
MICROSYSTEMS REVIEWS

COllipuPro MPX-1
Multiplexer Channel

An S-100 multiplexer board that relieves the system CPU
of having to spend any time handling I/O

by Dennis Thovson

ost microcomputers use the system cen­
tral processing. unit (CPU) to handle all
input/output (I/O) to peripheral de­
vices such as printers and CRT termi­
nals. This is usually accomplished in ei­

tlier of two ways: programmed I/O or interrupt I/O.
Programmed I/O is the less efficient because the sys­
tem CPU, not knowing when the peripheral device is
ready, is required to wait in a status check program
loop, or make repeated calls to the peripheral device
until it sets its status to ready. Interrupt I/O is usual­
ly more efficient in using CPU time (assuming the
plication program or operating system is designed to
take advantage of the interrupt capability) b~cause
the CPU does.not have to continually check the I/O
device status; therefore the CPU needs to service an
I/O device only when that device requests attention
via an interrupt.

For example, consider a multiuser system with a
number of active consoles attached. Using program
I/O, the CPU will have to poll all consoles periodi­
cally (every few milliseconds) to see if any key has
been pressed. With interrupt I/O, the CPU can exe­
cute the various user application programs until an
interrupt is sensed from one of the consoles. Only
then will the CPU stop execution of the application
program, jump to an interrupt handling program rou­
tine, get the keyboard character, store it in a buffer,
then return to the application program and resume
execution.

No time is wasted in polling the console keyboards
looking for a key 'press, which happens very infre­
quently in terms of CPU execution time. Is there a
still more efficient way to handle I/O without wast­
ing main CPU time? Godbout Electronics has taken
a page from the large mainframe computer book and
developed a multiplexer board that very nearly re­
lieves the system CPU of having to spend any time
handling I/O chores. This board is the MPX-1, for
the IEEE-696/S-l 00 bus.

Overview of the MPX-1
The MPX-1 contains a 6MHz 8085 processor, 16K
of RAM, 2 to 8K of EPROM, and an 8259A inter­
rupt controller. The RAM and EPROM are local to
the MPX-l and thus do not occupy any address space
in the main system memory on the S-100 bus. The
MPX-l is a complete computer that can run indepen­
dently of, and in parallel with, the main system CPU.

Dennis Thovson, 243 McMane Ave., Berkeley
Heights, NJ 07933

However, it does not itself have any I/O capability;
that is, it does not have on-board USARTs, PIAs, or
the like with which to communicate with the I/O de­
vices. So, you ask, what good is a compttter that can't
talk to anything? Pay attention now, I dIdn't say the
MPX-I couldn't perform any I/O-only that it
couldn't perform I/O by itself.

What the MPX-I does is to steal the bus for a
cycle or two when it needs to access I/O or other
devices on the system bus. It does this by becoming a
temporary master and executing a direct memory ac­
cess (DMA) cycle on the system bus in accordance
with protocol defined in the IEEE-696/S-100 specifi­
cation. Thus, the MPX-l has access to the system bus
and all the attached resources such as main memory
and I/O ports. Only one problem remains: How do
the main system CPU and the I/O devices get the
attention of the MPX-I ? It's really quite simple: they
interrupt it.

When the main system CPU needs to get the at­
tention of the MPX-l-to output a character to a
console or printer for example-it can place the char­
actc:~r in a selected location in system memory and
cause an interrupt'tp the 8085 by executing an OUT
instruction to a !1pecified port called the ATTN port.
The OUT instruction triggers a hardware interrupt
tothe 8085 (the MpX-1 uses the restart 7.5 interrupt
input unique to the 8085). The 8085, upon acknowl­
edging the interrupt, executes a program which, in
this example, initiates a DMA cycle and reads the
character to be output from system memory into lo­
cal memory. When the console,oT printer is ready, it
issues an interrupt, and the MPX-l initiates another
DMA cycle and outputs the character to the I/O de­
vice port on the system bus. All of this happens inde­
pendently of the system CPU except for the buscy­
cles "stolen" by the MPX-I when it needs to access
the system bus.

The 8259A interrupt controller on the MPX-l is
connected to the eight vectored interrupt lines de­
finep on the S-100 bus. This allows any device that
can generate an interrupt, such as a video terminal or
printer, to directly get the attention of the 8259A and
subsequently the 8085 on the~MPX-l board. A con­
sole keyboard may, for example, generate an inter­
rupt on one of the vectored interrupt lines that will
cause the MPX-l to input the character and store it
in a buffer until the system CPU reads it out. Note
that the main system CPU does not need to know
about the interrupt being processed by the MPX-I
board.

