, the transfer of

tNote: Historically the MWRT strobe has been generated by front-
panel devices to accomplish the deposit function. In such a case, the
MWRT strobe is asserted while the froni-panel holds the CPU in a
wait state during a memory read cycle. Note that the status will in-
dicate a read cycle and the pDBIN strobe will be active.

While this is acceptable procedure for 8-bit systems, and 8-bit
memories should respond to MWRT as well as pWR*, it is not per-
missible in 16-bit systems as a conflict will exist on the bidirectional
data bus. A front-panel could be implemented either as a temporary
master, or integrated into the CPU.

pHLDA +— PRIORITYY

PHLDA » PRIORITY

FADSB* =T, SOSB" =T, DO0SB" =T

/CDSBT =T

/ADSB" =F, SDSB* =F,
DODSB* = F. HOLD* =F

DONE/CDSB* =F

TPRIORITY: SEE FIGURE 9

Figure 7. Bus transfer state diagram.

Preliminary— Subject to Revision

JEEE S-100 STANDARD 309

bus control from the permanent bus master to a tem-
porary bus master for an arbitrary number of bus
cycles, and the return of control to the permanent bus
master.

These two operations are:

1) The bus transfer protocol.
2) The arbitration protocol among simultaneous
bus requesters.

2.8.2 Bus transfer protocol
2.8.2.1 General

When a temporary bus master has been granted
the bus by the permanent bus master, control must
be transferred to the temporary master in such a way
that spurious signals are not generated on the control
output lines, causing false bus cycles. Since some of
the control output signals are of positive polarity, ex-
treme care must be taken in this operation. In
general, the specified bus transfer protocol ac-
complishes this by having the permanent master and
the temporary master drive the control output lines
simultaneously at specified levels during the bus
transfer.

2.8.2.2 Bus transfer state diagram

The bus transfer operation shall be implemented so
as to conform to the bus transfer state diagram given
in Figure 7.

2.8.2.3 Bus transfer state definitions
28231 Idle

The idle state signifies that the temporary master
is either involved in internal operations, and does not
require the bus, or that it is waiting for the bus to
become free so that it may assert its bus request.

2.8.2.3.2 Arbitration

If a temporary master desires the bus, and HOLD
is false and pHLDA is false, the temporary master
enters the arbitration sequence, where it contests
with other bus requesters for control of the bus.

Detailed specification of this process is given in
2.8.3.

2.8.2.3.3 Bus grant

Priority assertions on the arbitration bus settle in
the interval between the assertion of a hold request
and a hold acknowledge. At therising edge of the hold
acknowledge signal the bus is granted to the highest
priority requester, enabling the bus transfer opera-
tion for that requester.

If the bus is not granted to a requester, that re-
quester returns to the idle state.

The bus grant state is termed MINE.

COMPUTER

3] 0 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

2.8.2.3.4 Transfer state one, XS I

The bus transfer sequence begins with transfer
state one, XS I. The bus transfer control circuit
asserts the following signals together:

1) ADSB*
2) SDSB*
3) DODSB*

disabling the address, status, and data output
drivers of the permanent bus master and enabling the
control output drivers of the temporary master. Both
the permanent master and the temporary master are
now driving the control output lines. These lines are
required to have the following levels during this time.

Signal Logic state Electrical level
1) pSYNC F L
2) pSTVAL* F HYt
3) pDBIN F L
4) pWR* F H
5) pHLDA T H

The transfer state is terminated by the assertion
(by the bus transfer control circuit) of the CDSB*
line, disabling the control drivers of the permanent
master and enabling the address, status, and data out
drivers of the temporary master. The temporary mas-
ter now has complete control of the bus and begins its
first bus cycle.

2.8.2.3.5 Bus cycles

Any number of standard bus cycles are then con-
ducted by the temporary bus master. Bus control is
never transferred between cycles. When the tem-
porary master is done, the process proceeds to XS 11,
transfer state two.

2.8.2.3.6 Transfer state two

Transfer state two, XS 11, is the mirror image of the
sequence in XS I, The state begins with the release of
the CDSB* signal, enabling the control output drivers
of the permanent master and disabling the address,
status, and data output drivers of the temporary
master.

Both the temporary master and the permanent
master drive the control output lines for the re-
mainder of XS IT at the levels prescribed for XS I.

The state is ended by the release of other disable
signals and HOLD*, enabling the address, status,

-n¢! data out drivers on the permanent master, and
disabling the control output drivers of the temporary
master. The permanent master now has complete
control of the bus and the temporary master returns
to the idle state.

2.8.2.4 Bus transfer timing relationships
2.8.2.4.1 General

The fundamental timing relationships for a bus

tSee note in section 2.4.4.1,

July 1979

transfer and a single DMA bus cycle are given in
Figure 8.

Relationship to the bus transfer states is shown in
boxes at the bottom of the figure.

Detailed specification of these times is givenin 3.10
and Table 5.

28242 Tso

A minimum time between the rising edge of the
hold acknowledge signal and the assertion of the
disable signals in XS I allows time for completion of
the preceding bus cycle.

28243 T,,

The time that both the temporary master and the
permanent master must drive the control output
signals has a specified minimum to assure a smooth
bus transfer.

Assertion of the XFER II signal, or CDSB*, is
specified relative to the rising edge of the system
clock, ®, so that the assertion of this signal may be
used by the temporary master as a cycle start signal.

28244 Tdh

The ““done” signal is a signal internal to the tem-
porary master. This signal should not be asserted un-
til the hold time for data output, status, and address
signals in the standard bus cycle has been met.
28245 T,

Completion of the reverse bus transfer XFER 11

shall precede the release of the pHLDA signal by a
minimum specified time.

oﬂw

PHLDA \
trel }"

'/ tset
\

XFER I} -

s

pSYNC

poBIN

pPWR*

tah l»
/___

[xsic] ioe

DONE

HOLD*

ARB | MINE | xsi]

WHERE:
XFER | = ADSB*, SOSB*, DODSB"
XFER It= CDSB*

BUS CYCLE

Figure 8. Bus transfer and single bus cycle.

Preliminary—Subject to Revision

pHLDA+ ~ISME /
HOLD® =F
CONTINUE TO
ASSERT NON-
CONFLICTING
B's

P3=B3/B2.B1.BOON
~——

P1#81/80 OFF
P1=B1/BOON,~
”

PR

pHLDA- PRIORITY

WHERE:
P ATTEMPTED PRIORITY. ASSERTION
B=PRIORITY ACTUALLY ON THE BUS

Note: This state diagram is conceptually correct; but this process is actually a
parallel rather than a sequentiaf one. Figure 9B shows suitable logic. 1o imple-
ment such a paraliet prodess.

Figure 9a. Bus arbitration diagram.

INTERNAL BUS
SIGNALS SIGNALS

IWANT >———————
| R

D AHOLD
t
RO HOLD*
ISMINE E <]
0S
c
a
APRIO®
IMHI*
PRIORITY 15 NI
T o]
ichesty | E1182|84198 '
SHOWN BY Ve | Ve | Vee | Vee DMA3*
SWITCHES
OPEN
t
t
| DMA1*
t
AHOLD DMAO*
= assert HOLD*
APRIQ*
= assert priority bits t= OPEN COLLECTOR

Figure 9b. Bus arbitration example.

Preliminary—Subject to Revision

JEEE S-100 STANDARD 3 7 1

2.8.3 Bus arbitration protocol

In a system which allows more than one master to
use the system bus, for example a CPU permanent
master and several temporary masters such as DMA
controllers or multiple CPUs, some means must be
provided to determine which device will be allowed to
control the bus at any given time.

The bus arbitration system uses four bus lines for
arbitrating among 16 temporary masters. These lines
are driven by open collector drivers, and are pulled
high by pullup resistors. Each temporary master has
a unique priority number which it asserts on the ar-
bitration bus at an appropriate time. A higher binary
number indicates a higher priority.

The temporary masters compare the priority ap-
pearing on the active-low open-collector bus with the
priority they are asserting, starting with the most
significant bit. If disagreement is detected by any
temporary master at any given bit position, then
another temporary master must be asserting that
priority bit and thus must have a higher priority. In
that case all less significant bits are removed by the
detecting temporary master. All more significant
bits agree, and thus need not be removed, and the bit
which disagreed must have been a 0 and thus was not
asserted. Leaving the agreeing bits asserted reduces
system noise caused by the redistribution of driving
currents in the bus, and speeds settling of the correct
priority on the arbitration bus. This process is a con-
tinuous asynchronous parallel process, not a sequen-
tial bit-by-bit process as it may seem from the above
description. Incorrect comparisons will occur and be
removed as the bus lines settle for as long as four bus
delays {not related to the choice of four bus lines) plus
logic delays.

The four lines which comprise the arbitration bus
are DMAO* through DMA3*, where DMA3* is the
most significant bit. These lines, in conjunction with
HOLD* and pHLDA, control the bus arbitration pro-
cess.

2.8.3.1 Bus arbitration implementation

An implementation of the bus arbitration protocol
is shown in Figures 9a and 9b.

Any implementation shall obey the rules sum-
marized in section 2.8.4.

2.8.3.2 Bus arbitration state definitions
28321 IWANT

The IWANT state is an internal state for a tem-
porary master which has determined that a bus ac-
cess is necessary and thus wishes to arbitrate for bus
control.

Temporary masters may not assert their priorities
nor remove them at arbitrary times, or the arbitra-
tion bus may be in transition when the result is need-
ed. A temporary master may assert its priority and
the HOLD* bus request only if (1) pHLDA is not
asserted (the permanent master has the bus), and (2)

COMPUTER

312

INTERFACING TO S-100/EEE 696 MICROCOMPUTERS

HOLD* is not already asserted. This guarantees an
ample time to settle the arbitration bus before the
granting of the bus on the rising edge of pHLDA.

This scheme usually results in the first requester
winning the bus. Only if simultaneous bus requests
occur will the arbitration have any effect. This,
however, is not improbable, since multiple unsuc-
cessful requesters will become synchronized by
waiting for the falling edge of pHLDA.

2.8.3.2.2 Priority compare states

The priority comparison states, C3 through CO, are
the states where each requester compares the priori-
ty it is attempting to assert on the arbitration bus
with the priority actually on the arbitration bus.
Though C3 through C0 are shown and described as se-
quential, they are actually parallel processes. While
disagreement occurs at any bit position, less signifi-
cant bits are removed from the arbitration bus. If no
disagreement persists after the settling time, the re-
quester has the highest priority and will be granted
the bus on the rising edge of pHLDA, proceeding to
the state “MINE”, where the bus transfer begins. All
requesters continue to assert their priorities on the
arbitration bus until the falling edge of pHLDA.
Thus the priority number of the current bus masteris
available on the DMA bus while pHLDA is true. If
the permanent master has the bus, pHLDA will be
false.