In some applications it may be necessary for the
MPX-l to get the immediate attention of the main

106 Microsystems May 1983

CompuPro MPX-1 Multiplexer Channel continued ...

system CPU. This can be accomplished by connect­
ing one of the eight vectored interrupt lines to the
interrupt input of the system CPU and configuring
the MPX-I to generate an interrupt on that line.
Also, as described above, the MPX-I can pass status
or other types of informa tion to the system CPU, on a
program basis, by writing to system memory.

Seleoted detail.
Communication between the MPX-f and the system
CPU takes place through a 100H byte window which
the MPX-I can place anywhere in the main system
address space, including extended address memory.
Through this window, the MPX-l can read from,
write to, or even execute code. resident in the system
memory. To understand how this is accomplished by
the MPX-l, let us first take a look at its local mem­
ory map:

fl00I!JH
4fl00H
Bl!Jl!JflH
B002H
8fl04H
801!J5H
BI!JflJ7H
CIlI!JI!JH

to 3FFFH
to 7FFFH
to 81!JIHH

to FFFFH

RAM
EPROM
8259A Registers
Set Interrupts Latch
OMA Address Bits 8-15
DMA Address Bits 16-23
Interrupt Response Byte
External window

Note that any local address above COOOH accesses
the external window. But if the window is only 100H,
which 100H page within the external window is ac­
cessed? The 100H page accessed is that page selected
by the DMA address bytes stored at 8004H and
8005H, which represent address bits 8~15 and bits
16-23, respectively. Any memory above COOOH ad­
dressed by the 8085 will be within the 100H page,
starting at at the previously selected DMA address.
The careful reader will note that only the low byte of
the local address above COOOH has any meaning for
external memory address selection. The MPX-I uses
the high byte as an indication to trigger a DMA cycle
for access to the system memory addressed by the
DMA address (bits 8~23) and the low order byte
(bits O~7) of the local address.

Since the MPX-l does not have any I/O ports it­
self, an 'IN' or 'OUT' instruction executed by the
8085 will cause the MPX-l to trigger a DMA cycle
to access any ports available on the system bus. Thus
the MPX-I has full access to all the I/O resources on
the system bus at a very small time penalty to the
system CPU (a stolen bus cycle).

It is beyond the scope of this review to discuss the
8259A interrupt controller in any depth. However, a
few remarks may be of assistance to anyone consid­
ering integrating the MPX-l into their system. The
8259A can be connected directly to any or all of the
eight vectored interrupt lines defined on the S-100
bus via user-configurable jumpers on a DIP header.
The 8259A must be initialized to the desired config­
uration before it can be used. This is accomplished by
writing a sequence of "initialization" and "control"

words to the 8259A registers memory-mapped to
8000H and 8001H. .

An interrupt detected by the 8259A will, after re­
solving any priority disputes caused by simultaneous
interrupts, provide an interrupt to the 8085. It will
also provide, during the 8085 interrupt acknowledge
cycle, a vector (memory address) to a jump table con­
taining pointers to interrupt handling routines. The
8085 executes the interrupt program routine, tells the
8259A when it is done by writing a byte to the appro­
priate 8259A register, and then returns to whatever
program it was executing prior to the interrupt. All of
the above takes place locally on the MPX-I, indepen­
dent of the system CPU.

As previously mentioned, the MPX-I also has the
capability of providing an interrupt to the system
CPU. This is accomplished by jumpering the serial
output data (SOD) lead from the 8085 to one of the
eight vectored interrupt lines. A "I" written to the
SOD port will then cause an interrupt input to the
system CPU, assuming it is connected to the proper
vectored interrupt line. The MPX-I will respond to a
system bus interrupt acknowledge cycle by writing
the byte previously stored at local address 8007H to
the system data bus.

MPX-1 programming
As delivered, the MPX-l comes equipped with a
2716 EPROM programmed with an initializing
routine and a number of utilities. Since the 8085
starts execution at address 0 (unitialized RAM), the
MPX-l uses a hardware trick which in effect ex­
changes the EPROM located at 4000H with RAM at
oduring a RESET or SLAVE CLR. After the first 3
bytes of the EPROM are read by the 8085 (which
contain a jump to the starting address of the initial­
izing routine), the EPROM is restored to its normal
base address of 4000H.