A temporary master that wins the bus continues to
assert its priority and HOLD* until its bus cycles are
complete. A temporary master that loses the bus con-
tinues to assert its priority bits not turned off by the
arbitration process, but must remove its assertion of
the HOLD* line, so that the winner may indicate that
it is finished by releasing HOLD*. A losing requester
in this state is said to be in the “WAIT” state.

2.8.3.3 Bus arbitration timing relationships

Figure 10 shows two possible cases of the bus ar-
bitration procedure. The first of these is a case where
the requester has no competition; it requests the bus
and the bus is granted. The second case shows the re-
quester waiting for the bus to be free, arbitrating for
the bus and losing, and arbitrating for the bus and
winning.

2.8.3.3.1 No competition

When the temporary master determines that it re-
quires the bus, it raises the internal signal IWANT.
In this case, the rising edge of IWANT finds the
pHLDA signal unasserted, meaning the permanent
master has the bus, and the HOLD* signal unas-
serted, meaning that no other devices are requesting
the bus. The temporary master may then assert the
HOLD* signal and assert its priority on the arbitra-
tion bus. The ISME signal is the result of the arbitra-
tion process, and is asserted if none of the bit-wise
comparisons on the arbitration bus fail. This arbitra-

July 1979

tionresult is clocked by therising edge of the pHLDA
signal, creating the bus grant signal MINE.

When the temporary master is finished with the
bus, the IWANT signal is released, releasing the
HOLD* signal and resetting the bus grant signal,
MINE. The permanent master releases the pHLDA
signal, and all assertions are removed from the ar-
bitration bus.

2.8.3.3.2 Wait-lose-win

In this example the requester raises its IWANT
signal, but finds the bus already busy and must wait
to assert its bus request and priority until the falling
edge of pHLDA.

The requester arbitrates for the bus during try 1,
but another requester has a higher priority and the ar-
bitration result ISME is low at the rising edge of
pHLDA, indicating a loss in the arbitration process.
The losing requester removes its assertion of the
HOLD* signal, but continues to assert the non-con-
flicting high-order bits of its losing priority until the
falling edge of pHLDA. At the falling edge of
pHLDA, the process repeats, but this time results in
a win for the requester.

2.8.4 Summary of arbitration protocol

Figures 9A and 9B represent an example, not a re-
quired implementation. Any implementation which
obeys the rules may be used. The rules which must be
obeyed by a temporary master are:

1) HOLD* may be asserted only when it is not
already asserted and pHLDA is low.

2} HOLD* must be removed when pHLDA rises if
another controller has asserted higher priority.

3) HOLD* must beremoved when the controller no
longer needs the bus.

4) Priority must be asserted whenever HOLD* is
asserted, and must remain asserted until the
next falling edge of pHLDA.

NO COMPETITION

WAIT-LOSE-WIN

IWANT 7

HOLD* A
WAL ; - {

pHLDA \4 { N y

R / A/

3. LOSE

ISME M Wi
MINE b/ N
WAL | TRYY | RY2

Figure 10. Bus arbitration timing diagrams.

Preliminary —Subject to Revision

5) The priority level must be user-selectable by
switches and asserted by open-collector drivers
on bus lines DMA3*-DMAO*.

The most significant bit of the priority level (ap-
pearing on DM A3*) must be compared with the
priority asserted. If the line is asserted low but
not by this temporary master, all less significant
priority bit assertions must be removed.
Similarly, bits DMA2*, DMA1*, and DMAO*
must be examined and possible less significant
conflicting bits removed.

If nolines are asserted low except those asserted
by this temporary master after sufficient set-
tling time, this temporary master has highest
priority and may take the bus when pHLDA
rises.

Logic implementations must be such that set-
tling of the arbitration circuitry and bus will be
completed between the assertion of HOLD* and
the rise of pHLDA.

6

7

8

2.9 Interrupt protocol

The purpose of an interrupt system is to allow
peripheral devices to suspend the operation of a bus
master in an orderly way and to request that the
master service the requesting peripheral. When ser-
vice is complete, the bus master returns to the opera-
tion from which it was interrupted.

The interrupt protocol is comprised of an 8-level
vectored interrupt system and a non-maskable inter-
rupt. A complying master need only implement
INT*,

2.9.1 Vectored interrupts

2.9.1.1 Vectored interrupt requests

Eight levels of vectored interrupt requests are
issued on the vectored interrupt lines, VIO* thru
VI7*, where VIO* is the most significant interrupt
priority level. Vectored interrupt requests, however,
may be rotated, masked individually, or ‘‘fenced out”’
by the interrupt control slave, and hence the priority
levels are not fixed. Requests on the VI lines should
be asserted as levels, that is, they should be held ac-
tive until service is received. A slave which asserts a
VI line need take no further action to generate an in-
terrupt. It is assumed that if interrupt acknowledge
cycles occur, aninterrupt controller somewhere in the
system will respond appropriately.

The generalized interrupt request line, INT*, is im-
plemented as a communication line between the inter-
rupt controller and an interruptable master. Any
slave or interrupt controller, using the INT* line,
must respond appropriately to any interrupt ac-
knowledge cycles. The interrupt controller is not re-
quired to use INT*. A vectored interrupt may occur
without INT* ever being asserted.

2.9.1.2 Interrupt acknowledge

The interrupt acknowledge cycle is a standard bus
read cycle. The interrupt acknowledge cycle requests

Preliminary —Subject to Revision

IEEE S-100 STANDARD 3 ’3

vectoring information from the interrupt controller
to be asserted on the data bus during pDBIN.