~

f'

r.... ·..
r"

Godbout ./ectronics has taken a page from the large mainframe
computer book and de"eloped a multiplexer board, the .PX-1,

which "ery nearly reli~"e. the CPU of handling I/O chore•.

108 Microsystems May 1983

r:
f'

T
th
pr
se
ca
an
all
rai
EI
Re

I
Po'
inc
Re
Cl\t
adc

r
~
f:,. ~
t
r.

f-.

,I
~

CompuPro MPX-1 Multiplexer Channel continued ...

The MPX-l utilities furnished include 8259A ini­
tializing routines as previously discussed and routines
dealing with 8259A status and control, loading
MPX-I RAM with a program from system RAM,
executing a program in MPX-l RAM, and moving a
block of memory from one location to another in sys­
tem RAM. The system CPU can cause the MPX-l to
execute any of the utilities by issuing an OU r in­
struction to the ATTN port and passing a corre­
sponding command byte and any required parame­
ters through the system "window." The manual says
that these utilities are". . . partly tutorial and part­
ly a useful way to get 'up and running' with the MPX
in a minimum amount of time." While I might argue
with the "minimum amount of time" statement, the
utilities are certainly useful and do help the program­
mer to understand the functioning of the MPX-I
board. Full source code for the utilities is furnished in
the manual.

The ability to execute programs in MPX-l local
RAM loaded from system RAM enables the user to
configure the MPX-l for a specific application at the
time of system initialization. It also enables a pro­
grammer to tryout and debug routines in RAM be­
fore they are burned into EPROM. It is in this latter
mode that I have spent many hours alternately prais­
ing and cursing the MPX-l.

Practical experience with the MPX-1
The basic idea was to program the MXP-l to handle
all I/O chores for my single user 6MHz CompuPro
Z80 system. The I/O devices consist of an old TDL
video board that requires a lot of software but can
emulate most any terminal, a Visual 50 video termi­
nal, a Diablo 1620 printer, which also requires a lot
of software to print bidirectionally at 1200 baud, and
a 1200 baud 212 type modem. The last three devices
are driven by a CompuPro Interfacer 4 I/O board.

The most difficult part of programming the
MPX-l arises because all debugging must be done
indirectly-there is no direct access to the 8085 or
the MPX-l local memory. The 8085 runs its pro­
grams in splendid isolation from the system (as it is
supposed to do). The technique I used was to first
develop and run the programs on the main system to
uncover and correct any logic errors. This is only par­
tially useful, since one cannot normally simulate all
'of the hardware features and software interactions of
the MPX-l, to say nothing about the timing interac­
tions of a full interrupt system.

The timing interactions are particularly trouble­
some because they are completely asynchronous to
the system:-even more so than with a conventional
interrupt system. There are two levels of synchroni­
zation to contend with: the interrupt programs on the
MPX-l board itself, and the communication between
the system CPU and the MPX-l. The I/O routines
written for the MPX-l require a thorough under­
standing of the 8259A interrupt controller and the

particular features of the A TIN port implementa­
tion. Since interrupts generated by the A TIN port
are directed to the 8085 RST 7.5 input, and those
generated by the 8259A are directed to the main
8085 INTR input, these interrupts are independent
of one another. (Remember that the 8259A by itself
can handle up to eight interrupt requests all occur­
ring independently of one another.)

It is necessary to thoroughly think through the
logic of what happens when each interrupt occurs, as
well as when and when not to re-enable interrupts
during the processing of any given interrupt. I
learned this lesson the hard way! At various times
during MPX-l program development for the Diablo
1620 driver, it would print alternate characters, or
print every character twice, or go into hyperspace
without any clue as to why. This was after the pro­
gram had been tested and worked perfectly on the
main system!

Most of these problems occurred when passing a
character to output from the system CPU to the
MPX-I via the ATTN port. I used a software hand­
shake to tell the system CPU when the MPX-I pro­
gram had accepted a character and was ready for
another one; i.e., the MPX-I program placed a status
byte in system memory. The program timing of this
handshake is critical, since the ATIN port interrupt
to the 8085, which is disabled whenever an OUT in­
struction from the system CPU is processed, must be
re-enabled.