Since no address information is asserted during an
interrupt acknowlege cycle, only one interrupt con-
troller may exist on the bus. If multiple interrupt con-
trollers exist, they must either be ‘‘daisy chained’’ to
avoid possible bus conflicts, or polled by the bus
master.

2.9.2 Non-maskable interrupt (NMI*)

The non-maskable interrupt is an optional control
input to bus masters. This interrupt is not maskable
by a software instruction, and takes priority over
other interrupt requests. The NMI* line may be used
in the implementation of the special condition
lines, ERROR* and PWRFAIL*.

NMI*is an open collector line. The bus master shall
respond to negative going transitions on the NMI*
line.

2.10 Special condition lines

Two special condition lines, PWRFAIL* and
ERROR?¥, are available on the bus. Their use is op-
tional.

2.10.1 Power-fail pending (PWRFAIL*)

This line indicates an impending system power
failure. It is specified that this line shall be activated
at least 50 msecs before the local voltage regulators
drift out of specification.

The line stays low until the power-on clear signal is
activated. This implies that either a normally closed
relay or a battery powered circuit drive the power fail
line. The circuit driving this line must meet the elec-
trical specifications for an open collector line.

2.10.2 ERROR*

This is a generalized error line that indicates that
the current bus operation is producing an error of
some sort (i.e., memory parity error, write to pro-
tected memory, inability to accommodate 8-bit
slaves, etc.)

The ERROR* line should be implemented as a trap.
All relevant information about the error-causing
cycle—address, data, status, device number (for tem-
porary masters)—should be latched on the falling
edge of ERROR*.

ERROR* is implemented as an open collector line.

3.0 Electrical specifications
3.1 Application

This section defines the electrical specifications for
interface devices to be used in S-100 bus systems.
Proper operation of these devices also depends on two
other factors:

1) Short physical distance between devices.

2) Relatively low electrical noise.

COMPUTER

3174

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

The electrical specifications for the bus driver and
receiver circuits donot imply a particular technology,
unless otherwise noted.

All specifications - apply over the temperature
range T, = 0°C to 70°C.

3.2 Power distribution

Power in S-100 systems is distributed as unregu-
lated DC power at three voltages, +8 volts, +16
volts, and —16 volts. Because these voltages are on
adjacent lines it is relatively easy to short these lines
on card removal. Therefore, bleeder resistors or other
constant loads sufficient to discharge all three sup-
plies rapidly are recommended.

3.2.1 +8volt specification

Instantaneous minimum must be greater than +7
volts, instantaneous maximum less than 25 volts,
and average maximum less than 11 volts.

3.2.2 +16 volt specification

Instantaneous minimum must be greater than 14.5
volts, instantaneous maximum less than 35 volts,
and average maximum less than 21.5 volts.

3.2.3 —16 volt specification

Instantaneous maximum must be less than —14.5
volts, instantaneous minimum greater than —35
volts, and average minimum greater than —21.5
volts.

3.3 General signal discipline

Other than the power lines noted above, all signals
on the bus are limited to positive signal levels be-
tween 0 volts and +5 volts, and may not have loaded
rise or fall times less than 5 nsecs.

3.4 Driver requirements
3.4.1 Driver types
Three types of bus drivers are defined:

1) Anactivedriver, either in the high state or in the
low state or in transition, which has the capabili-
ty to accept current in the low state and to pro-
vide current in the high state.

An open collector driver, which will not accept or
provide current in the high state. A 1000Q + 5%
pullup resistor to +5 volt or equivalent must be
provided somewhere in the system for open col-
lector lines. It is recommended that these pullup
resistors be provided on the bus. However, im-
plementation on the permanent master is also
acceptable.

A Tri-Statedriver, which has the capability to be
in the high-impedance state as well as in the high
and low states.

2

3

July 1979

3.4.2 Driver specifications

Specifications for bus drivers shall be as follows:

Output voltage less than or
equal to +0.5 volts at 24 mA
sink current.

Output voltage (for active and
Tri-State drivers) greater than
or equal to +2.4 voltsat 2 mA.

Low state (V.):

High state (V).

The leakage current for Tri-State drivers in the
high-impedance state is specified as not greater than
+25 uA.

The internal capacitive load of a driver shall not ex-
ceed 15 pF at 25 °C whether in the active or the high-
impedance state.

The rise and fall times of bus drivers should be
minimized, subject to 3.3. In no case should the rise or
fall times exceed 50 nsec at rated capacitive load.

3.5 Receiver specifications

The specifications for receivers on the bus shall be
as follows:

Low state: A voltage less than or equal to +0.8
volts shall be recognized as a low
state.

High state: A voltage greater than or equal to

+2.0 volts shall be recognized as a
high state.

Bus receivers shall source no more than 0.5 mA at
0.5 volts and sink no more than 50 pA at 2.4 volts.

Busreceivers shall have diode clamp circuits to pre-
vent excessive negative voltage excursions.

Additional noise immunity is afforded by the use of
Schmitt-type receiver circuits. Recommended hys-
teresis for such receivers should be greater than or
equal to 0.4 volts.

3.6 Bidirectional signals

Some interface signals, such as the data bus, are
combined Tri-State drivers and receivers. For each
function these devices must meet the same specifica-
tions as separate drivers and receivers.

The total internal capacitive load for a line trans-
ceiver shall not exceed 20 pF at 25°C.

3.7 Card-level bus loading

At the card level, the following specifications ap-
ply:

1) The total capacitive load on any bus input shall
not exceed 25 pF.

A card may not source more than 0.5 mA at 0.5
volts nor sink more than 80 uA at 2.4 volts on any
signal line except for DMAO*, DMA1* DMA2*,
DMA3*, PHANTOM*, and PWRFAIL*. On
these lines a card may not source more than 0.4
mA at 0.5 volts.

2

Preliminary—Subject to Revision

3.7.1 Bus termination

All bus lines except the power and ground lines
may be terminated to reduce bus noise using a circuit
equivalent to

BUS LINE R + -
> —(

where V=2.6 volts + 0.2 volts and R is no less than
1809Q(+ 5%).

Open collector lines may have a combination pullup
and termination scheme using a circuit equivalent to

+5V
RW

OPEN COLLECTOR BUS LINE R, + -
o \

where V=2.6 volts + 0.2 volts, R, = 1.5KQ+ 5%, and
R, should be no less than 180Q (+5%).

3.8 Read cycle timing specification

Figure 11a depicts the read cycle timing waveforms
with the pertinent timing parameters shown. Table 4
specifies these parameters.
3.9 Write cycle timing specification

Figure 11b depicts the write cycle timing waveforms

with the pertinent timing parameters shown. Table 4
specifies these parameters.

IEEE S-100 STANDARD 3 ’ 5

3.10 Ready and sixteen request timing specification

Figure 12 depicts RDY, XRDY, and SIXTN* tim-
ing waveforms during read and write cycles, with per-
tinent timing parameters shown. Table 4 specifies
these parameters.

3.11 Bus transfer timing specification
Figure 8 depicts bus transfer timing waveforms

with the pertinent timing parameters shown. Table 5
specifies these parameters.

4.0 Mechanical specifications
4.1 Application

This section defines the mechanical specifications
for standard interface systems.

4.2 Connector type

The card edge connector is a 100-pin (dual 50) con-
nector with contacts spaced on 0.125" centers. It is
nominally designed for printed circuit boards 0.062"
thick.

The connector is subject to the specifications in
4.2.1 and 4.2.2.

4.2.1 Electrical considerations

1) Voltage rating: 200 volts DC, minimum pin to
pin.

2) Current rating: 2.5A per contact.

3) Contact resistance: 50 mQ maximum at rated
current after 100 insertions.

4) Insulation resistance: 1000 MQ minimum.

4.2.2 Connector spacing

Connectors should be spaced 0.75 inches —0.01 in-
ches center to center.

pSTVAL® X /s(s, -\ftg’-/
*‘i 3T
AC-A23 x x

STATUS X

pDBIN

o Hi-Z X LOw-Z

fb'
g
>
<
>
Rl
=
:4

Figure 11a. Read cycle timing diagram.

Preliminary—Subject to Revision

COMPUTER

316

INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

. F T
e .

pSTVAL®

AD-AZ3

STATYS

)

MWRT

Figure 11b. Write cycle timing diagram.

Table 4. Read/write cycle timing parameters.

MIN.(NSECS) MAX.(NSECS)

oy @ PERIOD 166 2000

tovk @ PULSE WIDTH HIGH 0.4ty

toye @ PULSE WIDTH LOW 0.4tgy

losy DELAY ® HIGH TO pSYNC HIGH; 10 0.4ty

DELAY ® LOW TO pSYNC LOW

tsy pSYNC PULSE WIDTH HIGH 0.7ty

t57e pSTVAL* LOW PRIOR TO ® LOW DURING pSYNC 0

ter pSTVAL* PULSE WIDTH HIGH 50

&7 pSTVAL* PULSE WIDTH LOW 50

tersy pSTVAL* FALLING EDGE PRIOR TO pSYNC HIGH 0

tast ADDRESSES STABLE PRIOR TQ pSTVAL* LOW DURING pSYNC HIGH 70

1557 STATUS STABLE PRIOR TO pSTVAL* LOW DURING pSYNC HIGH 40

tos pDBIN PULSE WIDTH HIGH 0.9ty

15708 DELAY pSTVAL* LOW TO pDBIN HIGH 20

thasy DELAY pDBIN LOW TO pSYNC HIGH 0

t5eas HOLD TIME FOR ADDRESSES AND STATUS AFTER pDBIN LOW 50

552 DELAY pDBIN LOW TQ SLAVE Di DRIVERS Hi-Z 25+0.11gy

toez DELAY pDBIN HIGH TO SLAVE DI DRIVERS ACTIVE 10 25+0.11gy

tacc DELAY pSTVAL* LOW TO DATA VALID SPECIFIED BY MANUFACTURER.
WORST CASE MAXIMUM FOR ALL
SLAVES AND WORST CASE
MINIMUM FOR ALL MASTERS.

ts55 DATA VALID SETUP TIME TO pDBIN LOW

twm pWR* PULSE WIDTH LOW 0.9ty

tswa DELAY pSTVAL* LOW TO pWR* LOW 30

twasy DELAY pWR* HIGH TO pSYNC HIGH 0

tow SETUP TIME DO VALID TO pWR* LOW 0.1ty

twRasp HOLD TIME ADDRESSES, STATUS, AND DO FROM pWR* HIGH 0.2ty

twamp DELAY pWR* LOW TO MWRT HIGH; DELAY pWR* HIGH TO MWRT LOW 30

(e SETUP TIME RDY, XRDY, SIXTN* TO ® RISING 80

toroy HOLD TIME RDY, XRDY, SIXTN* AFTER @ RISING 70

July 1979 Preliminary—Subject to Revision

IEEE S-100 STANDARD 3 7 7

| BS, l 857 | 8S3

VA N R W

pSYNC / \
— tonoy — loroy
e e J
RDY. XRDY. SIXTN* X X)(' X

SIXTN® is sampied anly during pSYNC
ROY and XRDY are sampled when pSYNC
= F only if the master is in a wait state

Figure 12. Timing of RDY, XRDY, and SIXTN* during read and write cycles.