One must be very careful that the sequence and
timing of setting the status byte to ready and rearm­
ing the ATTN port interrupt does not permit some
unexpected event or time delay to occur in between
the two, which would allow the system CPU to send
another character or command to the MPX-l when it
should not. This condition arises because the action
of setting the status byte and rearming the A TIN
interrupt are separate program steps that cannot oc­
cur simultaneously. The most foolproof method may
be to use the output of the MPX-I 8085 SOD port to
interrupt the system CPU as an indication that the
MPX-I is ready. This would, in effect, amount to a
hardware handshake and get around the problem of
the system CPU knowing when the MPX-I is ready
to accept another character or command. However,
with careful attention to program timing detail, I
have not found this to be necessary in the programs
that have been developed so far.

Summary
The MPX-l is an elegant concept, flexible in the ex­
treme and a pain in the posterior to program-but
then a good challenge is always rewarding when fi­
nally met. The first page of the manual states: "The
manual is intended to guide the sophisticated systems
integrator or OEM through hardware features of the
MPX-l. This manual is not intended for novice or
inexperienced users." Amen! It further goes on to say

The ."X-1 is an elegant concept, flexible in the extreme

and a pain in the posterior to program-but then

a good challenge Is always rewarding when finally met.

110 Microsystems May 1983

Compupro continued ...

that you should not expect any applications assis­
tance from either CompuPro or your dealer beyond
the contents of the manual. The manual itself is typ­
ically CompuPro: complete but terse-you have to
read it very carefully to extract the nuggets from the
ore. The message is clear: Don't buy this board unless
you are an experienced assembly language program­
mer and can understand the hardware concepts in­
volved.

This product will be of most value to the system
integrator who can afford the time and effort neces­
sary to adapt the MPX-I to one particular hardware·
configuration and then sell many of them. It should
be ideal for handling I/O chores in a multiuser sys­
tem. Another possible application might be a print
spooler-the capability exists on the board; all that's
missing is the software. And, for very large systems,
more than one MPX-l can be used, since the neces­
sary DMA priority and arbitration hardware are in­
cluded on the board. Even the dyed-in-the-wool hard­
ware/software hacker may find the MPX-l board

m

useful to improve the performance of a single-user
system. I have concluded, after spending two months
developing programs and using the MPX-I, that my
system would be incomplete without this board.

The MPX-l is available in 16K only; for informa­
tion contact CompuPro Div., Godbout Electronics
(Oakland Airport, CA 94614; (415) 562-0636). List
price is $649 A&T, $749 SCS (Certified System
Component high reliability); however, some dealers
are advertising substantial discounts.

<!EE~ Low Cost
Interfacing

FOR: Auto-test / Bread Boarding

\: Logic. Inputs

8 Logic Outp~ts

8 Relay Drivers

• Provides convenient interfacing
to the 488 Bus

• Supports all Talk/Listen functions

• Available in two configurations:

• 6450A Interface Unit ...$349

• 6450P PC Board _. _. . •.. $249

ISEITi!J SEITZ TECHNICAL PRODUCTS,INC.

P.O. BOX 76,NEW LONDON, PA. 19360

PHONE: (215) 255-5111

CIRCLE 260 ON READER SERVICE CARD

C COMPILERS - COMMON FEATURES:
• UNIX VER 7 compatibility. standard iloat, double, and long support. run time library with full 110

and source. fast compilation and execution. foil language • crOSs compilers available

AZTEC C II CPIM (MPIM) $199
• produces relocatable 8080 sour<e code. assembl"r and !tnker supplied. MSO interface. 510 I Z510

debugger int!'rface • library utility. APPLE require, zao and 16K card

AZTEC C][APPLE DOS $199
• produces fast relocatable 6502 source code. relocating assembler supplied. APPLE SHELL. VEO editor

• library and other utilities. requires 16K card

AZTEC C86 laM PC MSDOS CP I M·S6 $249
• produces relocatable 808818086 source code ••ssembler and linkersupplied

ORDER BY PHONE OR BY MAIL - Specify products and disk format - Manuals only S30

MJ\NX
softvvsr.E sy'sLerns

••1
BOl(55, Shrewsbury, N.J. 07701 (201)780-4004

CP 1M FORMATS: 8" STD, HEATH, APPLE, OSBORNE, NORTHSTAR OUTSIDE USA - Add $10
In N.J. add 6% sales tax

CIRCLE 245 ON READER SERVICE CARD