Table 5.
Bus transfer timing parameters.

tser DELAY pHLDA TO ADSB*, SDSB*, DODSB™ 30
fov TIME BOTH TEMPORARY AND PERMANENT MASTER DRIVE THE CONTROL

OUTPUT LINES 0.51py
ton HOLD TIME ADDRESS, STATUS, AND DATA OUT DURING DMA CYCWE 0.2tcy
ter, SETUP TIME, END OF BUS TRANSFER TO pHLDA RISING EDGE 20

4.3 Board size specification shown in the figure is pin 50. Pin 100 opposes pin

50 on the back side of the board.
Circuit boards shall conform to the board size speci- Total board depth shall not exceed 0.65".
fications given in Figure 13. The edge connector pin Nominal board thickness is 0.062".

0 08¢
5 175 MAX 5 H0GMAX o] fe—] | : :;H'

G125 My 0 125 MAY, —of e ¢ 0796MN

‘, 3 l | ‘]
0 +4 0100 vT;u?o ﬁ T o !

ax
l RD GL-OES RELAT 1
CONRNE sRIERLINE

CLNTER LINE OF PIN 50

CHAMFER FINGERS— "

COMPONENT SIDE 0015 x 45¢ 5
BREAK ALL SHARP 19
|- CORNERS
o 6 364
8375
0.100 e

DA

BRI :
= .L'm_
T CRES
00t o O) ,]‘ - o e

GENERAL DIMENSIONS COMPONENT CLEARANCE— BACKPLANE DIMENSIONS
TOP VIEW

Figure 13. S-100 board mechanical parameters

Srelonn ey Subg ol 1 Bevision COMPUTER

Ndex

AC power devices, control of, 165
AC voltage sensor circuit, 154
ADC. See Analog-to-digital converters
Address bus, 10-11, 19-20
extended address bus, 10-11
Address decoder, 19, 60~63, 108, 180, 266
/0, 71-77
Address lines, 19, 104
ADSB«+, 19, 30
Analog data logging, 210
Analog input devices, 212
joy sticks, 212-13
light sensing, 213
temperature sensing, 213
Analog-to-digital converters {ADCs), 201-14
interrupt signals with, 209
multipiexing, 207-09
ramp type ADC, 201-04
successive approximation ADC, 204-06
ASCIl code table, 285
Asynchronous data transmission, 177
A0-A23, 19-20

Bank select, 104-05
Baud rate, 175
Baud rate clocks, programmable, 18485
BDSEL*, 54
Binary summing circuit, 193
Breakpoint, 277
BSW, 46
Buffering, 51
data bus, 54
incoming signal, 52
Burst mode, 255, 258, 271
Bus arbitration, 260-61
Bus cycle, 40-41
Bus master
defined, 9
permanent, 9
temporary, 9, 29, 256
Bus slave, 10, 256
buffered outputs of, 51
buffering lines from, 80
wait states, 83
Bus states, 39-40
Byte serial transfer, 48

CDSB=, 25, 30

Channels, 112-13

Circled letters, meaning of, 63, 85
CLOCK, 14, 31

Clock cycles, 39-40

Control input bus, 13-14, 26-28
Control output bus, 13, 24-26
Control port, 111

Crosstalk, 8

Cycle-stealing TMA, 258

DAC. See Digital-to-analog converters
Data bus, 11-12, 20-21
bidirectional, 81

buffering, 54, 80-82
data input bus, 12, 21, 45
data output bus, 12, 21
sixteen-bit data transfer, 47
unidirectional, 81
Data input bus, 12, 21, 45
Data output bus, 12, 21
Data strobe, 111
Data transmission
asynchronous, 177
synchronous, 181
DAV, 130
DC power devices, control of, 163
Debouncing switches, 141-44
Decoders, 5777
address, 60-63
/O address, 71-77
memory address, 64-71, 104
status, 58-59
three- to eight-line, 63
two- to four-ling, 63
Digital-to-analog converters (DACs), 193-201
binary summing circuit, 193
double buffering, 199-200
oscillator circuit, 201
programmable signal generator, 201
sine wave signal generator, 198
10-, 12-, 16-bit, 199
voltage output DAC circuit, 194
Digital voltmeter ICs, 210
DIP switches, 60
DMA (Direct Memory Access), 29. See
also TMA
DODSB«*, 21, 30
Double buffering, 199
Driver program, 135
Drivers, 51
open collector, 56
Dummy mastering, 272

8080 interrupt system, 221
8080/8085 instructions, 288
EPROMs, 96

ERROR=*, 31, 37,48, 220, 221, 279
ERROR* trap circuit, 279
EXIOADR«, 77

EXMEMADR, 71

Fan-out, 52, 55
Fixed voltage iC regulators, 15-16

GND, 33, 35

Handshaking, 111

input ports, 111

interfacing, 125-31
Hardware breakpoint trap, 27778
HOLD«+, 13, 27

IC regulators, 15—-16

IEEE S-100 standard, 6
reprint of, 293

1/0 address decoders, 71-77

319

320 INTERFACING TO S-100/IEEE 696 MICROCOMPUTERS

1/0O drivers, 123
/0, memory mapped, 131-34
1/0 port, 107-09
channels, 112
Input port
interface, 108
status port, 111
Interfacing
to keyboards, 144
to LEDs and lamps, 159
paralle!, 123, 175
to real world, 135
serial, 123, 175
to switch arrays, 144
to UART, 180
INT+, 13, 28, 220
Interrupt acknowledge cycle, 45
Interrupt bus, 14, 28
Interrupt lines, 220
Interrupts
advantages and disadvantages of, 220
breakpoints, setting, 219
foreground/background operation, 218
interrupt service routine, 218
interval clock, 237
multiple vectored interrupt system, 219
polled, 23435
power failure, 219, 238
priority interrupt system, 219
refreshing a display, 217
with slow output device, 217
vectoring, 218-19
Interrupt service routine, 218
Interrupt systems
8080, 221-27, 229
8085, 221, 223
8255, 227
8259A, 228
multiple interrupt, 22427
Z80, 221, 229, 234

Joy stick ADC circuit, 212-13
Jump-on-reset circuit, 279-82

K, 11

Keyboards
encoded, 148
interfacing to, 144, 148
lock-out, 145

Latches, 113-15
D-type, 113
octal, 114
741 S-series, 113
transparent, 115
LEDs
increasing brightness of, 1569
interfacing to, 159-62
LED/phototransistor package, 150
monitoring signal lines with, 275
seven-segment displays, 159-61
Light sensors, 148-50, 213
LED/phototransistor package, 150
photocell, 148-49
phototransistor, 149, 154

Loads, 51
Lock-out, 145
LSI display controller ICs, 162, 176

Marking condition, 176
Masking, 14
Master. See Bus master
Matrix-scanning technique, 144
Memory address decoders, 64-71
Memory-mapped I/0, 109, 131-34
Motherboard, 8
Motors

control of, 168

stepper motors, 170
Multimasters, 259-61
Multiprocessing, 218, 272-73

parallel processing, 274

pipeline processing, 274
Multitasking, 218
MWRT, 13, 14, 26, 30, 42

NDEF fines, 33, 34, 35
NMi+, 13, 14, 28, 29, 220, 221

Open collector drivers, 56
Optical couplers, 153-54
Opto-isolators, 156
Output port

control port, 111

data strobe, 111

interface, 108-09

Parallel input interface, 123
Parallel I/0, 175
Parallel output interface, 123
Parallel processing, 237, 274
pDBIN, 13, 25, 40, 42, 54
Peripheral Interface Adapter (PIA), 116
Peripheral serial interfaces, 185-90
current loop, 189-90
RS-232-C, 185-89
PHANTOM*, 14, 31, 69-71
pHLDA, 13, 26
PIA, 116
PINTE, 37
Pipeline system, 274
POC+, 14,31,32
Polled interrupts, 234
Port decoder, 266
Power supply interfacing, 15
PPl 117
Priority interrupt system, 219
Programmable counter/interval timers, 240
8253 IC, 240
Programmable 1/0 port ICs, 115-21
Intel 8255, 117-19
MCS 6522, 121
Motorola MC6820, 116—-17
TMS 5501, 120
Z80-PIO, 119
Programmable Peripheral Interface (PPI), 117
Programmable Read-Only Memory, 89
Programmable timer/counters, 239
applications of, 246-56
baud rate generation, 249

moEx 321

measuring speed, 247-49 Status port, 111
real time clock, 249~-53 Stepper motors, 170-71
PROM, 89 Strobe qualifiers, 77
PROT, 35 /O read, 7778
Prototyping board, 4 memory read, 77-78
PS, 35 memory write, 79
pPSTVAL*®, 13, 25, 34, 42 Strobes, 13, 24, 111
pSYNC, 13, 25, 40, 42 data strobe, 111
Puli-up resistor, 62, 95 Successive approximation ADC, 204-06
pWR+, 13, 25, 26, 42 Switches, inputting from, 135-40
PWRFAIL#, 32, 220, 221, 238 pushbutton, 135
Ramp type ADC, 201-04 rotary, 136
RAMs, 89 magnetically operated, 139
1K, 90 debouncing, 14144
4K, 90, 9296 sWO=+, 13,23
RDY, 13, 27 sXTRQ«*, 12,13, 21, 23, 27
Read cycle, 40-44 sixteen-bit data transfers, 47

timing, 48
Synchronous data transmission, 181
System clock () signal, 14, 31,39-40

with wait states, 46
Read-only memory, 89
Read qualifier circuit, 108
Read/write memory, 89
Real time clock, 237-38, 249-53
Register, 113
Regulator circuits, 15-16
Relay driver circuits, 163
RESET+, 14, 31
RFU lines, 33-34, 35, 37

Temperature sensing, 213
Temperature sensing circuit, 151
Temporary Master Access. See TMA
Termination circuitry, 8—9
Timer/counter ICs, 239

as event counters, 239

as interval timers, 239, 240

Ringing, elimination of, 8 TMA (Temporary Master Access), 14, 2566-74
ROMm. 89 cycle-stealing, 258, 271
RST, 222, 233 direct, 258
RUN, 34 disadvantages of, 266-57
SCR control circuit, 165 dummy mastering, 272
SDSB+, 22, 30 multiprocessing, 272-73
Serial interface, 123 TMA controller circuit (TMAC), 255, 262-72
Serial /0, 175 TMA control bus, 14, 29~30
74L.S125A, 55 TMAO*-TMA3#*, 30
7415244, 54 Touch-plate sensing circuit, 153
Seven-segment display, 159-61 Triac control circuit, 165
multiplexed, 161-62
SHIFT/LOAD, 84-85 UARTs, 177-80
sHLTA, 13, 23 S-100/UART interface, 180
Sine wave signal generator, 198 Unidirectional buses, 81
Single stepper, 276 UNPROT, 35
sINP, 13, 22 USARTs, 181-83
sINTA, 13, 23, 220, 221 S-100/USART interface, 181
SIXTN=, 12, 14, 21, 27 Utility bus, 14
sixteen-bit data transfers, 47 Utility signals, 3032
timing, 48

Vectored interrupt lines, 28, 29
Vectoring, 218-19
VIO=-VI7+, 28, 29, 220-21

Slave. See Bus slave
SLAVE CLR+, 14, 31

;ms\y‘?;& 22 Voltage lines, 14, 33

sM1, 13, 22 Wait state, 40, 45-46
Sound generators, 172-73 in TMA cycle, 265

sOUT, 13, 22, 26 Wait state generator, 83-85
Spacing condition, 176 in S-100 memory board, 95
SS, 34-35 Write cycle, 43—-45
SSTACK, 37 Write qualifier circuit, 108
SSWDSB«+, 35

Status bit, 111 XRDY, 13, 27

Status bus, 12-13, 21-24

Status decoders, 58~59 Z80 instructions, 290

Status lines, 13 Zener diode voltage regulators, 17-18

Other OSBORNE/McGraw-Hill Publications

An Introduction to Microcomputers: Volume O — The Beginner’'s Book
An Introduction to Microcomputers: Volume 1 — Basic Concepts, 2nd Edition
An Introduction to Microcomputers: Volume 2 — Some Real Microprocessors
An Introduction to Microcomputers: Volume 3 — Some Real Support Devices
Osborne 4 & 8-Bit Microprocessor Handbook

Osborne 16-Bit Microprocessor Handbook

8089 /O Processor Handbook

CRT Controller Handbook

68000 Microprocessor Handbook

8080A/8085 Assembly Language Programming

6800 Assembly Language Programming

Z80 Assembly Language Programming

6502 Assembly Language Programming

28000 Assembly Language Programming

6809 Assembly Language Programming

Running Wild — The Next Industrial Revolution

The 8086 Book

PET and the IEEE 488 Bus(GPIB)

PET/CBM Personal Computer Guide, 2nd Edition

Business System Buyer's Guide

OSBORNE CP/M® User Guide

Apple lI® User's Guide

Microprocessors for Measurement & Control

Some Common BASIC Programs

Some Common BASIC Programs — PET/CBM Edition

Practical BASIC Programs

Payroll with Cost Accounting

Accounts Payable and Accounts Receivable

General Ledger

8080 Programming for Logic Design

6800 Programming for Logic Design

Z80 Programming for Logic Design

ﬁ A ues e b, Y
— \»\ ml:_f . t*‘ ,‘

/)
AT A P 3
L,’,k MR AN i Wm\’)')\mww P

interfacing to

$-100/1EEE 696
microcomputers

by Sol Libes and Mark Garetz

The S-100/IEEE 696 is the most widely used bus today. It is supported by over
100 different manufacturers and is compatible with a variety of CPUs. There are
several times more languages, operatlng systems, and application packages
available for S-100 systems than for any other system.

This book helps S-100 Bus users expand the utility and power of their systems. It
describes the S-100 Bus with unmatched precision. Various chapters describe its
mechanical and functional design, logical and electrical relationships, bus inter-
connections, and busing techniques. Both parallel and serial interfacing are de-
scribed, as well as interfacing to RAM, ROM, and the real world. Additional chap- -
ters discuss A/D and. D/A conversion, interrupts, timers, and direct memory
access.) | S
Sol Libes is a teacher, author and member of the IEEE Standards Committee on
the S-100 Bus. He has written and spoken extensively on the S-100 Bus, and he
is the founder of S-700 magazine. His authorship, along with that of pror?winept
columnist Mark Garetz, makes this book a truly authoritative reference.

3
i

i

INg {o

EEE 656 INnterfacing 1o -

Dmputers S>-100/[EEE é% 8
ol microcomputers

| .*n?'

ISBN 0-931988-37-3

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236
	page 237
	page 238
	page 239
	page 240
	page 241
	page 242
	page 243
	page 244
	page 245
	page 246
	page 247
	page 248
	page 249
	page 250
	page 251
	page 252
	page 253
	page 254
	page 255
	page 256
	page 257
	page 258
	page 259
	page 260
	page 261
	page 262
	page 263
	page 264
	page 265
	page 266
	page 267
	page 268
	page 269
	page 270
	page 271
	page 272
	page 273
	page 274
	page 275
	page 276
	page 277
	page 278
	page 279
	page 280
	page 281
	page 282
	page 283
	page 284
	page 285
	page 286
	page 287
	page 288
	page 289
	page 290
	page 291
	page 292
	page 293
	page 294
	page 295
	page 296
	page 297
	page 298
	page 299
	page 300
	page 301
	page 302
	page 303
	page 304
	page 305
	page 306
	page 307
	page 308
	page 309
	page 310
	page 311
	page 312
	page 313
	page 314
	page 315
	page 316
	page 317
	page 318
	page 319
	page 320
	page 321
	page 322
	page 323
	page 324
	page 325
	page 326
	page 327
	page 328
	page 329
	page 330
	page 331
	page 332
	page 333
	page 334
	page 335
	page 336
	page 337
	page 338
	page 339
	page 340

